
Peter Groszkowski

Quantum Hardware in HPC Centers: Integration and

Performance Benchmarking and Profiling

OLCF Users Conference Call
April 2025

High Performance Computing at ORNL

● Long history in realizing leadership scale HPC systems
● One of the first ones to integrate GPUs into the mix(!) → paradigm

shift!
● OLCF6: in planning stages

High Performance Computing at ORNL

● Long history in realizing leadership scale HPC systems
● One of the first ones to integrate GPUs into the mix(!) → paradigm

shift!
● OLCF6: in planning stages

But getting harder to be cost effective
(in terms of money, power)

High Performance Computing at ORNL

● Long history in realizing leadership scale HPC systems
● One of the first ones to integrate GPUs into the mix(!) → paradigm

shift!
● OLCF6: in planning stages What’s next!?… Quantum?

Outline

● Quantum Computing 101

● Integration of Quantum Hardware into HPC centers

● Benchmarking joint Quantum / HPC systems with QStone

Outline

● Quantum Computing 101

● Integration of Quantum Hardware into HPC centers

● Benchmarking joint Quantum / HPC systems with QStone

“If you want to make a
simulation of nature,
you'd better make it
quantum mechanical,
and by golly it’s a
wonderful problem,
because it doesn't look
so easy.”
Richard Feynman, Simulating Physics with

Computers May 1981

Basics of Quantum Computing

● Quantum Computing involves appropriately manipulating this wave function to
do computation while taking advantage of quantum “effects”:

(1) entanglement: correlations between different parts of quantum system

● In Quantum Mechanics a wave function (“state”) describes knowledge of a system

Basics of Quantum Computing

● Quantum Computing involves appropriately manipulating this wave function to
do computation while taking advantage of quantum “effects”:

(1) entanglement: correlations between different parts of quantum system

● In Quantum Mechanics a wave function (“state”) describes knowledge of a system

Entangled electrons

Basics of Quantum Computing

● Quantum Computing involves appropriately manipulating this wave function to
do computation while taking advantage of quantum “effects”:

(1) entanglement: correlations between different parts of quantum system

● In Quantum Mechanics a wave function (“state”) describes knowledge of a system

One moved “far away”

Entangled electrons

Basics of Quantum Computing

● Quantum Computing involves appropriately manipulating this wave function to
do computation while taking advantage of quantum “effects”:

(1) entanglement: correlations between different parts of quantum system

● In Quantum Mechanics a wave function (“state”) describes knowledge of a system

One moved “far away”

Entangled electrons

Measure outcome of first determines state of second(!)

Basics of Quantum Computing

● Quantum Computing involves appropriately manipulating this wave function to
do computation while taking advantage of quantum “effects”:

(1) entanglement: correlations between different parts of quantum system

● In Quantum Mechanics a wave function (“state”) describes knowledge of a system

One moved “far away”

Entangled electrons

Measure outcome of first determines state of second(!)

Basics of Quantum Computing

● Quantum Computing involves appropriately manipulating this wave function to
do computation while taking advantage of quantum “effects”:

(1) entanglement: correlations between different parts of quantum system
(2) superposition: state that captures multiple possible system configurations

● In Quantum Mechanics a wave function (“state”) describes knowledge of a system

Basics of Quantum Computing

Classical
Bits: 0 OR 1

(1) entanglement: correlations between different parts of quantum system
(2) superposition: state that captures multiple possible system configurations

● In Quantum Mechanics a wave function (“state”) describes knowledge of a system

● Quantum Computing involves appropriately manipulating this wave function to
do computation while taking advantage of quantum “effects”:

Basics of Quantum Computing

Classical
Bits: 0 OR 1 Quantum Bits

(qubits):

(1) entanglement: correlations between different parts of quantum system
(2) superposition: state that captures multiple possible system configurations

● In Quantum Mechanics a wave function (“state”) describes knowledge of a system

● Quantum Computing involves appropriately manipulating this wave function to
do computation while taking advantage of quantum “effects”:

Basics of Quantum Computing

Classical
Bits: 0 OR 1 Quantum Bits

(qubits):

● With N qubits, can represent 2N configurations! (e.g., for N=50 → 1,125,899,906,842,624)
→ very hard to simulate quantum systems on classical computers!

