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Introduction

• Deep Learning (DL) is an emerging technology gaining 
dominance 
– to solve critical problems and predicting trends in
• Computer vision, Speech recognition, Natural language 

processing, Scientific and Climate sciences 

• Efficient training of Deep Neural Network (DNN)
– Requires large volumes of input datasets and high-speed 

compute accelerators 

• Therefore, DL applications are becoming an 
increasingly important workload on supercomputers 
– Summit and Frontier (Upcoming No. 1 Supercomputer)
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Introduction

• Large-scale HPC parallel file systems provide massive 
capacity
– To store huge volumes (TBs ~ PBs) of DL datasets

• Each compute nodes on Summit supercomputer
– Offer exceptional computing capabilities to fulfill the DL 

application needs, e.g., Six NVIDIA Tesla V100 GPUS per Node 

• Despite, to efficiently Run and Scale DL Applications to 
leverage state-of-the-art HPC supercomputers remains 
a challenge 
– Running scientific DL application such as DeepCAM at scale 

on 1,024 compute nodes of Summit is limited due to slow I/O  



99

• I/O optimization for DL Applications is non-trivial 
challenge to solve on Large-scale Supercomputers
– Dataset characteristics, DL Access patterns, and I/O properties

• Dataset characteristics of DL applications
• ImageNet-1K: 1.28 Million files in 1000 categories
• ImageNet-21K: 11 Million images (average size: 163KB)
• OpenImages: 9 Million images

Motivation
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• Access patterns of DL Applications
– Stochastics Gradient Descent (SGD) randomly shuffles dataset 

after each epoch

Dataset: 16 Files
Batch Size: 4
Iterations in an Epoch: 4
No. of Epochs: n (depends on achieving desired 
% of training accuracy from the DL model)

Motivation

An epoch is defined as the unit of time a DL application 
takes to touch the whole dataset at least once…
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Motivation

• Access patterns of DL Applications
– Stochastics Gradient Descent (SGD) randomly shuffles dataset 

after each epoch
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Motivation

• HPC I/O subsystem is not built to deal with the manner 
DL frameworks Read Data at Scale
– Easily saturated with a large number of concurrent and 

random accesses on small files 

• MDTest on Summit Supercomputer
– Small files and large files to mimic DL datasets on GPFS and 

node-local NVMes

32KB <Open-Read-Close>
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8MB <Open-Read-Close>

Small Files: PFS’s metadata performance is an impediment to large-
scale DL training jobs

Large Files: Shifts to bandwidth constraints of PFS, i.e., Read 
Performance 22.5TB/s vs 2.5 TB/s
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• File Access Characteristics of DL Applications
– Training DNN is Read-intensive 
– Read-only Access to the complete dataset in One Epoch 
– Re-read and traversal in subsequent Epochs
– Shuffling after each epoch ensures randomness to avoid 

model overfitting

• Key I/O Properties
- High degree of Shareability in DL I/O
- Shareability of I/O makes DL jobs Cache-Friendly 
- Cache Adversarial if complete dataset do not fit in cache
- I/O is substitutable 

Motivation

Opportunity to exploit node-local or near-node local storage on 
compute nodes and solve I/O Scalability limitations by layering a 

Caching System
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Challenges and Limitations

• Limited to small-scale testbeds or simulation-based 
scalability 
– Really do not scale well on HPC supercomputers, e.g., over 

1000 nodes

• Lack Portability and require modifications
– Existing studies mostly require changes to application, input 

pipelines or underlying file systems

• Metadata bottlenecks for large no. of small files 
– Millions of requests touching metadata server for both small 

and large files
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Challenges and Limitations

• Lack of Generality
– Tailored to meet specific application/dataset requirements, 

often hardware dependent

• No support for POSIX interface
– Lack support for POSIX interface and are not suitable choice 

for scientific DL applications running on supercomputer
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High-Velocity AI Cache

• High-Velocity AI Cache (HVAC), a transparent read-
only caching layer, for large-scale supercomputers 

To Scale on thousands of compute nodes on leadership-
class supercomputer such as Summit and Frontier 
without modifying DL applications and additional 

metadata bottlenecks and storage overhead
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HVAC

• Architectural overview on Summit
– A Client-Server Library intended to accelerate I/O accesses for DL 

applications that utilize read-only data with a high re-read rate. 

HVAC Caching

DL Training 
Applications

Compute node
local NVMe

Large-scale 
Parallel File System
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• Generic for diverse deployments models
– Agnostic and can be adopted on Node-local NVMe SSDs, 

near-node local or Rack-local storages

• Portable and POSIX support
– Intercepts the <open-read-close> file I/Os via LD_PRELOAD
• No changes to application required

• No Metadata Bottleneck
– Employs distributed hashing to calculate location of cached 

contents across the nodes

• No repeated re-reads from GPFS required 

HVAC
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• HVAC Server
– builds an aggregate cache layer atop of node-local fast 

storage 
• Purpose is to process forwarded file system operations from HVAC 

clients and to retrieve data from PFS or cache 
• Can be co-located with HVAC client and servers

• HVAC Client
– Consists of an interception interface that catches relevant file 

system calls to PFS and redirects to the respective HVAC server

• HVAC communication Framework
– uses High-Performance Mercury library 
• Remote communications and bulk data transfers over the 

InfiniBand network

HVAC
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Proposed Solution
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• I/O service flow in HVAC
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Evaluation

• Summit Testbed
– Compute node specifications

• Datasets
• ImageNet21K – 11M images (1.1TB, avg. 163KB size)
• CosmoUniverse – 600K TRF files (1.3 TB, avg. 16MB size)

• Distributed Training
– Pytorch with Horovod

• Applications 
– ResNet50, CosmoFlow, DeepCAM (Gordon bell prize in 2019)
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Evaluation

• Compared against

– GPFS: Large-scale IBM Spectrum Scale shared PFS hosting the 
complete dataset. Each epoch reads from GPFS

– XFS-on-NVMe: The complete dataset is staged on compute 
node-local NVMe formatted with XFS file system prior to 
application run (Upper I/O bound)

– HVAC (i x1): i instance(s) running on each compute node. The 
dataset is read from GPFS only in the first epoch 

– Multiple HVAC servers on a single compute node to show its 
flexibility, portability and ease of deployment
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Evaluation

• Effect of scaling no. of compute nodes on training time
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Evaluation

• Performance gain and overhead with scaling no. of 
compute nodes

• Average performance improvement is over 50% for all HVAC 
variants atop GPFS

• HVAC (1x1) shows higher overhead around 25% compared to 
other HVAC variants, i.e., HVAC(2x1) 14% and HVAC(4x1) with 9% 
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Evaluation

• Effect of scaling no. of epochs on training time

– Linear scaling showing strong scaling property of HVAC
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Evaluation

• Per Epoch Analysis

• Every HVAC servers reads the file from GPFS and then caches it

• (Best and Average Training time),  has reduced to a factor 3x per 
epoch by HVAC(4x1) com- pared to GPFS 
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Summary and Current Status
• HVAC is a scalable caching system for HPC systems such as 

Summit and Frontier
– Exploits compute node-local storage and builds an aggregate 

cache layer atop to accelerate the DL application training

• Current Status
– Deployed and evaluated on 1,024 Summit nodes (with over 6000 NVIDIA V100 

GPUS)
– Development to support Slingshot network on Frontier



2929

Awais Khan
Contact: khana@ornl.gov

Questions?


