
Ashesh Sharma, HPE
Bruno Villasenor, AMD

On Monitoring Energy Consumption of Frontier
Applications

January 2025

• Cray power management counters

• Workload manager plugins

• Cray PAT

• PAPI

• AMD’s RAPL counters for CPUs

• AMD power monitoring tools for GPUs

• ROCm-SMI

–ROCm-SMI LIB

• Omnitrace

• Omnistat

• Power and Energy optimization

• Summary

Outline

2

• At HPE:

• Steve Martin – Cray PM counters

• Bill Homer – CrayPat

• Marcus Wagner and Steve Abbott – COE experts on CrayPat/Apprentice

• Anna Yue – RAPL counters

• At AMD:

• Donald Cheung and Shuzhou (Bill) Liu - ROCm-SMI

• Karl W. Schulz and Jorda Polo – Omnistat

• Ian Chui – Firmware

• Noah Wolfe and Paul Bauman - COE experts in power measurements

• Nick Malaya – COE leadership

• Karl W. Schulz

Acknowledgements

3

• SLURM plugin for Cray PM counters (https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType)

• CrayPat (https://cpe.ext.hpe.com/docs/latest/performance-tools/index.html#id1)

• API for Cray PM counters (https://cpe.ext.hpe.com/docs/latest/performance-tools/man5/cray_pm.html)

• Various components of CrayPat (https://cpe.ext.hpe.com/docs/latest/performance-tools/index.html#man-pages)

• PAPI (https://icl.utk.edu/projects/papi/files/documentation/PAPI_USER_GUIDE.pdf)

• ROCm links

• ROCm-SMI (https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools#usage)

• Omnitrace (https://rocm.github.io/omnitrace/)

–Recent OLCF tutorial (https://www.olcf.ornl.gov/wp-content/uploads/Omnitrace_by_Example.pdf)

• ROCm-SMI LIB (https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/)

Resources

4

https://slurm.schedmd.com/slurm.conf.html
https://cpe.ext.hpe.com/docs/latest/performance-tools/index.html
https://cpe.ext.hpe.com/docs/latest/performance-tools/man5/cray_pm.html
https://cpe.ext.hpe.com/docs/latest/performance-tools/index.html
https://icl.utk.edu/projects/papi/files/documentation/PAPI_USER_GUIDE.pdf
https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools
https://rocm.github.io/omnitrace/
https://www.olcf.ornl.gov/wp-content/uploads/Omnitrace_by_Example.pdf
https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/

Cray Power Management (PM) Counters

5

• Node-level power management counters first developed for Cray XC30 systems

• Energy and power measurements from major components on the node

• Reflect measurements from sensors on the node card/motherboard at the input end of the bus connecting the
component

• Include power caps for GPUs, modification of which requires elevated privileges

• Measured values stored in files on compute nodes, in /sys/cray/pm_counters

• PM counter data is produced by the node controller

• Written in the system files out-of-band, but reading the counter files is in-band

• Written at 10 Hz update rate

• Data is cached, so oversampling counters has minimal impact on performance

• Tested and validated

• Accuracy for readings (on Frontier) are within 5%-10%

• Examples used

• ECP application PeleC (https://github.com/AMReX-Combustion/PeleC)

• OLCF multinode PyTorch script (https://docs.olcf.ornl.gov/software/python/pytorch_frontier.html#ex-code)

Cray PM Counters: Overview

6

https://github.com/AMReX-Combustion/PeleC
https://docs.olcf.ornl.gov/software/python/pytorch_frontier.html

Cray PM Counters: Overview

7

Granularity/ Control

User Effort

SLURM

System File

Access

CrayPat

PAPI

Cray PM Counters: Monitoring Energy using Workload Managers

8

• Slurm energy plugin

• Reports energy consumed by entire job

• Requires that the jobacct_gather plugin be installed and operational; already configured on Frontier

– In slurm.conf, set AcctGatherEnergyType=acct_gather_energy/pm_counters

• Collect information during job execution sstat --jobs=<jobid>.batch --format=ConsumedEnergy

