g,OAK RIDGE

National Laboratory

Infroduction to HIP Programming - ..

ITpITiL

7/

01010101101101g
010110101011010101

Tom Papatheodore

HPC Engineer

Oak Ridge Leadership Computing Facility ey QMR

System Acceptance & User Environment

Hev 'lett Pac kard
Ente rprise

AMD 1

ORNL is managed by UT-Battelle LLC for the US Department of Energy LR

Outline
« Whatis HIP?
« Heterogeneous programming (CPU + GPU)
 Structure of a basic HIP program
* HIP error checking
e Timing HIP codes
e Multi-D HIP grids
 Hands-on session
« Optimization example

e Haonds-on session

%OAK RIDGE
National Laboratory

What is HIP¢

Heterogeneous-Compute Interface for Portability (HIP)

Portable HIP C++ (Host & Device Code)

« C++runtime APl and kernel language that
allows developers to create portable

applications that can run on AMD and NVIDIA

GPUEs. #include “cuda.h” #include

“hip_runtime.h”

« Syntactically similar to CUDA so that most AP

calls can be converted from CUDA to HIP with
a simple cuda — hip franslation.

hipcc

Nvidia GPU AMD GPU

%OAK RIDGE

National Laboratory

Heterogeneous Programming Model

CPU and GPU have their own physical memories
CPU has several cores, low latency, and lower memory bandwidth than GPU
GPU has many cores, high throughput, and higher memory bandwidth than CPU

Compute node
or
workstation

CPU

GPU

LHEL
H|N[NIN

DRAM

g

HBM

000000000
0 o o o
000000000
000000000
000000000
000000000
000000000
000000000

%OAK RIDGE

National Laboratory

Co-processor model: As an application runs, execution is passed back and forth
between the CPU and GPU

\ 4

\ 4

A 4

A 4

NOTE: data transfers can be costly!

CPU Execution (host)

GPU Execution (device)

Example: Vector Addition

« Embarrassingly Parallel; each element-wise addition is completely independent from all others,
so all elements can be computed at the same time.

« Let's see how this can be parallelized on a GPU using HIP...

O

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline

int main () {
// Allocate memory for array on host CPU
CPU Mem

// Allocate memory for array on device

// Fill array on host

// Copy data from host array to device array

// Do something on device (e.g. vector addition)

// Copy data from device array to host array

// Check data for correctness GPU GPU Mem

// Free Host Memory

// Free Device Memory

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline

int main () {
// Allocate memory for array on host CPU
CPU Mem

// Allocate memory for array on device

// Fill array on host

// Copy data from host array to device array

// Do something on device (e.g. vector addition)

// Copy data from device array to host array _D

" GPU Mem

// Check data for correctness GPU
// Free Host Memory

// Free Device Memory

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline

int main () {
// Allocate memory for array on host CPU
_ CPU Mem
// Allocate memory for array on device

// Fill array on host

// Copy data from host array to device array

// Do something on device (e.g. vector addition)

// Copy data from device array to host array

// Check data for correctness GPU GPU Mem

// Free Host Memory

// Free Device Memory

%OAK RIDGE

National Laboratory

Example: Vector Addition Program OQOutline

int main () {
// Allocate memory for array on host CPU
// Allocate memory for array on device
// Fill array on host

// Copy data from host array to device array

// Do something on device (e.g. vector addition)

// Copy data from device array to host array _D

GPU Mem

// Check data for correctness GPU
// Free Host Memory

// Free Device Memory

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline

int main () {
// Allocate memory for array on host CPU
CPU Mem

// Allocate memory for array on device

// Fill array on host

// Copy data from host array to device array

// Do something on device (e.g. vector addition)

// Copy data from device array to host array _-

" GPU Mem

// Check data for correctness GPU
// Free Host Memory

// Free Device Memory

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline

int main () {
// Allocate memory for array on host CPU
CPU Mem

// Allocate memory for array on device

// Fill array on host

// Copy data from host array to device array

// Do something on device (e.g. vector addition)

// Copy data from device array to host array

// Check data for correctness GPU GPU Mem

// Free Host Memory

// Free Device Memory

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline

int main () {
// Allocate memory for array on host CPU
CPU Mem

// Allocate memory for array on device

// Fill array on host

// Copy data from host array to device array

// Do something on device (e.g. vector addition)

// Copy data from device array to host array _-

" GPU Mem

// Check data for correctness GPU
// Free Host Memory

// Free Device Memory

%OAK RIDGE

National Laboratory

Example: Vector Addition Program OQOutline

int main () {
// Allocate memory for array on host CPU
// Allocate memory for array on device
// Fill array on host

// Copy data from host array to device array

// Do something on device (e.g. vector addition)

// Copy data from device array to host array _D

GPU Mem

// Check data for correctness GPU
// Free Host Memory

// Free Device Memory

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline

int main () {
// Allocate memory for array on host CPU
CPU Mem

// Allocate memory for array on device

// Fill array on host

// Copy data from host array to device array

// Do something on device (e.g. vector addition)

