
Peter Groszkowski

Quantum Hardware in HPC Centers: Integration and 

Performance Benchmarking and Profiling

OLCF Users Conference Call
April 2025



High Performance Computing at ORNL

● Long history in realizing leadership scale HPC systems
● One of the first ones to integrate GPUs into the mix(!) → paradigm 

shift!
● OLCF6: in planning stages



High Performance Computing at ORNL

● Long history in realizing leadership scale HPC systems
● One of the first ones to integrate GPUs into the mix(!) → paradigm 

shift!
● OLCF6: in planning stages

But getting harder to be cost effective  
(in terms of money, power) 



High Performance Computing at ORNL

● Long history in realizing leadership scale HPC systems
● One of the first ones to integrate GPUs into the mix(!) → paradigm 

shift!
● OLCF6: in planning stages What’s next!?… Quantum?
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“If you want to make a 
simulation of nature, 
you'd better make it 
quantum mechanical, 
and by golly it’s a 
wonderful problem, 
because it doesn't look 
so easy.”
Richard Feynman, Simulating Physics with 

Computers May 1981
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Basics of Quantum Computing

Classical 
Bits: 0 OR 1 Quantum Bits 

(qubits): 

● With N qubits, can represent 2N configurations!  (e.g., for N=50 → 1,125,899,906,842,624)
→ very hard to simulate quantum systems on classical computers!

(1) entanglement: correlations between different parts of quantum system 
(2) superposition: state that captures multiple possible system configurations  

● In Quantum Mechanics a wave function (“state”) describes knowledge of a system

● Quantum Computing involves appropriately manipulating this wave function to 
do computation while taking advantage of quantum “effects”:
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Quantum Algorithms

Quantum algorithm (circuit)

● Many algorithms have been proposed related to: 
factoring, searching, quantum simulation, machine learning, solving linear equations

quantum state “Hamiltonian”
(tune to do gates)

Schrödinger equation

● Quantum algorithms are defined as sequences of gates (think: “simple instructions”)
● Gates are realized by manipulating quantum systems (e.g., with electric and magnetic fields)

time



How to Build a Quantum Computer?

Superconductors
Topological Materials

● “Just” need a “well behaved” quantum system!

That we can:
● Initialize
● Measure
● Control 
● … that will stay “quantum”
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Semiconductors Superconductors
Topological Materials

Credit Dickel

Rigetti

Google

Other approaches include:

● Photonic qubits 
(PsiQuantum, Xanadu)

● Topological qubits 
(Microsoft, Delft)

● Other ideas also exist

Trapped Ions Spin qubits Superconducting
circuits

● Too early to know what 
technology will succeed

● Different trade-offs 
between systems 

● “Just” need a “well behaved” quantum system!

Credit Steane & Rieffel

IonQ

Quantinuum

Credit DiVincenzo 

Intel

UNSW

Credit DiVincenzo 

Intel

UNSW
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Why are Quantum Computers so Hard to Build?
● We need systems that are isolated from the environment (to limit effects of “bad” noise),
● … but ones that we can control...  all at the same time!

“Noisy”
Environment

(foe!)

Control 
Environment

(friend!)
qubit

● Very hard to do – can’t (easily) 
have one without the other!

[Mohseni et al., Nature (2017)]

Small quantum
computer

Cables to classical
 electronics

Allow for control,
but also bring noise
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Noisy Intermediate-Scale Quantum (NISQ) Era

● Too limited for “large-scale quantum” algorithms (e.g. Shor’s factoring)

● Current state of the art: 
algorithms that are 10s of gates “deep” on small & noisy ~100 qubit 
machines

● Very active research area for NISQ devices: classical/quantum hybrid variational algorithms:
Use classical optimization together with small quantum circuits 

● Used to explore small-scale chemistry simulations and in quantum machine 
  learning and classification

[Cerezo M. et al., 
Nature Rev. Phys. (2021)]

IBM: “Heron”, 156 qubits
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Future of Quantum Computing: Quantum Error Correction
● Most likely some unwanted noise effects will always be present!
● Future machines will need to implement quantum error correction

Logical qubit
Single (noisy!)
physical qubit

qubit qubit

qubitqubit

qubit

qubit qubit
qubit

encoding
● Now errors can be 

corrected before 
information is lost

● Initially not obvious that it even be done in quantum systems (“No cloning Theorem”)!