(1) entanglement: correlations between different parts of quantum system
(2) superposition: state that captures multiple possible system configurations

● In Quantum Mechanics a wave function (“state”) describes knowledge of a system

● Quantum Computing involves appropriately manipulating this wave function to
do computation while taking advantage of quantum “effects”:

Quantum Algorithms
● Quantum algorithms are defined as sequences of gates (think: “simple instructions”)

Quantum Algorithms
● Quantum algorithms are defined as sequences of gates (think: “simple instructions”)
● Gates are realized by manipulating quantum systems (e.g., with electric and magnetic fields)

quantum state “Hamiltonian”
(tune to do gates)

Schrödinger equation

Quantum Algorithms

Quantum algorithm (circuit)

quantum state “Hamiltonian”
(tune to do gates)

Schrödinger equation

● Quantum algorithms are defined as sequences of gates (think: “simple instructions”)
● Gates are realized by manipulating quantum systems (e.g., with electric and magnetic fields)

time

Quantum Algorithms

Quantum algorithm (circuit)

● Many algorithms have been proposed related to:
factoring, searching, quantum simulation, machine learning, solving linear equations

quantum state “Hamiltonian”
(tune to do gates)

Schrödinger equation

● Quantum algorithms are defined as sequences of gates (think: “simple instructions”)
● Gates are realized by manipulating quantum systems (e.g., with electric and magnetic fields)

time

How to Build a Quantum Computer?

Superconductors
Topological Materials

● “Just” need a “well behaved” quantum system!

That we can:
● Initialize
● Measure
● Control
● … that will stay “quantum”

How to Build a Quantum Computer?

Semiconductors Superconductors
Topological Materials

Credit Dickel

Rigetti

Google

Other approaches include:

● Photonic qubits
(PsiQuantum, Xanadu)

● Topological qubits
(Microsoft, Delft)

● Other ideas also exist

Trapped Ions Spin qubits Superconducting
circuits

● “Just” need a “well behaved” quantum system!

Credit Steane & Rieffel

IonQ

Quantinuum

Credit DiVincenzo

Intel

UNSW

Credit DiVincenzo

Intel

UNSW

How to Build a Quantum Computer?

Semiconductors Superconductors
Topological Materials

Credit Dickel

Rigetti

Google

Other approaches include:

● Photonic qubits
(PsiQuantum, Xanadu)

● Topological qubits
(Microsoft, Delft)

● Other ideas also exist

Trapped Ions Spin qubits Superconducting
circuits

● “Just” need a “well behaved” quantum system!

Credit Steane & Rieffel

IonQ

Quantinuum

Credit DiVincenzo

Intel

UNSW

Credit DiVincenzo

Intel

UNSW

How to Build a Quantum Computer?

Semiconductors Superconductors
Topological Materials

Credit Dickel

Rigetti

Google

Other approaches include:

● Photonic qubits
(PsiQuantum, Xanadu)

● Topological qubits
(Microsoft, Delft)

● Other ideas also exist

Trapped Ions Spin qubits Superconducting
circuits

● Too early to know what
technology will succeed

● Different trade-offs
between systems

● “Just” need a “well behaved” quantum system!

Credit Steane & Rieffel

IonQ

Quantinuum

Credit DiVincenzo

Intel

UNSW

Credit DiVincenzo

Intel

UNSW

Why are Quantum Computers so Hard to Build?
● We need systems that are isolated from the environment (to limit effects of “bad” noise),
● … but ones that we can control... all at the same time!

“Noisy”
Environment

(foe!)

Control
Environment

(friend!)
qubit

Why are Quantum Computers so Hard to Build?
● We need systems that are isolated from the environment (to limit effects of “bad” noise),
● … but ones that we can control... all at the same time!

“Noisy”
Environment

(foe!)

Control
Environment

(friend!)
qubit

● Very hard to do – can’t (easily)
have one without the other!

Why are Quantum Computers so Hard to Build?
● We need systems that are isolated from the environment (to limit effects of “bad” noise),
● … but ones that we can control... all at the same time!

