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Introduction: Tatiana Melnichenko

« Senior Undergrad at UTK in Computer Science
* Research Assistant at Innovative Computing Laboratory
* ORNL SULI intern, mentored by Dr. William Godoy

» Focus: productivity and performance of high-level languages, like
Julia and Mojo

» Goal: Make HPC more accessible to people with little or no
programming experience
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From Zero Julia to JACC Kernels in 3 Weeks

« Background: C/C++, OpenMP, CUDA, HIP hoduTe

Laplacian

import

« Started with zero Julia experience JACC. @3

function init_test_kernel! (i, j, k, u, nx, ny, nz, hx, hy, hz)
if i <= nx & j <= ny && k <= nz

» Learned via the same tutorial notebooks you're
using

« Developed a 7-point-stencil in JACC (Julia for
Accelerators:
https://ieeexplore.ieee.org/document/10820713)

end

» Also implemented the same kernel in Mojo end

@inline function calculate_kernel! (i, j,

if
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JACC
nit_backend

x = (i - 1) * hx
y=(J-1) * hy
z = (k - 1) * hz
Lx = nx * hx
ny * hy
nz * hz

@inbounds ul[i, j, k] = ¢ * x * (x -

invhx2, invhy2, invhz2, invhxyz2)

i>1 &8 i < nx &&
j>18&8 j < ny &&
k >1 && k < nz

@inbounds f[i, j, k] = u[i, j, k] * invhxyz2
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https://ieeexplore.ieee.org/document/10820713

Performance
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Thank you for attention!
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