• Upon job end, can read from the slurm database using sacct -j <JobId> -o ConsumedEnergy

• Output gives values for each job step; output total energy across the job using --allsteps

User commands

Cray PM Counters: Files in /sys/cray/pm_counters

9

File Unit Description

accel[0-3]_energy Joules GPU energy

accel[0-3]_power Watts GPU power, idle value of ≈ 90 W

accel[0-3]_power_cap Watts GPU power cap (modification requires admin
privileges)

cpu0_temp Celsius CPU temperature, idle value of ≈ 35 oC

cpu_energy Joules CPU energy

cpu_power Watts CPU power, idle value of ≈ 35 W

memory_energy Joules Node memory energy

memory_power Watts Node memory power, idle value of ≈ 60 W

energy Joules Energy for the entire node

power Watts Power for the entire node, idle value of 620 W

power_cap Watts Power cap for entire node

raw_scan_hz Hertz Rate at which PM counters are updated, set at 10 Hz

freshness - Increments at raw_scan_hz (10 Hz)

generation - Increments when a power cap is changed

startup - Timestamp of counter subsystem

version - Revision of protocol

• 25 files on every compute node

• Node power/energy accounts for GPUs, CPUs, node
memory, Cassini cards, node controller

• Freshness counter indicates validity of the data

• Increments at 10 Hz

• If not incrementing, all counters are invalid

• Energy counters are monotonically increasing, i.e.,
take a difference between two readings to get a
meaningful value

• Power cap modifications require elevated privileges

Cray PM Counters: Reading Files in /sys/cray/pm_counters

10

#/bin/bash

out_file="power_usage.txt"

PM=/sys/cray/pm_counters

NSAMPLES=1000

for i in $(seq 1 $NSAMPLES); do

 start_freshness=$(cat $PM/freshness)

 POWER=$(awk '{print $1}' "$PM/power")

 GPU_POWER=$(awk '{print $1}' "$PM/accel2_power")

 end_freshness=$(cat $PM/freshness)

if [$end_freshness -eq $start_freshness]; then

 echo >> $out_file

 echo "$i $(date +'%T.%6N')" >> $out_file

 echo "Total Power: $POWER" >> $out_file

 echo "GPU Power: $GPU_POWER" >> $out_file

 echo >> $out_file

 fi

done

• Sample bash script for one compute node

• Reading counters is in-band

• Run on a core, if available, that is not running the application

• For a multi-node job, accumulate readings from every compute node

• Monitoring power usage of 1 GCD vs 2 GCD for same problem size

• Recorded power data using bash script from previous slide

• Sleep for 30 seconds before and after the application to capture idle power of the node

• Node Energy consumed was 322 kJ for 1 GCD run, and 210 kJ for 2 GCD run

Cray PM Counters: Reading Files in /sys/cray/pm_counters

11

Cray PM Counters: Using CrayPat to Monitor Power and Energy

12

• Refers to the perftools modules on Frontier

• Static application binaries can be instrumented using pat_build

• Requires modules perftools-base and perftools

• https://cpe.ext.hpe.com/docs/24.07/performance-
tools/man1/pat_build.html

• The profiling report can be generated using pat_report

• https://cpe.ext.hpe.com/docs/24.07/performance-
tools/man1/pat_report.html

• A default output of pat_report is simulation energy consumption

• Total energy is the default output; per-node energy accessible using
pat_report -v -O program_energy -b ni <experiment output>

• Can collect specific power counters by setting environment variables,
depending on pat_build experiment type

–List available counters by running papi_native_avail -i cray_pm on a
compute node

https://cpe.ext.hpe.com/docs/24.07/performance-tools/man1/pat_build.html
https://cpe.ext.hpe.com/docs/24.07/performance-tools/man1/pat_build.html
https://cpe.ext.hpe.com/docs/24.07/performance-tools/man1/pat_report.html
https://cpe.ext.hpe.com/docs/24.07/performance-tools/man1/pat_report.html