“Noisy”
Environment

(foe!)

Control
Environment

(friend!)
qubit

● Very hard to do – can’t (easily)
have one without the other!

[Mohseni et al., Nature (2017)]

Small quantum
computer

Cables to classical
 electronics

Allow for control,
but also bring noise

Noisy Intermediate-Scale Quantum (NISQ) Era
● Current state of the art:

algorithms that are 10s of gates “deep” on small & noisy ~100 qubit
machines

IBM: “Heron”, 156 qubits● Too limited for “large-scale quantum” algorithms (e.g. Shor’s factoring)

Noisy Intermediate-Scale Quantum (NISQ) Era

IBM: “Heron”, 156 qubits

● Current state of the art:
algorithms that are 10s of gates “deep” on small & noisy ~100 qubit
machines

[Cerezo M. et al.,
Nature Rev. Phys. (2021)]

● Very active research area for NISQ devices: classical/quantum hybrid variational algorithms:
Use classical optimization together with small quantum circuits

● Too limited for “large-scale quantum” algorithms (e.g. Shor’s factoring)

Noisy Intermediate-Scale Quantum (NISQ) Era

● Too limited for “large-scale quantum” algorithms (e.g. Shor’s factoring)

● Current state of the art:
algorithms that are 10s of gates “deep” on small & noisy ~100 qubit
machines

● Very active research area for NISQ devices: classical/quantum hybrid variational algorithms:
Use classical optimization together with small quantum circuits

● Used to explore small-scale chemistry simulations and in quantum machine
 learning and classification

[Cerezo M. et al.,
Nature Rev. Phys. (2021)]

IBM: “Heron”, 156 qubits

Future of Quantum Computing: Quantum Error Correction
● Most likely some unwanted noise effects will always be present!

Future of Quantum Computing: Quantum Error Correction
● Most likely some unwanted noise effects will always be present!
● Future machines will need to implement quantum error correction

Logical qubit
Single (noisy!)
physical qubit

qubit qubit

qubitqubit

qubit

qubit qubit
qubit

encoding
● Now errors can be

corrected before
information is lost

Future of Quantum Computing: Quantum Error Correction
● Most likely some unwanted noise effects will always be present!
● Future machines will need to implement quantum error correction

Logical qubit
Single (noisy!)
physical qubit

qubit qubit

qubitqubit

qubit

qubit qubit
qubit

encoding
● Now errors can be

corrected before
information is lost

● Initially not obvious that it even be done in quantum systems (“No cloning Theorem”)!
→ Peter Shor showed in ~1994, how to do it!

Future of Quantum Computing: Quantum Error Correction
● Most likely some unwanted noise effects will always be present!
● Future machines will need to implement quantum error correction

Logical qubit
Single (noisy!)
physical qubit

qubit qubit

qubitqubit

qubit

qubit qubit
qubit

encoding
● Now errors can be

corrected before
information is lost

● Initially not obvious that it even be done in quantum systems (“No cloning Theorem”)!

● Modern estimates show that we may need millions of physical qubits to run
useful algorithms (e.g. Shor’s factoring) → long road ahead

→ Peter Shor showed in ~1994, how to do it!

(Selective and Brief) History of Quantum Computing
● Paul Benioff (1979): Computation with Hamiltonians

● Feynman (1981): Simulations
● Shor, Grover, Simon, etc. (>1994): Algorithms

 (e.g. factoring), Quantum Error Correction
● (>1997): Implementations

– (<2015): noisy 1 to few qubit devices
– (~2023): noisy 100-400 qubit devices

● “NISQ” Era (>2018): small/noisy algorithms
● Google (2019): “Quantum Supremacy” experiment
● Google/Quantinuum (2024): Early “logical qubit”

demonstrations
Google: 53 qubit “Sycamore”

[Nature 574 (2019)]

IBM: “Osprey”, 433 qubits

Peter Shor

ORNL Quantum Computing User Program (QCUP)
Premium access to current stack of quantum devices also available through OLCF

Contact: groszkowskip@ornl.govInfo: https://www.olcf.ornl.gov/

● Access to premium machines from
various vendors

● Support for a broad spectrum of
research topics

● Could involve tool-development
● Each project gets a “liaison” (ORNL

point of contact with quantum
science expertise)

Outline

● Quantum Computing 101

● Integration of Quantum Hardware into HPC centers

● Benchmarking joint Quantum / HPC systems with QStone

● Integration of Quantum Hardware into HPC centers

with: Amir Shehata, Thomas Naughton, Daniel Claudino,Thomas Beck

Ongoing Integration Efforts Around the World
● Quantum won’t replace classical (!)
● Likely will work in tandem; quantum as

“accelerators” (similar to GPUs)
● How to “best” integrate quantum with

classical compute?

