
Best Practices for
OpenMP

Introduction to OpenMP Offload Part 2:
Optimization and Data Movement.
Sep 1 2022.
Chris Daley, NERSC

GPU Best Practices Overview

1. Use the right combination of OpenMP directives to use *all* GPU
parallelism

2. Make sure your loops are large enough to benefit from GPUs
3. Minimize the separation between “teams” and “parallel” directives
4. Use the family of “target data” directives to minimize data movement
5. Don’t map scalar variables (unnecessarily)
6. Avoid Fortran array operations and array sections (:) in target regions
7. Take advantage of compiler diagnostics and runtime tracing

Best Practice #1

Use the right combination of OpenMP directives to use
all GPU parallelism

GPUs and OpenMP directives

P PP P

P PP P

Main Memory (DRAM)

L LL L

L LL L

A SIMD processor consists of
many physical SIMD lanes (L)

Local Memory (SRAM)

OpenMP-4.5

#pragma omp teams
Needed to use more than 1
SIMD processor

#pragma omp parallel*
Needed to use more than 1
SIMD lane per SIMD
processor

*Cray Fortran compiler
sometimes needs “simd”
directive. Tip: Always use
”parallel” and “simd”

A GPU consists of many
SIMD processors (P)

P: Also known as a
“Streaming Multiprocessor
(SM)” or “Compute Unit (CU)”

L: Also known as a “CUDA
core”, “Stream core” or
“Shader core”

#pragma omp target teams loop
for (int i=0; i<N; ++i)

Use the right combination of OpenMP
directives to use *all* GPU parallelism

#pragma omp target parallel for
for (int i=0; i<N; ++i) ✗ Missing “teams” directive: will only use 1

SIMD processor (1/108th of an A100 GPU)

OpenMP-4.5 and 5

#pragma omp target teams distribute \
parallel for [simd]

for (int i=0; i<N; ++i)

“teams” and “parallel” directives needed to
use all GPU parallelism

✓

OpenMP-5

“parallel” directive not needed
“loop” is a worksharing directive that can
also generate parallelism

✓

Best Practice #2

Make sure your loops are large enough to benefit from
GPUs

Reminder: You need a lot of software
parallelism to benefit from GPUs

108 Streaming Multiprocessors (SM) *
64 warps per SM *
32 work items per warp =
Up to 221,184 active “threads”

110 Compute Units (CU) *
40 wavefronts per CU *
64 work items per wavefront =
Up to 281,600 active “threads”
for each Graphical Compute Die (GCD)

Perlmutter’s NVIDIA A100 Frontier’s AMD MI-250X

Loops should have at least O(10K)
iterations

The plot shows that
55K GPU threads
are needed to get
~90% of NVIDIA
A100 memory
bandwidth

Although not shown,
there is a similar
performance
characteristic for
AMD MI-250X

STREAM Triad on NVIDIA A100 GPU

Higher
is better

The Collapse clause enables you to
create larger parallel loops

• The OpenMP collapse clause specifies the number of loops to collapse
• In the Day 1 exercise, we collapsed two loops to enable parallelization of

n_cells2 iterations (critical for good utilization of GPUs):

// Tuned Jacobi exercise. First target region: only 4 FLOP per loop iteration
#pragma omp target teams loop collapse(2)
for (unsigned i = 1; i <= n_cells; i++)

for (unsigned j = 1; j <= n_cells; j++)
T_new(i, j) = 0.25 * (T(i + 1, j) + T(i - 1, j) + T(i, j + 1) + T(i, j - 1));

https://github.com/olcf/openmp-offload/tree/master/C/7-loop-combined

https://github.com/olcf/openmp-offload/tree/master/C/7-loop-combined

Note: Kernel launch overhead can be
significant when there is minimal work

Tuned Jacobi. Performance of first target region
on NVIDIA A100 GPU using “target teams loop”

221,184
threads

The time to execute an
OpenMP target region
can be dominated by
kernel launch time

Mitigate launch overhead
with more loop iterations

Highly beneficial for our
Jacobi kernel which has
only 4 FLOP per loop
iteration

Higher
is better

~15x gain

Best Practice #3

Minimize the separation between “teams” and “parallel”
directives

Minimize the separation between “teams”
and “parallel” directives

#pragma omp target teams distribute parallel for

– All GPU threads are active inside the target region (SPMD execution)

• If you stray from a single combined directive you are more likely to run
into compiler correctness or performance issues
– Sometimes OK: “teams” and “parallel” directives in the same function
– Problematic: “teams” and “parallel” directives in different functions but in the

same compilation unit
– Very problematic: “teams” and “parallel” directives in different compilation

units

• A single combined directive often gives the best performance, e.g.