// Copy data from device array to host array _D

" GPU Mem

// Check data for correctness GPU
// Free Host Memory

// Free Device Memory

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline

int main () {
// Allocate memory for array on host CPU
CPU Mem

// Allocate memory for array on device

// Fill array on host

// Copy data from host array to device array

// Do something on device (e.g. vector addition)

// Copy data from device array to host array

// Check data for correctness GPU GPU Mem

// Free Host Memory

// Free Device Memory

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline (HIP)

int main () {

CPU
CPU Mem

// Allocate memory for array on host
size t bytes = N*sizeof (double);

i
double *A = (double*)malloc (bytes); i

|

|
double *B = (double*)malloc (bytes);

double *C

(double*)malloc (bytes) ; _D

GPU GPU Mem

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline (HIP)

int main () {

CPU
CPU Mem

// Allocate memory for array on device

double *d A, *d B, *d C;

hipMalloc (&d A, bytes);

hipMalloc (&d B, bytes);

hipMalloc (&d C, bytes); _-

GPU GPU Mem

hipError t hipMalloc(void** devPtr, size t size)

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline (HIP)

int main () {

T CPU
_ CPU Mem
// Fill array on host
for(int 1i=0,; i<N; i++)
i
{ [
[|
| |
A[i] = 1.0;
C[i] = 0.0; GPU GPU Mem

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline (HIP)

int main () {

CPU
CPU Mem

v
} —

GPU GPU Mem

// Copy data from host array to device array

hipMemcpy (d A, A, bytes, hipMemcpyHostToDevice) ;

hipMemcpy (d B, B, bytes, hipMemcpyHostToDevice) ;

hipError t hipMemcpy(void* dst, const void* src, size_t count, hipMemcpyKind kind)

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline (HIP)

int main () {

CPU

_ _ o CPU Mem
// Do something on device (e.g. vector addition)
// We’ll come back to this soon

G

GPU PU Mem

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline (HIP)

int main () {

o CPU
_ CPU Mem
// Copy data from device array to host array
hipMemcpy (C, d C, bytes, hipMemcpyDeviceToHost) ;
| |

GPU GPU Mem

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline (HIP)

int main () {

CPU

// Check data for correctness
double tolerance = 1.0e-14;

for (int i=0; 1i<N; i++)

if(fabs(C[i] - 3.0) > tolerance) _D

{ GPU GPU Mem

{

printf ("Error: value of C[%d] = %f instead of 3.0\n", i, C[i]);

exit (-1);

Yoo,
%OAK RIDGE
}

National Laboratory

Example: Vector Addition Program Outline (HIP)

int main () {

C CPU
CPU Mem
// Free Host Memory
free (A) ; &
1
free (B); 1
|
free (C);
| GPU GPU Mem

%OAK RIDGE

National Laboratory

Example: Vector Addition Program Outline (HIP)

int main () {

T CPU
CPU Mem
// Free Device Memory

hipFree(d B);

GPU Mem

hipFree(d C); |

} GPU

hipError t hipFree(void* devPtr)

%OAK RIDGE

National Laboratory

HIP Thread, Block, Grid Hierarchy

A grid of threads is spawned, where the threads
are partitioned into blocks.

— « Threads within a block can cooperate when performing
Blocks calculations.

Threads <§

N
thr per blk
blk in grid

16;
4;
ceil (float (N) / thr per blk);

%OAK RIDGE

National Laboratory

Example: Vector Addition (HIP Kernel)

A kernel in HIP programming is a function that runs on the GPU.
« Butf how is it different than a normal functione

- vold vector addition (double *a, double *b, double *c) {
O
fj for (int 1=0; 1i<N, 1i++) {
C
D cli]l= ali] + b[i];
[
O
9)
)]
9 1

~ global wvoid vector addition(double *a, double *b, double *c)
O | ¢
C
| -
0 int id = blockDim.x * blockIdx.x + threadIdx.x;
V4
)
ol if (id < N) c[id] = alid] + blid];
O

}

%OAK RIDGE

National Laboratory

A single process
iterates through the
loop and adds the
vectors element-by-
element
(sequentially).

All GPU threads run
same kernel function,
but each thread is
assigned a unique
global ID to know
which element(s) to
calculate.

Example: Vector Addition (HIP Kernel)

~ global wvoid vector addition(double *a, double *b, double *c)

{

int id = blockDim.x * blockIdx.x + threadIdx.x;

1f (1d < N) c[id] = al[id] + b[i1d];

GPU kernel

Indicates the function is a HIP kernel function — called by the host (CPU) and executed on
the device (GPU).

%OAK RIDGE

National Laboratory

Example: Vector Addition (HIP Kernel)

~ global wvoid vector addition(double *a, double *b, double *c)

{

int id = blockDim.x * blockIdx.x + threadIdx.x;

1f (1d < N) c[id] = al[id] + b[i1d];

GPU kernel

Indicates the kernel does not return anything.

%OAK RIDGE

National Laboratory

Example: Vector Addition (HIP Kernel)

~ global wvoid vector addition(double *a, double *b, double *c)

{

int id = blockDim.x * blockIdx.x + threadIdx.x;

GPU kernel

1f (1d < N) c[id] = al[id] + b[i1d];

double *a, double *b, double *c

Kernel function arguments.