● Modern estimates show that we may need millions of physical qubits to run 
useful algorithms (e.g. Shor’s factoring) → long road ahead

→ Peter Shor showed in ~1994, how to do it!



(Selective and Brief) History of Quantum Computing
● Paul Benioff (1979): Computation with Hamiltonians

● Feynman (1981): Simulations
● Shor, Grover, Simon, etc. (>1994): Algorithms              

             (e.g. factoring), Quantum Error Correction
● (>1997): Implementations

– (<2015): noisy 1 to few qubit devices
– (~2023): noisy 100-400 qubit devices

● “NISQ” Era (>2018): small/noisy algorithms
● Google (2019): “Quantum Supremacy” experiment 
● Google/Quantinuum (2024): Early “logical qubit” 

demonstrations
Google: 53 qubit “Sycamore”

[Nature 574 (2019)]

IBM: “Osprey”, 433 qubits

Peter Shor



ORNL Quantum Computing User Program (QCUP)
Premium access to current stack of quantum devices also available through OLCF

Contact: groszkowskip@ornl.govInfo: https://www.olcf.ornl.gov/

● Access to premium machines from 
various vendors

● Support for a broad spectrum of 
research topics

● Could involve tool-development 
● Each project gets a “liaison” (ORNL 

point of contact with quantum 
science expertise)  
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● Integration of Quantum Hardware into HPC centers 

with: Amir Shehata, Thomas Naughton, Daniel Claudino,Thomas Beck
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Ongoing Integration Efforts Around the World
● Quantum won’t replace classical (!)
● Likely will work in tandem; quantum as 

“accelerators” (similar to GPUs)
● How to “best” integrate quantum with 

classical compute?

Classical hardware

Quantum hardware

● Major recent effort at HPC centers around 
the world, e.g., LUMI, Pawsey, Leibniz, 
RIKEN, …  ORNL working actively on this!

● New challenges, e.g.:
● QPUs may not be local!
● Variety in hardware architectures
● Very (!) limited hardware availability 

(e.g., compare with GPUs)



Promising Hybrid HPC/Quantum Applications?
Lots of classical compute required in quantum… but not clear what’s most
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● QEC: syndrome decoding (?)
● Transpiling and circuit preprocessing



Promising Hybrid HPC/Quantum Applications?
Lots of classical compute required in quantum… but not clear what’s most
ideal to take full advantage of large distributed HPC systems

● Variational Algorithms (e.g. VQE, QML/classification) 
● QEC: syndrome decoding (?)
● Transpiling and circuit preprocessing

● Use 6400 Fugaku 
supercomputer nodes for 
selective diagonalization 

● Use 55-77 Heron qubits
● ~3500 2-qubit gates
● No real-time interactions

Heron (IBM)
Fugaku (RIKEN)



HPC/Quantum Integration: How Will It Work?

● Critical requirements:
● Agnostic to the applications and “backends”
● Quantum simulators first-class citizens 

(e.g., state vector, tensor network, etc.)
● Free and open

Application
(qiskit, tket, etc)

Classical compute
OR simulation of QC

Quantum resource

Translation layers

[Beck at al., Future Generation Computer Systems 161, 11-25 (2024)]

Middleware
(resource allocation

and scheduling
circuit processing
and translation, 

classical pre/post
processing, etc) 



HPC/Quantum Integration: How Will It Work?

[Beck at al., Future Generation Computer Systems 161, 11-25 (2024)]

● Early prototype in place!
● Exploring scheduling and interface details 

Application
(qiskit, tket, etc)

Middleware
(resource allocation

and scheduling
circuit processing
and translation, 

classical pre/post
processing, etc) 

Classical compute
OR simulation of QC

Quantum resource

Translation layers

Amir Shehata● See Shehata et al. arxiv:2503.01787
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Simulators and Real Quantum Hardware

● NV-center based hardware from Quantum Brilliance (QB) 
● More limited in quantum performance than other 

technologies
● …but good candidate for our integration effort
● QB installed a device into PAWSEY in Australia

● Treat large-scale simulators as first-class citizens
● Excellent for algorithm development
● Noise studies

NV-center based system

Simulators

Real Hardware
(potentially coming onsite later this year!)
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● Benchmarking joint Quantum / HPC systems with QStone

Eduardo Antonio Coello Perez1, Christopher Seck1, David Rivas2, In-Saeng Suh1, Marco Ghibaudi3 
1) 2) 3)
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Benchmarking
● Crucial in understanding performance metrics of complex systems

● What are the characteristics of good benchmarks?
● Capture performance of some relevant part of the system

→ Could be specific (e.g.: particular algorithm/application)
→ Or general (e.g.: average performance of many algorithms)

● Not easily “gamed”
● Ideally agreed on/utilized by larger community

● Actually hard to design “great” widely used benchmarks; in quantum many 
proposals, but not everyone agrees on details (no killer app realized yet?)