Classical hardware

Quantum hardware

Ongoing Integration Efforts Around the World
● Quantum won’t replace classical (!)
● Likely will work in tandem; quantum as

“accelerators” (similar to GPUs)
● How to “best” integrate quantum with

classical compute?

Classical hardware

Quantum hardware

● Major recent effort at HPC centers around
the world, e.g., LUMI, Pawsey, Leibniz,
RIKEN, … ORNL working actively on this!

Ongoing Integration Efforts Around the World
● Quantum won’t replace classical (!)
● Likely will work in tandem; quantum as

“accelerators” (similar to GPUs)
● How to “best” integrate quantum with

classical compute?

Classical hardware

Quantum hardware

● Major recent effort at HPC centers around
the world, e.g., LUMI, Pawsey, Leibniz,
RIKEN, … ORNL working actively on this!

● New challenges, e.g.:
● QPUs may not be local!
● Variety in hardware architectures
● Very (!) limited hardware availability

(e.g., compare with GPUs)

Promising Hybrid HPC/Quantum Applications?
Lots of classical compute required in quantum… but not clear what’s most
ideal to take full advantage of large distributed HPC systems

● Variational Algorithms (e.g. VQE, QML/classification)
● QEC: syndrome decoding (?)
● Transpiling and circuit preprocessing

Promising Hybrid HPC/Quantum Applications?
Lots of classical compute required in quantum… but not clear what’s most
ideal to take full advantage of large distributed HPC systems

● Variational Algorithms (e.g. VQE, QML/classification)
● QEC: syndrome decoding (?)
● Transpiling and circuit preprocessing

● Use 6400 Fugaku
supercomputer nodes for
selective diagonalization

● Use 55-77 Heron qubits
● ~3500 2-qubit gates
● No real-time interactions

Heron (IBM)
Fugaku (RIKEN)

HPC/Quantum Integration: How Will It Work?

● Critical requirements:
● Agnostic to the applications and “backends”
● Quantum simulators first-class citizens

(e.g., state vector, tensor network, etc.)
● Free and open

Application
(qiskit, tket, etc)

Classical compute
OR simulation of QC

Quantum resource

Translation layers

[Beck at al., Future Generation Computer Systems 161, 11-25 (2024)]

Middleware
(resource allocation

and scheduling
circuit processing
and translation,

classical pre/post
processing, etc)

HPC/Quantum Integration: How Will It Work?

[Beck at al., Future Generation Computer Systems 161, 11-25 (2024)]

● Early prototype in place!
● Exploring scheduling and interface details

Application
(qiskit, tket, etc)

Middleware
(resource allocation

and scheduling
circuit processing
and translation,

classical pre/post
processing, etc)

Classical compute
OR simulation of QC

Quantum resource

Translation layers

Amir Shehata● See Shehata et al. arxiv:2503.01787

Simulators and Real Quantum Hardware

● Treat large-scale simulators as first-class citizens
● Excellent for algorithm development
● Noise studies

Simulators

Simulators and Real Quantum Hardware

● NV-center based hardware from Quantum Brilliance (QB)
● More limited in quantum performance than other

technologies
● …but good candidate for our integration effort
● QB installed a device into PAWSEY in Australia

● Treat large-scale simulators as first-class citizens
● Excellent for algorithm development
● Noise studies

NV-center based system

Simulators

Real Hardware
(potentially coming onsite later this year!)