* a, b, care pointers to device memory (allocated with hipMalloc)

%OAK RIDGE

National Laboratory

Example: Vector Addition (HIP Kernel)

{
int id = blockDim.x * blockIdx.x + threadIdx.x;

1f (1d < N) c[id] = al[id] + b[i1d];

GPU kernel

~ global wvoid vector addition(double *a, double *b, double *c)

int 1d = blockDim.x * blockIdx.x + threadIdx.x;

This defines a unique thread ID among all threads in a grid.

%OAK RIDGE

National Laboratory

Threads <

Example: Vector Addition (HIP Kernel)

~ global wvoid vector addition(double *a, double *b, double *c)
O |
= 4
9 int id = blockDim.x * blockIdx.x + threadIdx.x;
-
O if (id < N) c[id] = alid] + b[id];
O
}
blockDim

Gives the number of threads within each block (x-dimension for 1D).

« E.g., 4 threads per block

%OAK RIDGE

National Laboratory

Example: Vector Addition (HIP Kernel)

~ global wvoid vector addition(double *a, double *b, double *c)
O |
- 4 0-3
9 int id = blockDim.x * blockIdx.x + threadIdx.x;
-
O if (id < N) c[id] = alid] + b[id];
O
}
blockIdx

Specifies the block index of the thread (within the grid of blocks).

 |.e., which block the thread is in

%OAK RIDGE

National Laboratory

Example: Vector Addition (HIP Kernel)

~ global wvoid vector addition(double *a, double *b, double *c)
O |
c 4 0-3 0-3
9 int id = blockDim.x * blockIdx.x + threadIdx.x;
-
O if (id < N) c[id] = alid] + b[id];
O
}
threadIdx

Specifies a thread’s local ID within a thread block.

%OAK RIDGE

National Laboratory

Example: Vector Addition (HIP Kernel)

{

int id = blockDim.x * blockIdx.x + threadIdx.x;

1f (1d < N) c[id] = al[id] + b[i1d];

GPU kernel

~ global wvoid vector addition(double *a, double *b, double *c)

int 1d = blockDim.x * blockIdx.x + threadIdx.x;

This defines a unique thread ID among all threads in a grid.

%OAK RIDGE

National Laboratory

Example: Vector Addition (HIP Kernel)

~ global wvoid vector addition(double *a, double *b, double *c)
{

4 2 1
int id = blockDim.x * blockIdx.x + threadIdx.x;

1f (1d < N) c[id] = al[id] + b[i1d];

GPU kernel

For example, with blockIdx.x = 2 and threadIdx.x = 1...

0 1 2 310 1 2 3160 1 2 3160 1 28NS

block O block 1 block 2 block 3

int 1d =4 * 2 + 1 =09

%OAK RIDGE

National Laboratory

Example: Vector Addition (HIP Kernel)

~ global wvoid vector addition(double *a, double *b, double *c)
O |
-
—
9 int id = blockDim.x * blockIdx.x + threadIdx.x;
-
O if (id < N) c[id] = alid] + b[id];
O
}
int 1id

Local variables (allocated on the stack) are private to each thread.

The loop was replaced by a grid of threads.

%OAK RIDGE

National Laboratory

Example: Vector Addition (HIP Kernel)

~ global wvoid vector addition(double *a, double *b, double *c)

{

int id = blockDim.x * blockIdx.x + threadIdx.x;

1f (1d < N) c[id] = al[id] + bl[1d];

GPU kernel

N = 15;

thr per blk 4,

. . blk in grid = ceil(float (N) / thr per blk);
it (1d < N) = ceil(3.75)= 4

Number of threads in the grid might be larger than number of @

elements in the array. E.g., ifN = 15

Ao A1 Ay Az A: As Ag Ay LAs A A An A2 Az Ay

¥ OAK RIDGE So, we are guarding against operating on memory we don’t own.

National Laboratory

Example: Vector Addition (HIP Kernel)

How do we call/launch the kernel?¢

In general
hipLaunchKernelGGL (<kernel name>, <num blocks in grid>, <num threads in block>,
<shared memory size>, ,
<arg0>, <argl>, ...);

For our vector addition problem

hipLaunchKernelGGL (vector addition, blk in grid, thr per blk,
O ’ 14
d_a ’ d_b ’ d_C) 7

thr per blk = 128;
..WNEre | 1,751 Grid = ceil (float(N) / thr per blk);

%OAK RIDGE

National Laboratory

Clone the Repository

The repository for code examples and exercises can be found here:
https://github.com/olcf/intro to hip

To clone the repo (on Summit):

$ git clone https://github.com/olcf/intro to hip.git

NOTES:
« The $ is not part of the command. It’'s meant to represent the command line prompt.

« If you have issues needing a username/password for git, it's possible you accidentally mis-typed
the command above.