Performance may be poor when splitting
“teams” and “parallel” directives

#pragma omp target teams distribute
for (int i=0; i<N; ++i) {
#pragma omp parallel for

for (int j=0; j<N; ++j) {
x[i][j] += 1.0;

}
}

#pragma omp target teams loop
for (int i=0; i<N; ++i) {
#pragma omp loop

for (int j=0; j<N; ++j) {
x[i][j] += 1.0;

}
}

The current NVIDIA and Clang compilers
don’t always deliver high performance
with this code organization:

Tip for NVIDIA compiler: use the “loop”
directive to get the highest performance:

Best Practice #4

Use the family of “target data” directives to minimize data
movement

Warning: Data movement can dominate
runtime

Nsight Systems profile on NVIDIA A100 GPU using n_cells=1000

Kernel time << data movement
time to/from GPU !!!

Original Jacobi exercise: T and T_new are copied each time the kernel executes
#pragma omp target teams distribute parallel for simd collapse(2) \

map(T[:SIZE], T_new[:SIZE])

“target data” directives enable us to
minimize data movement

#pragma omp target enter data map(to : T[:SIZE]) map(alloc : T_new[:SIZE])
while (residual > MAX_RESIDUAL && iteration <= max_iterations) {
#pragma omp target teams distribute parallel for simd collapse(2)

while (residual > MAX_RESIDUAL && iteration <= max_iterations) {
#pragma omp target teams distribute parallel for simd collapse(2) \

map(T[:SIZE], T_new[:SIZE])

Original:

Tuned:

Use runtime tracing to identify excess
data movement (Cray compiler)

ACC: Start transfer 2 items from jacobi.c:84
ACC: allocate, copy to acc 'T_new[:SIZE]' (8032032 bytes)
ACC: allocate, copy to acc 'T[:SIZE]' (8032032 bytes)
ACC: End transfer (to acc 16064064 bytes, to host 0 bytes)
ACC: Execute kernel __omp_offloading_93_282c1f03_kernel_gpu_teams_parallel_l84_cce$noloop$form
blocks:7813 threads:128 from jacobi.c:84
ACC: Start transfer 2 items from jacobi.c:84
ACC: copy to host, free 'T[:SIZE]' (8032032 bytes)
ACC: copy to host, free 'T_new[:SIZE]' (8032032 bytes)
ACC: End transfer (to acc 0 bytes, to host 16064064 bytes)

CRAY_ACC_DEBUG=2

Use runtime tracing to identify excess
data movement (NVIDIA compiler)

upload CUDA data file=jacobi.c function=kernel_gpu_teams_parallel line=81 device=0 threadid=1
variable=T bytes=8032032
upload CUDA data file=jacobi.c function=kernel_gpu_teams_parallel line=81 device=0 threadid=1
variable=T_new bytes=8032032
launch CUDA kernel file=jacobi.c function=kernel_gpu_teams_parallel line=81 device=0 host-threadid=0
num_teams=0 thread_limit=0 kernelname=nvkernel_kernel_gpu_teams_parallel_F1L81_2
grid=<<<7813,1,1>>> block=<<<128,1,1>>> shmem=0b
download CUDA data file=jacobi.c function=kernel_gpu_teams_parallel line=88 device=0 threadid=1
variable=T_new bytes=8032032
download CUDA data file=jacobi.c function=kernel_gpu_teams_parallel line=88 device=0 threadid=1
variable=T bytes=8032032

NVCOMPILER_ACC_NOTIFY=3

Best Practice #5

Don’t map scalar variables (unnecessarily)

Specifying the variable as firstprivate is
the most optimal

void scale_array(int scalar, double *x) {
// Assume ”x” already present on the GPU
// #pragma omp target teams loop map(to:scalar)
#pragma omp target teams loop firstprivate(scalar)

for (int i=0; i<N; ++i) x[i] *= scalar;
}

The scalar is copied to GPU
main memory using e.g.
cudaMemcpy (slow L)

The scalar is passed as a
kernel argument (fast J)

NOTE: Scalar variables are firstprivate by default on a target construct

Best Practice #6

Avoid Fortran array operations and array sections (:) in
target regions

Issues with Fortran array operations in
target regions

!$omp target teams distribute parallel do
do i = 1, N

x(:) = y(:) ! Error: Redundant execution by each GPU thread
call mysub(x(i:1)) ! Performance issue: Array descriptor created by each GPU thread

end do

!$omp target teams
!$omp parallel
!$omp workshare
x(:) = y(:) ! Error: Workshared over threads only -- not teams
!$omp end workshare
!$omp end parallel
!$omp end target teams

Best Practice #7

Take advantage of compiler diagnostics and runtime
tracing

All OpenMP compilers provide some
compile-time diagnostics and/or tracing

Compiler Diagnostics Runtime tracing *
NVIDIA -Minfo=mp,accel NVCOMPILER_ACC_NOTIFY=3

Cray CRAY_ACC_DEBUG=3

Clang -Rpass=openmp-opt LIBOMPTARGET_INFO=-1

GNU GOMP_DEBUG=1

Tells you how the compiler is
parallelizing loops over teams and
threads

Shows you a timeline of data movement
and kernel execution. This allows you to
check that program flow matches your
expectations

* Generally multiple trace values – see documentation

Thank You