Outline

● Quantum Computing 101

● Integration of Quantum Hardware into HPC centers

● Benchmarking joint Quantum / HPC systems with QStone

● Benchmarking joint Quantum / HPC systems with QStone

Eduardo Antonio Coello Perez1, Christopher Seck1, David Rivas2, In-Saeng Suh1, Marco Ghibaudi3
1) 2) 3)

Benchmarking
● Crucial in understanding performance metrics of complex systems

● What are the characteristics of good benchmarks?
● Capture performance of some relevant part of the system

→ Could be specific (e.g.: particular algorithm/application)
→ Or general (e.g.: average performance of many algorithms)

● Not easily “gamed”
● Ideally agreed on/utilized by larger community

Benchmarking
● Crucial in understanding performance metrics of complex systems

● What are the characteristics of good benchmarks?
● Capture performance of some relevant part of the system

→ Could be specific (e.g.: particular algorithm/application)
→ Or general (e.g.: average performance of many algorithms)

● Not easily “gamed”
● Ideally agreed on/utilized by larger community

● Actually hard to design “great” widely used benchmarks; in quantum many
proposals, but not everyone agrees on details (no killer app realized yet?)

Benchmarking
● Crucial in understanding performance metrics of complex systems

● What are the characteristics of good benchmarks?
● Capture performance of some relevant part of the system

→ Could be specific (e.g.: particular algorithm/application)
→ Or general (e.g.: average performance of many algorithms)

● Not easily “gamed”
● Ideally agreed on/utilized by larger community

● Actually hard to design “great” widely used benchmarks; in quantum many
proposals, but not everyone agrees on details (no killer app realized yet?)

● Our main goal: to build a framework for joint HPC-Quantum benchmarking
and profiling where it’s easy to utilize other already existing tools.

Benchmarking Quantum and Classical Systems

● Care about other
metrics/parameters: FLOP count,
Memory Size, Network speeds, etc..

Classical Systems

Very rich field: MANY benchmarks/metrics have been proposed

HPC Challenge: HPL LINPACK,
PTRANS, STREAM, etc…

[IBM, arxiv: 2110.14108]

Benchmarking Quantum and Classical Systems

● Care about other
metrics/parameters: FLOP count,
Memory Size, Network speeds, etc..

Classical Systems Quantum Systems

● Some metrics may be somewhat unique to
quantum (e.g., coherence time, gate fidelity)

Very rich field: MANY benchmarks/metrics have been proposed

HPC Challenge: HPL LINPACK,
PTRANS, STREAM, etc…

[IBM, arxiv: 2110.14108]

Benchmarking Quantum and Classical Systems

● Care about other
metrics/parameters: FLOP count,
Memory Size, Network speeds, etc..

Classical Systems Quantum Systems

Very rich field: MANY benchmarks/metrics have been proposed

Various quantum benchmarking suites are available… but limited tooling that
considers hybrid HPC/quantum performance

● Some metrics may be somewhat unique to
quantum (e.g., coherence time, gate fidelity)

HPC Challenge: HPL LINPACK,
PTRANS, STREAM, etc…

QStone: HPQ/QC Benchmarking Suite

● Free, open-source software framework for
combined HPC/QC benchmarking

● Joint effort with &

QStone
https://github.com/riverlane/QStone

QStone: HPQ/QC Benchmarking Suite

● Free, open-source software framework for
combined HPC/QC benchmarking

● Development lead by Riverlane

● Joint effort with &

QStone
https://github.com/riverlane/QStone

Marco Ghibaudi

QStone: HPQ/QC Benchmarking Suite

● Free, open-source software framework for
combined HPC/QC benchmarking

● Development lead by Riverlane

● Joint effort with &

QStone

● Ongoing work includes development and testing:
● With offsite hardware
● Mock onsite hardware (control system)

https://github.com/riverlane/QStone

Marco Ghibaudi

 QStone: How Does It Work?
● Simple json-based “benchmarker”-provided configuration:

(1) backend/connection details (type of connection, IP, etc.)
(2) scheduler type to use (e.g. SLURM, CSM/jsrun, “bare metal”)
(3) number of “users” to simulate
(4) benchmarks (“apps”) that each user will run

-

QStone

 QStone: How Does It Work?
● Simple json-based “benchmarker”-provided configuration:

(1) backend/connection details (type of connection, IP, etc.)
(2) scheduler type to use (e.g. SLURM, CSM/jsrun, “bare metal”)
(3) number of “users” to simulate
(4) benchmarks (“apps”) that each user will run

-

QStone

● QStone generates scheduler job
configuration:

● Which can be ran on HPC (or other
classical hardware):

● Can do some data post-processing and
organization (e.g.: build DataFrames)

 QStone: What are the Benchmarks?