%OAK RIDGE

National Laboratory

https://github.com/olcf/intro_to_hip

Example: Vector Addition (Demo 1)

Navigate to the vector addition program directory:
$ cd intro to hip/examples/vector addition

Load necessary software modules and compile the code:
$ module load cuda/11.5.2

$ module load hip-cuda/5.1.0
$ make

Once you have compiled your code, submit a batch job:
$ bsub submit.lsf

You can check the status of your running job with:
S jobstat -u <username>

Once your job has finished, check that it ran successfully by looking for the string SUCCESS in
your stdout file from the job. You will also see the values of N, thr per blk,andblk in grid.

%OAK RIDGE

National Laboratory

Example: Vector Addition (Demo 1)

What happens if you change thr per blk fo be too large?

Change thr per blk to 2048 fo see what happens:
$ vim vector addition.cpp

Recompile the code: If you have already completed exercise 1, you shouldn’'t need to reload the
modules, but you'll still need to recompile with make

S module load cuda/11.5.2
$ module load hip-cuda/5.1.0
S make

Once you have recompiled your code, submit a batch job:
$ bsub submit.lsf

%OAK RIDGE

National Laboratory

Example: Vector Addition (Demo 1)

What happens if you change N to be too large?

Change thr per block backto 128, then change N to 5¢9 to see what happens:
$ vim vector addition.cpp

Recompile the code: If you have already completed exercise 1, you shouldn’'t need to reload the
modules, but you'll still need to recompile with make

S module load cuda/11.5.2
$ module load hip-cuda/5.1.0
S make

Once you have recompiled your code, submit a batch job:
$ bsub submit.lsf

%OAK RIDGE

National Laboratory

HIP Error Checking

There are 3 main types of HIP errors

e Errors from HIP API calls

= HIP APl calls allreturn a hipError t value that can be checked.

* Synchronous HIP kernel errors

= These errors are related to the kernel launch

« Asynchronous HIP kernel errors

= These errors are related to the kernel execution

%OAK RIDGE

National Laboratory

HIP Error Checking

There are 2 main types of HIP errors

« Synchronous Errors

« Errors from synchronous HIP APl calls

= HIP APl calls allreturn a hipError t value that can be checked.

« Synchronous HIP kernel errors - these errors are related to the kernel launch

« Asynchronous Errors

« Asynchronous HIP kernel errors

= These errors are related to the kernel execution

« Asynchronous HIP API calls

%OAK RIDGE

National Laboratory

HIP Error Checking — API Errors

HIP APl calls return a hipError t value, which either reports hipSuccess or an error
message.

int main ()

{

hipError t gpuErr;

gpuErr = hipMalloc (&d A, bytes);

if (hipSuccess != gpuErr) {
printf ("GPU Error - %s\n”, hipGetErrorString (gpuErr));
exit (1),

%OAK RIDGE

National Laboratory

HIP Error Checking — API Errors

HIP APl calls return a hipError t value, which either reports hipSuccess or an error
message.

Wrap HIP API calls in error-checking macro

// Macro for checking errors in GPU API calls
#define gpuErrorCheck(call)
do{
hipError t gpuErr = call;
if (hipSuccess != gpuErr) {
printf ("GPU Error - %s:%d: '$s'\n", FILE , LINE , hipGetErrorString(gpuErr));
exit (1) ;

-

}
twhile (0)

// Main program

int main ()

{
gpuErrorCheck (hipMalloc (&d A, bytes));

return 0O;

}

%OAK RIDGE

National Laboratory

HIP Error Checking — Kernel Errors

HIP Kernel errors can result from kernel launch and/or kernel execution.
« Synchronous errors — e.g., kernel launch errors

* Asynchronous errors — e.g., invalid memory access (heed to synchronize to find these before moving on)

// Launch kernel
hipLaunchKernelGGL (vector addition, blk in grid, thr per blk , 0, 0, d A, d B, d C);

// Check for synchronous errors during kernel launch (e.g. invalid execution paramters)
gpuErrorCheck (hipGetLastError ());

// Check for asynchronous errors during GPU execution (after control is returned to CPU)
gpuErrorCheck (hipDeviceSynchronize ());

NOTE: The hipDeviceSynchronize can cause performance penalty so might want
to add debug macro.

%OAK RIDGE

National Laboratory

Example: Vector Addition w/Error Checks (Demo 2)

With proper error checking in place, let’s retry our tests from exercises 2 and 3...

Recall from exercise 2, we were trying to answer the question “what happens if you
change thr per blk fo be too large?”

First, navigate o intro to hip/examples/vector addition with error check

Change thr per blktfo 2048 fo see what happens:
$ vim vector addition.cpp

Recompile the code: If you have already completed exercise 1, you shouldn’'t need to reload the modules,
but you'll still need to recompile with make

S module load cuda/11.5.2
$ module load hip-cuda/5.1.0
S make

One you have recompiled your code, submit a batch job:
$ bsub submit.lsf

Once your job has finished, check for an error message in your stdout file. Why did this job fail?

¥ OAK RIDGE See: https://docs.olcf.ornl.gov/systems/summit user gquide.html#tesla-v100-specifications

National Laboratory

https://docs.olcf.ornl.gov/systems/summit_user_guide.html

Example: Vector Addition w/Error Checks (Demo 2)

With proper error checking in place, let’s retry our tests from exercises 2 and 3...