● Our main goal: to build a framework for joint HPC-Quantum benchmarking 
and profiling where it’s easy to utilize other already existing tools.
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● Care about other 
metrics/parameters: FLOP count, 
Memory Size, Network speeds, etc..

Classical Systems

Very rich field: MANY benchmarks/metrics have been proposed

HPC Challenge: HPL LINPACK,  
PTRANS, STREAM, etc…
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Benchmarking Quantum and Classical Systems

● Care about other 
metrics/parameters: FLOP count, 
Memory Size, Network speeds, etc..

Classical Systems Quantum Systems

Very rich field: MANY benchmarks/metrics have been proposed

Various quantum benchmarking suites are available… but limited tooling that 
considers hybrid HPC/quantum performance

● Some metrics may be somewhat unique to 
quantum (e.g., coherence time, gate fidelity)

HPC Challenge: HPL LINPACK,  
PTRANS, STREAM, etc…
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QStone: HPQ/QC Benchmarking Suite

● Free, open-source software framework for 
combined HPC/QC benchmarking

● Development lead by Riverlane

● Joint effort with                  &  

QStone

● Ongoing work includes development and testing:
● With offsite                       hardware
● Mock onsite hardware (               control system)

https://github.com/riverlane/QStone

Marco Ghibaudi



 QStone: How Does It Work? 
● Simple json-based “benchmarker”-provided configuration:

(1) backend/connection details (type of connection, IP, etc.)
(2) scheduler type to use (e.g. SLURM, CSM/jsrun, “bare metal”)
(3) number of “users” to simulate
(4) benchmarks (“apps”) that each user will run 

- 

QStone
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● Simple json-based “benchmarker”-provided configuration:

(1) backend/connection details (type of connection, IP, etc.)
(2) scheduler type to use (e.g. SLURM, CSM/jsrun, “bare metal”)
(3) number of “users” to simulate
(4) benchmarks (“apps”) that each user will run 

- 

QStone

● QStone generates scheduler job 
configuration:

● Which can be ran on HPC (or other 
classical hardware):

● Can do some data post-processing and 
organization (e.g.: build DataFrames)
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(optionally distributed)
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 QStone: What are the Benchmarks?

QStone
● Some benchmarking “apps” are built-in

● QEC syndrome decoding
(utilizing stim + pymatching)

● QML-based variational classifier
(optionally distributed)

[circuit image credit: Pennylane]

Quantum execution

Classical optimization



 QStone: What are the Benchmarks?

QStone
● Randomized benchmarking

(utilizing pyGSTi)



 QStone: What are the Benchmarks?
● All these are user-configurable

(eg.: number of qubits, shots, 
benchmark-specific params., etc)

● Currently exploring adding other 
“pre-defined” benchmarks, e.g.,
● Quantum Volume
● VQE solver

…

● Randomized benchmarking
(utilizing pyGSTi)

● Ultimately goal is to add benchmarks that 
more fully utilize large scale HPC systems
e.g:  
● KQD, SKQD [arXiv: 2405.05068, 

2501.09702]
●  Op-Backpopagation [arXiv: 2502.01897]

QStone
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● These may not be what users actually 
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from qstone.connectors import connector
from qstone.steps.computation import Computation

class NewType(Computation):
   
   def __init__(self):
   # Declare application variables from cfg file

   @trace(ComputationStep.PRE)
   def pre(self):
   # Preprocessing step

   @trace(ComputationStep.RUN)
   def run(self, connector.Connector):
   # Running step submitting quantum jobs

   @trace(ComputationStep.POST)
   def post(self):
   # Postprocessing step

● Very easily user-expandable to arbitrary
benchmarks:
● Need to define (some optional) steps:
● run: core method that “runs stuff”
● (optional) pre: e.g.: circuit preparation
● (optional) post: e.g.: data postprocessing
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 Easily Expandable

● These may not be what users actually 
care about!

