

The Frontier Programming Environment at OLCF

David E. Bernholdt

Programming Environment and Tools Lead Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory

Overview

Contributors to Frontier Programming Environment

Vendor-Provided

- Cray Programming Environment (CPE)
 - Includes Cray compiler for C, C++, and Fortran plus GCC compiler. All the Cray profiling, tuning, and debugging tools.
 OpenMP and Cray MPI optimized for AMD GPU direct.
- AMD ROCm programming environment
 - Includes LLVM compiler to generate optimized code for both the AMD Trento CPU and MI200 GPU. It will support: C, C++, and Fortran and have GPU offload support. HIP, a CUDA-like direct GPU programming model (with CUDA to HIP conversion utilities).

Other Sources

- ECP
 - LLVM enhancements: Flang (Fortran frontend), OpenMP, OpenACC
 - Kokkos and RAJA
 - HIP LZ (HIP support for Aurora)
 - MPI, HPCToolkit, PAPI enhancements
 - ...
- ALCF + OLCF
 - Pilot implementation of DPC++/SYCL for Frontier
- OLCF
 - GCC enhancements to better support
 OpenACC, OpenMP, Fortran on Summit and Frontier

Programming Environment

- Compilers Offered
 - Cray PE (C/C++ LLVM-based; Cray Fortran)
 - AMD ROCm (LLVM-based)
 - GCC
- Programming Languages & Models Supported (in which compilers)
 - C, C++, Fortran (all)
 - OpenACC (GCC)
 - OpenMP (all)
 - HIP (Cray, AMD)
 - Kokkos/RAJA (all)
 - UPC (Cray, GCC)
- Transition Paths
 - CUDA: semi-automatic translation to HIP
 - CUDA Fortran: HIP kernels called from Fortran (a more portable approach)
 - CUDA Fortran kernels need to be translated to C++/HIP (manual process)
 - o Fortran bindings to HIP and ROCm libraries and HIP runtime available through AMD's hipfort project

Items in green are also available on Summit

2.6 substantially complete, 2.7 planned

5.0-5.2 in progress – most priority features complete, details vary

Programming Tools

Debuggers and Correctness Tools

System-Level Tools Arm DDT Cray CCDB Cray ATP STAT Node-Level Tools ROCgdb Cray GDB4HPC

Items in green are also available on Summit

Performance Tools

Tool				
System-Level Tools				
Arm MAP/Performance Reports				
CrayPat/Apprentice2 (Cray)				
Reveal (Cray)				
TAU				
HPCToolkit				
Score-P / VAMPIR				
Node-Level Tools				
gprof				
PAPI				
ROCprof				
ROC-profiler & ROC-tracer libraries				

Scientific Libraries and Tools

Functionality	CPU	GPU	Notes
BLAS	Cray LibSci, AMD BLIS, PLASMA	Cray LibSci_ACC, AMD roc/hipBLAS, AMD rocAMD ROCm Tensile, MAGMA	MAGMA and PLASMA are open source software led by the UTK Innovative Computing Laboratory
LAPACK	Cray LibSci, AMD libFlame, PLASMA	Cray LibSci_ACC, AMD roc/hipSolver, MAGMA	
ScaLAPACK	Cray LibSci	ECP SLATE, Cray LibSci_ACC	
Sparse		AMD roc/hipSparse, AMD rocALUTION	
Mixed-precision iterative refinement	Cray IRT, MAGMA	MAGMA	
FFTW or similar	Cray, AMD, ECP FFTX, FFT-ECP	AMD rocFFT, ECP FFTX, FFT-ECP	FFT-ECP focuses on 3D FFTs
PETSc, Trilinos, HYPRE, SUNDIALS, SuperLU			Spack recipes from ECP xSDK

Functionality in **green** is also available on Summit

Digging a Little Deeper

For C/C++ Codes

- Multiple compilers available
 - AMD
 - Cray
 - LLVM
- But they're all based on LLVM
 - HPE and AMD are among the many organizations contributing to the development of LLVM
 - Most work is "upstreamed" (contributed to the core LLVM source)
 - But not everything is accepted (immediately), or may be held back as proprietary
 - Capabilities (and bugs) are likely to be generally similar at any point in time...
 - But not identical!
- LLVM is also available on Summit

For Fortran Codes

- One useful compiler available at present
 - Cray
 - Not based on LLVM
- AMD provides a Fortran implementation, but we don't recommend it
 - It is based on "classic Flang", in the LLVM ecosystem
 - Support for both the latest language standards and OpenMP offload are limited
- There is extensive work underway in the LLVM community on Flang, but it will be some time before it is production quality

But What About GCC?

- On this slide "gcc" refers to the whole suite, including gfortran
- OLCF is working with Siemens to implement OpenMP in gcc
- OLCF will provide recent release and development versions of gcc on Frontier
- For various reasons, you should not expect gcc-generated executables to be performant for offload at this time
 - Results will vary
 - We are interested in improving the performance of gcc. If you have a troublesome case, reach out to me. (No guarantees, however)
- GCC is also available on Summit

For HIP (and CUDA) Codes

- HIP runs today on AMD and NVIDIA GPUs
- An ECP project is working on supporting HIP on Intel GPUs too
- Recommend a one-time translation of CUDA codes to HIP and make the HIP version primary from then on
- Both Cray and AMD compilers support HIP
 - They both use the AMD runtime
- More on HIP in the next two tutorials in this series
- HIP is also available on Summit

For OpenMP Codes

- OpenMP is very much a work in progress in the LLVM community
 - Most of 5.0 is implemented
 - Parts of 5.1, 5.2 are implemented
- We (DOE labs, including ORNL/OLCF) are trying to help prioritize the order of implementation based on what users tell us they need/want
 - So if you could really use features that aren't available yet, please let us know!
- Cray and AMD compilers use different OpenMP runtimes
- Remember that Cray Fortran is not based on LLVM
- OpenMP implementation in gcc is also a work in progress
- More on OpenMP later in this series
- OpenMP is available on Summit, but different progress on impl

For OpenACC Codes

- OLCF provides OpenACC support via gcc
 - 2.6 currently supported
 - 2.7 planned
 - 3.x not currently planned let us know if there are particular features that you could really use
 - Don't expect this to be performant at present
- Cray Fortran supports OpenACC 2.0
 - Work is underway to 3.2 (latest) but no timeline has been given
 - No OpenACC in Cray C/C++
- Work is also underway in the LLVM community on OpenACC
 - Unknown when these will be production
- OpenACC is also available on Summit

What about SYCL?

- OLCF and ALCF have partnered with Codeplay on a pilot implementation of the Intel DPC++ compiler for AMD GPUs
 - ALCF has also partnered with NERSC on NVIDIA support
- Pilot implementation is complete
 - ~"50%" level of support
 - Tested with a small set of benchmarks and mini-apps
 - Should be available any day now on Spock, with Crusher/Frontier soon to follow
- Seeking interested users to try out the pilot implementation
 - Provide feedback
 - Shake out issues
 - Provide motivation to complete the port
- Can make SYCL available on Summit if there is interest

Help Us Help You...

- If you have a liaison, work with them
- If you encounter an issue, file a ticket with OLCF otherwise the facility won't (necessarily) know about it, and can't track it
 - Summit, Spock, Crusher, Frontier...
- Take advantage of training events
 - Future events in the Preparing for Frontier series
 - If you have Crusher access: office hours, hackathons, additional trainings