Recall from exercise 3, we were trying to answer the question “what happens if you
change N to be too large?”

First, navigate o intro to hip/examples/vector addition with error check

Change thr per blk backto 128, then change N to 5e9 to see what happens:
$ vim vector addition.cpp

Recompile the code: If you have already completed exercise 1, you shouldn’'t need to reload the modules,
but you'll still need to recompile with make

S module load cuda/11.5.2
$ module load hip-cuda/5.1.0
S make

One you have recompiled your code, submit a batch job:
$ bsub submit.lsf

Once your job has finished, check for an error message in your stdout file. Why did this job fail?

%OAK RIDGE

National Laboratory

Timing GPU Operations with HIP Events

« A HIP stream is a sequence of GPU operations that is carried out in order on a GPU.

« HIP events can be placed into a HIP stream to time GPU operations.

// Create start/stop event objects and variable for elapsed time in ms
hipEvent t start, stop;

gpuErrorCheck (hipEventCreate (&start));

gpuErrorCheck (hipEventCreate (&stop)),

float elapsed time ms;

gpuErrorCheck (hipEventRecord(start, NULL));
// GPU Operation(s) go here.
gpuErrorCheck (hipEventRecord(stop, NULL));

// Possible work on CPU while GPU is churning

gpuErrorCheck (hipEventSynchronize (stop))’ . i ; ;
gpuErrorCheck (hipEventElapsedTime (&elapsed time ms, start, stop)); Iﬂ()TE.Syru:hrornonK)n|s
needed fo make sure

stop event has taken

place before using it to

gpuErrorCheck (hipEventDestroy (start)); | Iat | d 1
gpuErrorCheck (hipEventDestroy (stop)); calculare elapsea iime.

%OAK RIDGE

National Laboratory

Timing GPU Operations with HIP Events (Demo 3)

Navigate to the vector addition program directory:
$ cd intro to hip/examples/vector addition timing

Load necessary software modules and compile the code:
$ module load cuda/11.5.2

$ module load hip-cuda/5.1.0
$ make

Once you have compiled your code, submit a batch job:
$ bsub submit.lsf

You can check the status of your running job with:
S jobstat -u <username>

Once your job has finished, check that it ran successfully by looking for the string SUCCESS in
your stdout file from the job. You will also see the values of N, thr per blk,andblk in grid.

% 0AK RIDGE Now you will also see the time taken for the kernel calculations.

National Laboratory

Multidimensional GPU Grids

In previous 1D example

thr per blk = 128
blk in grid = ceil(float (N) / thr per blk);

hipLaunchKernelGGL (vector addition, blk in grid, thr per blk , 0, 0, d A, d B, d C);

In general

dim3 threads per block(threads per block in x-dim,
threads per block in y-dim,

threads per block in z-dim);

dim3 blocks 1n grid(grid blocks in x-dim,

grid blocks in y-dim, dim3 is built-in ¢ struct with
member variables x, vy, z

grid blocks in z-dim);

%OAK RIDGE

National Laboratory

Multidimensional GPU Grids

In previous 1D example

thr per blk = 128
blk in grid = ceil(float (N) / thr per blk);

hipLaunchKernelGGL (vector addition, blk in grid, thr per blk , 0, 0, d A, d B, d C);

So we could have used

dim3 threads per block(128, 1, 1);
dim3 blocks in grid(ceil(float (N) / threads per block.x), 1, 1);

hipLaunchKernelGGL (vector addition, blocks in grid, threads per block , 0, 0, 4d A, dB, dC);

dim3 is built-in ¢ struct with
member variables x, vy, z

%OAK RIDGE

National Laboratory

Multidimensional GPU Grids — 7x10 Matrix Example

Ao Aoi Aoz Aoz | Acs Aos Aos Aoz [Aus Aog M - 7 rTOWS
N =10 columns

Al Al Al2 Al3 Al4 Als Al A7 Al Al

e | s |) et s | e | v e Assume a 4x4 block of threads...

Az Az Az Az Az4 Azs Az Az7 Az Az

Then to cover all elements in the array,
o R K Rt Kl et K e we need 3 blocks in x-dim and 2 blocks in
y-dim.

Asp As, As2 As3 As4 Ass Asg Asz Asg Asg

As0 As,1 As2 As3 As.4 Ass Ass As7 Ass As9

dim3 threads per block(4, 4, 1);
dim3 blocks in grid(ceil(float(N) / threads per block.x), ceil(10/4) = ceil(2.5) =3
ceil(float (M) / threads per block.y) , 1); ceil(7/4) =ceil(1.75) =2

hipLaunchKernelGGL (matrix addition, blocks in grid, threads per block , 0, 0, 4d A, dB, dC);

%OAK RIDGE

National Laboratory

Multidimensional GPU Grids — 7x10 Matrix Example

Ao Ao, Aoz Ao3 Ao,4 Aos Ao Aoz Aos Ao

Al Al Al2 Al3 Al4 Als Al A7 Al Al

A2, Ao, A2 A23 Ao 4 Aos Ao Aoz Aog A2y

Az Az Az Az Az4 Azs Az Az7 Az Az

A4 As As2 As3 Asq Ass Ass Asz Assg As

Asp As, As2 As3 As4 Ass Asg Asz Asg Asg

As0 As,1 As2 As3 As.4 Ass Ass As7 Ass As9

So, how do we handle this 2D grid in our
kernele

« First, let’s look at how we handle the
“global thread IDs”

- Then we'll look at extra considerations
to guard against stepping on memory
that doesn’t belong to the kernel.

