OAK RIDGE

National Laboratory

June 19, 2025

Exploring Performance
Portability in Julia and
Mojo

Tatiana Melnichenko

University of Tennessee, Knoxville

§ &, % U-S. DEPARTMENT  ORNL |S MANAGED BY UT-BATTELLE LLC
20¢ of ENERGY  FOR THE US DEPARTMENT OF ENERGY




Introduction: Tatiana Melnichenko

« Senior Undergrad at UTK in Computer Science
* Research Assistant at Innovative Computing Laboratory
* ORNL SULI intern, mentored by Dr. William Godoy

» Focus: productivity and performance of high-level languages, like
Julia and Mojo

» Goal: Make HPC more accessible to people with little or no
programming experience

THE UNIVERSITY OF \ N
.T TENNESSEE ‘{J ICL
KNOXVILLE INNOVATIVE

COMPUTING LABORATORY

%OAK RIDGE

National Laboratory




From Zero Julia to JACC Kernels in 3 Weeks

« Background: C/C++, OpenMP, CUDA, HIP hoduTe

Laplacian

import

« Started with zero Julia experience JACC. @3

function init_test_kernel! (i, j, k, u, nx, ny, nz, hx, hy, hz)
if i <= nx & j <= ny && k <= nz

» Learned via the same tutorial notebooks you're
using

« Developed a 7-point-stencil in JACC (Julia for
Accelerators:
https://ieeexplore.ieee.org/document/10820713)

end

» Also implemented the same kernel in Mojo end

@inline function calculate_kernel! (i, j,

if

« D @0 ial e o
A K PO s N

o & & (SO > &
U, [ T [ T W T [ O T 7 T [ [ W

‘‘‘‘‘ S~ \ 1 ’ - -

‘‘‘‘‘‘ Sel \ 1 / _-- ____-"'
= -o AT T - ——
----- BT I L
- ~ - -
“:HﬂﬁhfL"
end
U, -ttt bt I I rBr T [ I T [ L [
end
‘é National Laboratory

JACC
nit_backend

x = (i - 1) * hx
y=(J-1) * hy
z = (k - 1) * hz
Lx = nx * hx
ny * hy
nz * hz

@inbounds ul[i, j, k] = ¢ * x * (x -

invhx2, invhy2, invhz2, invhxyz2)

i>1 &8 i < nx &&
j>18&8 j < ny &&
k >1 && k < nz

@inbounds f[i, j, k] = u[i, j, k] * invhxyz2
+ (u[i -

+ (u[i
+ (uf[i

1, 3

Jj_

> J

Lx) + c *y * (y -

k, u, f, nx, ny, nz,

, k T +ulfi+ 1, 3

1, k 1 + ufi
, k- 1] + uli

Ly) + ¢

s k D

» 3+ 1,k D
> 3 , kK +1])

*

Z*(Z_

invhx2
invhy2
invhz2

Lz)


https://ieeexplore.ieee.org/document/10820713

Performance

o ° ) —8— JACC with @inline — CUF)A C++ . —— Mojo co!umn major
Com parlson. JUIIa VS —— JACC —— Mojo row major —-—- Theoretical Peak
MOjO Memory Bandwidth vs Block Dimensions, NVIDIA H100 NVL, L=1024
| optimized C++
ﬁZOOO—Pﬁ\W__A * —& * = = _é‘_—_—-—__::
a | | | | Mojo |
- Benchmarked stencil JACC, Mojo, = ] | | JAGC |
and C++ CUDA kernels 2 ]
« 1024 threads organized in different 5 ol . JACC
1D/2D/3D block layouts E | First attempt
» Performance metric: memory =
bandwidth (GB/s) ' Mojo
* Future goal: Auto-tuning block
layouts in JACC S R R
NE ¥ e e E N b“:\’ < A 'b"':b ' ©
Block Dimensions
Memory Bandwidth: Higher is Better!
%OAK RIDGE
National Laboratory



Thank you for attention!

Acknowledgements:

« This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce

Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internships
Program (SULLI).

« This research used resources of the Oak Ridge Leadership Computing Facility and the Experimental
Computing Laboratory at the Oak Ridge National Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-000R22725.

%OAK RIDGE

National Laboratory



	Slide 1: Exploring Performance Portability in Julia and Mojo
	Slide 2: Introduction: Tatiana Melnichenko
	Slide 3: From Zero Julia to JACC Kernels in 3 Weeks
	Slide 4: Performance Comparison: Julia vs Mojo
	Slide 5: Thank you for attention!