QStone
● Some benchmarking “apps” are built-in

● QML-based variational classifier
(optionally distributed)

[circuit image credit: Pennylane]

Quantum execution

Classical optimization

 QStone: What are the Benchmarks?

QStone
● Some benchmarking “apps” are built-in

● QEC syndrome decoding
(utilizing stim + pymatching)

● QML-based variational classifier
(optionally distributed)

[circuit image credit: Pennylane]

Quantum execution

Classical optimization

 QStone: What are the Benchmarks?

QStone
● Randomized benchmarking

(utilizing pyGSTi)

 QStone: What are the Benchmarks?
● All these are user-configurable

(eg.: number of qubits, shots,
benchmark-specific params., etc)

● Currently exploring adding other
“pre-defined” benchmarks, e.g.,
● Quantum Volume
● VQE solver

…

● Randomized benchmarking
(utilizing pyGSTi)

● Ultimately goal is to add benchmarks that
more fully utilize large scale HPC systems
e.g:
● KQD, SKQD [arXiv: 2405.05068,

2501.09702]
● Op-Backpopagation [arXiv: 2502.01897]

QStone

 Easily Expandable

● These may not be what users actually
care about!

QStone

 Easily Expandable

● These may not be what users actually
care about!

QStone

from qstone.connectors import connector
from qstone.steps.computation import Computation

class NewType(Computation):

 def __init__(self):
 # Declare application variables from cfg file

 @trace(ComputationStep.PRE)
 def pre(self):
 # Preprocessing step

 @trace(ComputationStep.RUN)
 def run(self, connector.Connector):
 # Running step submitting quantum jobs

 @trace(ComputationStep.POST)
 def post(self):
 # Postprocessing step

● Very easily user-expandable to arbitrary
benchmarks:
● Need to define (some optional) steps:
● run: core method that “runs stuff”
● (optional) pre: e.g.: circuit preparation
● (optional) post: e.g.: data postprocessing

 Easily Expandable

● These may not be what users actually
care about!

QStone

from qstone.connectors import connector
from qstone.steps.computation import Computation

class NewType(Computation):

 def __init__(self):
 # Declare application variables from cfg file

 @trace(ComputationStep.PRE)
 def pre(self):
 # Preprocessing step

 @trace(ComputationStep.RUN)
 def run(self, connector.Connector):
 # Running step submitting quantum jobs

 @trace(ComputationStep.POST)
 def post(self):
 # Postprocessing step

● Very easily user-expandable to arbitrary
benchmarks:
● Need to define (some optional) steps:
● run: core method that “runs stuff”
● (optional) pre: e.g.: circuit preparation
● (optional) post: e.g.: data postprocessing

● Can measure timing of arbitrary operations
(through python decorators)

 Easily Expandable

● These may not be what users actually
care about!

QStone

from qstone.connectors import connector
from qstone.steps.computation import Computation

class NewType(Computation):

 def __init__(self):
 # Declare application variables from cfg file

 @trace(ComputationStep.PRE)
 def pre(self):
 # Preprocessing step

 @trace(ComputationStep.RUN)
 def run(self, connector.Connector):
 # Running step submitting quantum jobs

 @trace(ComputationStep.POST)
 def post(self):
 # Postprocessing step

● Very easily user-expandable to arbitrary
benchmarks:
● Need to define (some optional) steps:
● run: core method that “runs stuff”
● (optional) pre: e.g.: circuit preparation
● (optional) post: e.g.: data postprocessing

● Thus “compatible” with other benchmarks already out there

● Can measure timing of arbitrary operations
(through python decorators)

Testing Setup

Offsite: real Rigetti hardware in
California

Two “quantum devices”:

● Subject to “double
queue problem”