~ global wvoid matrix addition (double *a, double *b, double *c) {
int column = 5 X+ CX;
int row = Yy * .y ot LY

(row < M && column < N) {

int thread id = row * N + column;

c[thread id] = a[thread id] + b[thread id];

}
OAK RIDGE

National Laboratory

National Laboratory

0 1 2 3 4 5 6 7 8 9 10 11
| |
0 Aoco Ao Aoz Aoz | Aos Aos Aos Aoz | Aos Aoy M = 7 rOws
1 N = 10 columns
Al Al Al2 Al3 Al4 Als Al A7 Al Al
Assume 4x4 blocks of threads...
2 A2, Ao, A2 A23 Ao 4 Aos Ao Aoz Aog A2y
3 A0 As Azo Aszz | Ass Ass Azs Aszz | Ass Asy .
Then to cover all elements in the array,
. | | | we need 3 blocks in x-dim and 2 blocks
5 1 Aso As Asz Asz | Asa Ass Ass Asy | Ass As In y_dlm.
6 As0 As,1 As2 As3 As.4 Ass Ass As7 Ass As9
7
global vold matrix addition(double *a, double *b, double *c) {
o o . (O —_ 11) Ex: What element of the array does the
int column = - X X - X7 highlighted thread correspond to?
int row = Y X .y o+ LY (0_7)
(row < M && column < N) { (O 69) thread id = row * N + column
int thread id = row * N + column; =5 *10 + 6 = 56
c[thread id] = a[thread id] + b[thread id];
}
OAK RIDGE

Hands-On Exercise 1: Find the Error

Using the reported error message, identify the problem and fix it.

First, navigate fo intro to hip/exercises/vector addition find the error

Then compile the code: If you have already completed previous exercises, you shouldn't need to reload the
modules, but you'll still need to compile with make

S module load cuda/11.5.2
$ module load hip-cuda/5.1.0
S make

Once you have compiled your code, submit a batch job:
$ bsub submit.lsf

Once your job has finished, look for an error message in the stdout file and use the error (as well as the source
code in vector addition.cpp) toidentify the problem.

Then fix the problem (in vector addition.cpp), recompile the code (make), andre-runit (bsub submit.lsf).

If the new stdout file reports SUCCESS , the problem has been solved.

%OAK RIDGE

National Laboratory

Hands-On Exercise 2: Complete the Kernel

The kernel function is missing the actual calculation. Add it.

First, navigate fo intro to hip/square array elements complete kernel

The file square array elements.cpp conftains a program which simply takes an array and squares each of
the elements on the GPU. However, the “squaring of the array elements” is missing from the GPU kernel.

Add the missing calculation in the square array elements.cpp file.

Then compile the code: If you have already completed previous exercises, you shouldn't need to reload the
modules, but you'll still need to compile with make

S module load cuda/11.5.2
$ module load hip-cuda/5.1.0
S make

Once you have compiled your code, submit a batch job:
$ bsub submit.lsf

If the new stdout file reports SUCCESS |, you have correctly added the missing calculations.

%OAK RIDGE

National Laboratory

Hands-On Exercise 3: Time the GPU Kernel with HIP events
Add HIP events to time the duration of the GPU kernel.

First, navigate fo intro to hip/square array elements time kernel

The file square array elements.cpp conftains a program which takes an array and squares each of the
elements on the GPU.

Add HIP events fo fime the kernel in the square array elements.cpp file and print out the duration.

Then compile the code: If you have already completed previous exercises, you shouldn't need to reload the
modules, but you'll still need to compile with make

S module load cuda/11.5.2
$ module load hip-cuda/5.1.0
S make

Once you have compiled your code, submit a batch job:
$ bsub submit.lsf

NOTE: The stdout file will already report sucCcess |, so for this exercise you'll need to look for the fime
duration you print out.

%OAK RIDGE

National Laboratory

Hands-On Exercise 4: Complete Kernel & Data Transfer

Once again, the kernel function is missing the actual calculation, but this fime in 2D. Add

in the calculation. There are also arguments missing from one of the data fransfers. Add
them.

First, navigate to intro to hip/square matrix elements

The file square matrix elements.cpp contains a program which takes a matrix (2D array) and squares each
of the elements on the GPU. However, the “squaring of the matrix elements” is missing from the GPU kernel.

Add the missing calculation in the square array elements.cpp file.

You will also need to add in 2 missing arguments from one of the data transfers.

Once you've done both TODOs, compile the code: If you have already completed previous exercises, you
shouldn’t need to reload the modules, but you'll still need to compile with make

S module load cuda/11.5.2
$ module load hip-cuda/5.1.0
S make

Once you have compiled your code, submit a batch job:
$ bsub submit.lsf

If the stdout file reports SUCCESS |, you have correctly added the missing calculafions and arguments.