QStone

from qstone.connectors import connector
from qstone.steps.computation import Computation

class NewType(Computation):
   
   def __init__(self):
   # Declare application variables from cfg file

   @trace(ComputationStep.PRE)
   def pre(self):
   # Preprocessing step

   @trace(ComputationStep.RUN)
   def run(self, connector.Connector):
   # Running step submitting quantum jobs

   @trace(ComputationStep.POST)
   def post(self):
   # Postprocessing step

● Very easily user-expandable to arbitrary
benchmarks:
● Need to define (some optional) steps:
● run: core method that “runs stuff”
● (optional) pre: e.g.: circuit preparation
● (optional) post: e.g.: data postprocessing

● Thus “compatible” with other benchmarks already out there

● Can measure timing of arbitrary operations
(through python decorators)



Testing Setup

Offsite: real Rigetti hardware in 
California 

Two “quantum devices”: 

● Subject to “double 
queue problem”

● Reservations may not 
coincide with when 
HPC chooses to run 
jobs

● Less control over QC 
side → highlights 
complexities of offsite 
hardware (ongoing

effort)



Testing Setup

Offsite: real Rigetti hardware in 
California 

Onsite: emulated mock device

Two “quantum devices”: 

Gateway Control hardware
in a QC Lab

● Gateway runs a server that dispatches 
instructions to control hardware

● Control hardware simulates actual pulse 
timing for a trapped ion or SC device

● Excellent for exploration/testing; have full 
control over all systems 

● Subject to “double 
queue problem”

● Reservations may not 
coincide with when 
HPC chooses to run 
jobs

● Less control over QC 
side → highlights 
complexities of offsite 
hardware (ongoing

effort)



Testing Setup: Full Story

Gateway

Proxy

Internet

Two “quantum devices”: 
● Offiste: Real Rigetti 

hardware  
● Onsite: Emulated mock 

device (simulates pulse 
timings) 

Control hardware
in a QC Lab

(Rigetti integration is ongoing)



Resulting Data

[...]

[simplified configuration]
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How much each user spends (on average)
in different computation steps

Can help scientists understand application characteristics/performance



QStone: Example Results (Science Perspective)

How much each user spends (on average)
in different computation steps

Can help scientists understand application characteristics/performance

How costly are different components of
application logic (here for QML classifier “app”)

(toy example, local development run)



QStone: Example Results (System Performance)

How many users are RUNNING 
computations at any given time?

Can help (HPC) system engineers optimize e.g. scheduler performance 
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QStone: Example Results (System Performance)

How many users are CONNECTING to 
QPUs at any given time?

How many users are RUNNING 
computations at any given time?

Can help (HPC) system engineers optimize e.g. scheduler performance 
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QStone: Example Results (System Performance)

How many users are CONNECTING to 
QPUs at any given time?

How many users are RUNNING 
computations at any given time?

Can keep track of ALL-THE-THINGS (but can add more, e.g., power consumption) 
...can study patterns, correlations, etc.

Can help (HPC) system engineers optimize e.g. scheduler performance 
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Conclusions 

  

● Integration of Quantum Hardware into HPCs 
ecosystems:
● ORNL building a “middleware” framework

● Beck et al. Fut. Gen. Com. Sys. 161, 11-25 (2024)
● Shehata, et al, arXiv:2503.01787 (2025) 

● QStone: free, open-source python-based 
benchmarking suite for joint HPC-Quantum 
workflows
● Easy to use
● Flexible and easily expandable

classical

quantum

QStone

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is 
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Preprint coming soon!
https://github.com/riverlane/QStone
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ORNL Classical Computing: INCITE and DDs
Computational resources allocations through Oak Ridge Leadership Computing Facility (OLCF) 

Innovative and Novel Computational Impact 
on Theory and Experiment (INCITE) Program

Historically not “too many” quantum-computing related proposals

● For high-impact, computationally 
intensive research campaigns in a 
broad array of science, engineering 
and computer science domains

● Very competitive
● Requires already written software 

stack (GPU-ready, parallelized, etc)
● Call for proposals: once a year

Contact: groszkowskip@ornl.govInfo: https://www.olcf.ornl.gov/

Director’s Discretionary (DD) Program 

● For smaller computational studies
● (e.g., ~20-50k node hours)

● Good for scientific campaigns and 
tools development to get ready for 
INCITE

● Call for proposals: any time(!) 
● ORNL liaisons (that can help!)
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