Cray PM Counters: Fine Grain Reports with CrayPat Tracing Experiments

13

• CrayPat’s tracing experiments for collecting Cray PM counters

• Instrument executable using pat_build -w -g mpi,omp,io,hip –o <instrumented executable> <target executable>

• Counters are collected at entry and exit of functions; trace energy (not power) counters

–Set the counters to sample : export PAT_RT_PERFCTR=”<list of PM counters separated by comma, no spaces>”

–Valid for summary runs: export PAT_RT_SUMMARY=0 ; ≈ 8% overhead for the examples presented

• The pat_report output includes tables for function groups that have significant time across ranks

Cray PM Counters: Fine Grain Reports with CrayPat Tracing Experiments

14

• Explore pat_help to parse power usage statistics

• E.g., pat_report -d PM_ENERGY:NODE%,ti,tr,P -b ca,pe=HIDE gives a bottom-up call stack ordered by functions with
highest percentage of node energy

Cray PM Counters: Fine Grain Reports with CrayPat APA Experiments

15

• CrayPat’s automatic program analysis for sampling Cray PM counters

• Instrument executable using pat_build –o <instrumented executable> <target executable>

• Counters are collected at specific time intervals; sample power (not energy) counters; reports max power across
nodes

–Tell the program to collect performance counters: export PAT_RT_SAMPLING_DATA=perfctr@10

–Set the PM counters to sample : export PAT_RT_PERFCTR=”<list of PM counters separated by comma, no spaces>”

–Valid for summary runs: export PAT_RT_SUMMARY=0; ≈ 1% overhead for the examples presented

• Default pat_report output includes tables for function groups that have significant sample hits across ranks

Sampling frequency

Cray PM Counters: Fine Grain Reports with CrayPat APA Experiments

16

• Explore pat_help to parse power usage statistics

• E.g., pat_report -d PM_POWER:NODE%,ti,tr,P -b ca,pe=HIDE gives a bottom-up call stack ordered by functions with
highest percentage of node power

Cray PM Counters: Monitoring Energy Consumption of Python Applications

17

• Most AI/ML applications are coded in Python which is dynamically typed

• pat_run can be used for tracing and sampling experiments; arguments are similar to pat_build;

• Requires modules perftools-base and perftools-preload; use perftools-base/24.11.0

• https://cpe.ext.hpe.com/docs/24.07/performance-tools/man1/pat_run.html

• Tracing the OLCF multimode PyTorch example

–srun -N2 -n16 -c7 --gpus-per-task=1 --gpu-bind=closest pat_run -w -g <options> python3 -W ignore -u
./multinode_olcf.py 2000 10 --master_addr=$MASTER_ADDR --master_port=3442

–Set the PM counters to sample : export PAT_RT_PERFCTR=”<list of PM counters separated by comma, no spaces>”

• Default pat_report output includes tables for function groups that have significant time across ranks

https://cpe.ext.hpe.com/docs/24.07/performance-tools/man1/pat_run.html

Cray PM Counters: Monitoring Energy Consumption of Python Applications

18

• Explore pat_help to parse power usage statistics

• E.g., pat_report -d PM_ENERGY:NODE%,ti,tr,P -b ca,pe=HIDE gives a bottom-up call stack ordered by functions with
highest percentage of node energy

Cray PM Counters: Suggested PM Counters for CrayPat Experiments

19

• With the perftools-base modules loaded, users can list all available counters by running papi_native_avail -i cray_pm
on a compute node

Suggested counters for Tracing Suggested counters for APA (Sampling)

PM_ENERGY:NODE
PM_ENERGY:CPU
PM_ENERGY:ACC0
PM_ENERGY:ACC1
PM_ENERGY:ACC2
PM_ENERGY:ACC3
PM_ENERGY:MEMORY

PM_POWER:NODE
PM_POWER:CPU
PM_POWER:ACC0
PM_POWER:ACC1
PM_POWER:ACC2
PM_POWER:ACC3
PM_POWER:MEMORY

Cray PM Counters: Interfacing with Apprentice3

20

• GUI support through Apprentice3 to monitor power usage

• Apprentice3 available since perftools-base/24.03.0

Cray PM Counters: Manual Code Instrumentation using PAPI

21

• Performance Application Programming Interface (PAPI) for monitoring power usage