%OAK RIDGE

National Laboratory

Optimizing an Example HIP Code

Pinned Memory, Asynchronous Data Transfer, and Overlapping CPU and GPU work.

Let’s take a look at an example HIP code to demonstrate some simple optimizations...

Example: For each element in an array, calculates the average value of that element,
the 3 elements to its left, and the 3 elements to its right.

« The program computes the averages on the GPU and compares with a CPU
implementation for correctness.

 The CPU version is already sped up with OpenMP CPU threading.

%NOAK RIDGE

ional Laboratory

Optimizing an Example HIP Code

Pinned Memory, Asynchronous Data Transfer, and Overlapping CPU and GPU work.

« Kernel execution is asynchronous w.r.t. the CPU.

« Asynchronous data transfers

double *A
double *A average gpu

(double*)malloc (bytes) ;
(double*)malloc (bytes) ;

average on_cpu();
hipErrorCheck(hipMemcpy(d A, A, bytes, hipMemcpyHostToDevice));

int thr per blk
int blk in grid

block size;
ceil (float (N+2*stencil radius) / thr per blk);

hipLaunchKernelGGL (average array elements, blk in grid, thr per blk, 0, 0, d A, d A average);

hipErrorCheck (hipMemcpy (A average gpu, d A average, bytes, hipMemcpyDeviceToHost));

PLAN:
« Make all GPU operations asynchronous
« Move average_on_cpu() after asynchronous GPU commands

- While GPU operations are off being performed in the HIP stream, the CPU calculation can be performed
concurrently.

%OAK RIDGE

National Laboratory

Optimizing an Example HIP Code

Pinned Memory, Asynchronous Data Transfers, and Overlapping CPU and GPU work.

Performs asynchronous GPU data fransfers

hipError t hipMemcpyAsync (void* dst, const void* src, size t bytes, hipMemcpyKind kind, hipStream t stream)

NOTE: Must use Allocates page-locked host memory

pinned (page-locked)

CPU memory for ‘ hipError t hipHostMalloc (void **dst, size t size, unsigned int flags)
asynchronous data

transfers.

%OAK RIDGE

National Laboratory

Optimizing an Example HIP Code

Pinned Memory, Asynchronous Data Transfers, and Overlapping CPU and GPU work.

double *A = (double*)malloc (bytes)
double *A average gpu = (double*)malloc (bytes);

average on_cpu();
hipErrorCheck(hipMemcpy(d A, A, bytes, hipMemcpyHostToDevice));

int thr per blk = block size;
int blk in grid = ceil(float (N+2*stencil radius) / thr per blk);

hipLaunchKernelGGL (average array elements, blk in grid, thr per blk, 0, 0, d A, d A average);

hipErrorCheck(hipMemcpy (A average gpu, d A average, bytes, hipMemcpyDeviceToHost));

double *A, *A average gpu;

hipErrorCheck (hipHostMalloc (&A, bytes));
hipErrorCheck(hipHostMalloc (&A average gpu, bytes));
average on_cpu();

hipErrorCheck(hipMemcpy(d A, A, bytes, hipMemcpyHostToDevice));

int thr per blk = block size;
int blk in grid = ceil(float (N+2*stencil radius) / thr per blk);

hipLaunchKernelGGL (average array elements, blk in grid, thr per blk, 0, 0, d A, d A average);

hipErrorCheck(hipMemcpy (A average gpu, d A average, bytes, hipMemcpyDeviceToHost));

Use pinned memory in place of pageable memory: ~35% speedup
%OAKRIDGE

National Laboratory

2|gnabnd

pauuld

Optimizing an Example HIP Code

Pinned Memory, Asynchronous Data Transfers, and Overlapping CPU and GPU work.

double *A, *A average gpu;

hipErrorCheck (hipHostMalloc (&A, bytes));
hipErrorCheck (hipHostMalloc (&A average gpu, bytes));

average on_cpu();

int thr per blk block size;
int blk in grid = ceil(float (N+2*stencil radius) / thr per blk);

hipLaunchKernelGGL (average array elements, blk in grid, thr per blk, 0, 0, d A, d A average);

double *A, *A average gpu;

hipErrorCheck (hipHostMalloc (&A, bytes));
hipErrorCheck (hipHostMalloc (&A average gpu, bytes));

average on _cpu() ;

SNOUOIYDUASY <«EEEEEE SNOUOIYDUAS

int thr per blk block size;
int blk in grid = ceil(float (N+2*stencil radius) / thr per blk);

hipLaunchKernelGGL (average array elements, blk in grid, thr per blk, 0, 0, d A, d A average);

¥OAKRIDGE Use asynchronous data transfers in place of synchronous

Optimizing an Example HIP Code

Pinned Memory, Asynchronous Data Transfers, and Overlapping CPU and GPU work.

double *A, *A average gpu;
hipErrorCheck (hipHostMalloc (&A, bytes));
hipErrorCheck(hipHostMalloc (&A average gpu, bytes));

/__."'

hipErrorCheck (hipMemcpyAsync(d A, A, bytes, hipMemcpyHostToDevice, 0));

int thr per blk
int blk in grid

block size;
ceil (float (N+2*stencil radius) / thr per blk);

hipLaunchKernelGGL (average array elements, blk in grid, thr per blk, 0, 0, d A, d A average);

hipErrorCheck (hipMemcpyAsync (A average gpu, d A average, bytes, hipMemcpyDeviceToHost, 0));

>average on_cpu();

hipErrorCheck (hipDeviceSynchronize ());

Moved CPU calculation after the asynchronous kernel launch and data transfer.