● Reservations may not
coincide with when
HPC chooses to run
jobs

● Less control over QC
side → highlights
complexities of offsite
hardware (ongoing

effort)

Testing Setup

Offsite: real Rigetti hardware in
California

Onsite: emulated mock device

Two “quantum devices”:

Gateway Control hardware
in a QC Lab

● Gateway runs a server that dispatches
instructions to control hardware

● Control hardware simulates actual pulse
timing for a trapped ion or SC device

● Excellent for exploration/testing; have full
control over all systems

● Subject to “double
queue problem”

● Reservations may not
coincide with when
HPC chooses to run
jobs

● Less control over QC
side → highlights
complexities of offsite
hardware (ongoing

effort)

Testing Setup: Full Story

Gateway

Proxy

Internet

Two “quantum devices”:
● Offiste: Real Rigetti

hardware
● Onsite: Emulated mock

device (simulates pulse
timings)

Control hardware
in a QC Lab

(Rigetti integration is ongoing)

Resulting Data

[...]

[simplified configuration]

QStone: Example Results (Science Perspective)

How much each user spends (on average)
in different computation steps

Can help scientists understand application characteristics/performance

QStone: Example Results (Science Perspective)

How much each user spends (on average)
in different computation steps

Can help scientists understand application characteristics/performance

How costly are different components of
application logic (here for QML classifier “app”)

(toy example, local development run)

QStone: Example Results (System Performance)

How many users are RUNNING
computations at any given time?

Can help (HPC) system engineers optimize e.g. scheduler performance

To
ta

l u
se

rs
 in

 R
U

N
N

IN
G

 s
ta

te
To

ta
l u

se
rs

 in
 R

U
N

N
IN

G
 s

ta
te

QStone: Example Results (System Performance)

How many users are CONNECTING to
QPUs at any given time?

How many users are RUNNING
computations at any given time?

Can help (HPC) system engineers optimize e.g. scheduler performance

To
ta

l u
se

rs
 in

 R
U

N
N

IN
G

 s
ta

te
To

ta
l u

se
rs

 in
 R

U
N

N
IN

G
 s

ta
te

To
ta

l u
se

rs
 in

 C
O

N
N

E
C

TI
N

G
 s

ta
te

QStone: Example Results (System Performance)

How many users are CONNECTING to
QPUs at any given time?

How many users are RUNNING
computations at any given time?

Can keep track of ALL-THE-THINGS (but can add more, e.g., power consumption)
...can study patterns, correlations, etc.

Can help (HPC) system engineers optimize e.g. scheduler performance

To
ta

l u
se

rs
 in

 R
U

N
N

IN
G

 s
ta

te
To

ta
l u

se
rs

 in
 R

U
N

N
IN

G
 s

ta
te

To
ta

l u
se

rs
 in

 C
O

N
N

E
C

TI
N

G
 s

ta
te

Conclusions

● Integration of Quantum Hardware into HPCs
ecosystems:
● ORNL building a “middleware” framework

● Beck et al. Fut. Gen. Com. Sys. 161, 11-25 (2024)
● Shehata, et al, arXiv:2503.01787 (2025)

● QStone: free, open-source python-based
benchmarking suite for joint HPC-Quantum
workflows
● Easy to use
● Flexible and easily expandable

classical

quantum

QStone

This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

Preprint coming soon!
https://github.com/riverlane/QStone

Extra slides

ORNL Classical Computing: INCITE and DDs
Computational resources allocations through Oak Ridge Leadership Computing Facility (OLCF)

Innovative and Novel Computational Impact
on Theory and Experiment (INCITE) Program

Historically not “too many” quantum-computing related proposals

● For high-impact, computationally
intensive research campaigns in a
broad array of science, engineering
and computer science domains

● Very competitive
● Requires already written software

stack (GPU-ready, parallelized, etc)
● Call for proposals: once a year

Contact: groszkowskip@ornl.govInfo: https://www.olcf.ornl.gov/

Director’s Discretionary (DD) Program

● For smaller computational studies
● (e.g., ~20-50k node hours)

● Good for scientific campaigns and
tools development to get ready for
INCITE

● Call for proposals: any time(!)
● ORNL liaisons (that can help!)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