%OAK RIDGE

National Laboratory

Optimizing an Example HIP Code

Pinned Memory, Asynchronous Data Transfer, and Overlapping CPU and GPU work.

Code Version CPU Time (s) | GPU Time (s) | Total Time (s) | Total Time Total Time
Speedup over Speedup overall
previous

Pageable 0.1916 0.0015 0.2863]]

Pinned 0.1948 0.0015 0.2192 1.31x (~31%) 1.31x (~31%)

Pinned+Overlap |0.1934 0.0014 0.2064 1.06x (~6%) 1.39x (~39%)

« Using page-locked host memory gave the biggest boost of 31% (because data transfers were
4X faster)

« Then, by adding asynchronous data fransfers and running the GPU operations at the
same fime as the CPU calculations, the time for the GPU operations was “hidden”
behind the CPU time (total ime — CPU time only)

%OAK RIDGE

National Labor:

Exercise 5: Matrix Multiply (1D indexing)

O 1 2 3 4 5 6 O 1 2 3 4 5 6 O 1 2 3 4 5 6
0 Ao A A, Aj Ay As Ag Bo B, B, B3 B4 Bs B¢ Co G C, Cy3 C, Cs5 C(Cg
] A7 As A A A A A B Bs By Bio By Bz By C; G G Cip Cp Gy Cyg
2 Au A A Ay A Ay Ay Biy Bis Bis Biz Big By Bap Cuu Cis Cig Ciz Cig Gy Cop
3 A An Axn Au Ax Ax Ay Bay Bxm Bas Bay B By By 00— Cy Cp Cyp Cy Gy Cy Cy
4 Ax An Ayn Az An A Ay Bas By Bsp Bar Bz Bss Bag Cs Cxo Cap Cai Gz Ciz Cas
5 As Ax Ay Am An An Ay Bas Bae Bs; Bss By Bawn Ba Cas Cas Cxz Cas Cz Chp Cuy
6 Ap An Ay A Ax Ay A Bso Bss Baus Bus Bu By Bas Cp Cup Cu Cus Cyu Cyqy Cg

Cg = A7*B; + Ag*Bg + Ag*Bis + Ap*Boy + A11*Byg + A13*Bsg + A13%Bys

A Index = row * N + 1 A_index=row*7+i =1 * 7 + i1 =774+ 1
B index = 1 * N + col B index = 1 * 7 4+ col =1 * 7 4+ 1 =1313*x7TH+4+1
C index = row * N + col C index = 1 * 7+ 1 = 8 = 8

0AK RIDGE (where N = 7 and i = {0..(N-1)})

Exercise 5: Matrix Multiply (simple implementation)

o 1 2 3 4 5 6 7

Your task for this exercise is to write a simple implementation

of the matrix multiply kernel, where each thread calculates
one element of the output mairix.

__global void matrix multiply(double *a, double *b, double *c)
{

int column
int row

lockDim.x * blockIdx.x + threadIdx.x;

= b
= blockDim.y * blockIdx.y + threadIdx.y;

// TODO: Add matrix multiply implementation here

NOTE that row and column refer to the row and column of the GPU grid here (this is slightly
different than the previous slide), which can be larger than the matrix itself.

%OAK RIDGE

National Laboratory

Where to go from here?e

We did not cover:

« Shared memory — will be covered in a future session on optimization techniques

« HIP streams - will be covered in a future session on optimization techniques

« Profiling — can be done w/tools from the underlying platform (Nsight on NVIDIA rocprof on AMD)
« Debugging - can be done w/tools from the underlying platform (NVIDIA or AMD)

« Managed Memory

« hipify — franslating CUDA code to HIP (will be covered here htips://www.olcf.ornl.gov/calendar/hip-for-cuda-
programmers/)

Fortran interfaces — will be covered in a future session
« HIP libraries
Resources:

« AMD’s HIP Programming Guide: htips://docs.amd.com/bundle/HIP-Programming-Guide-
v5.2/page/Programming_with_HIP.html

« Future sessions in Preparing for Frontier training series: hitps://www.olcf.ornl.gov/preparing-for-frontier/

« HIP Github: https://github.com/ROCm-Developer-Tools/HIP

%OAK RIDGE

National Laboratory

https://www.olcf.ornl.gov/calendar/hip-for-cuda-programmers/
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.2/page/Programming_with_HIP.html
https://www.olcf.ornl.gov/preparing-for-frontier/
https://github.com/ROCm-Developer-Tools/HIP