• Just need to module load papi, and #include <papi.h> for C or #include "f90papi.h” for Fortran

• List available counters by running papi_native_avail -i cray_pm on a compute node

• PAPI code modifications need to execute on only 1 rank per node

int eventset = PAPI_NULL;

 int events[2] = {0};

 long long count[2] = {0};

...

PAPI_library_init(PAPI_VER_CURRENT); // initialize PAPI

PAPI_create_eventset(&eventset); // create an eventset

…

PAPI_event_name_to_code("cray_pm:::PM_POWER:NODE", & events[0]); // get PAPI code from event
string

PAPI_event_name_to_code("cray_pm:::PM_POWER:ACC2", & events[1]);

PAPI_add_events(eventset, events, 2); // add events to the eventset

…

PAPI_reset(eventset); // reset counters

PAPI_start(eventset); // start counters

…

PAPI_read(eventset, count); // read counters

…

PAPI_stop(eventset, count); // stop counters

PAPI_cleanup_eventset(eventset); // cleanup PAPI data structures

PAPI_destroy_eventset(&eventset);

PAPI modifications

for a C program

Cray PM Counters: Manual Code Instrumentation using PAPI

22

• Upsides of using PAPI

• API is lightweight and straightforward to implement

• If intimately familiar with code, PAPI_read calls can be placed strategically to capture PM counters during GPU kernel
execution

• Complexities with using PAPI

• Intrusive

–Requires knowledge of code

–Recompilation

• Need additional code/logic to process and aggregate counter values from each node

• Needs additional consideration to process counters from different counter groups simultaneously

–Need one PAPI_create_eventset call per counter group

–Examples of different counter groups include Cray PM counters, Linux perf_event counters, ROCm counters, etc.

Running Average Power Limit (RAPL) Counters

23

• Socket- and core-level power monitoring counters

• PACKAGE_ENERGY reports energy used by CPU socket

• PP0_ENERGY reports energy used by energy used by all cores and caches of a socket

–Depending on architecture, will measure all cores, or only 1; through PAPI, it will measure all cores

–Excludes uncore components

• Collected in model-specific registers (MSR)

• 32-bit raw values that require scaling for conversion to SI units

• Written at 1 kHz update rate

• Wraparound time, which varies based on energy consumption; can be as low as 60 seconds

• Direct access to registers requires elevated privileges

• Supported by CrayPat and PAPI

• Obtaining counter values follows exact approach described for Cray PM counters

RAPL Counters: Overview

24

AMD Tools for Power Management of GPUs

25

AMD Power Management Overview

26

Granularity/ Control

User Effort

ROCm-SMI

or

System files

rocprofiler-systems

(Omnitrace)

ROCm-SMI LIB

Omnistat

ROCm System Management Interface (ROCm-
SMI)

27

ROCm-SMI: Overview

28

• GPU-level resources management framework
• Shows information about GPU power, shader and memory frequency, temperature, GPU utilization, memory

usage, etc.
• Average power measurements from GPU, accounting for both GCDs on MI250X

–Device-specific power can be parsed using rocm-smi -d <Device> --showpower
• Include power caps, modification of which requires elevated privileges

• Reflects measurements from the system management unit (SMU) and reported by the firmware
• ROCm-SMI queries system files written by the firmware for resources monitoring
• On Frontier compute nodes, these system files are in /sys/class/drm/cardX/device/hwmon/hwmonX/ where X is the

device ID (0,2,4,6) for each of the 4 MI250X GPUs on a node
• Written at up to 1 kHz update rate
• Files are written out-of-band and read/queried in-band

rocm-smi output on
an idle compute node

ROCm-SMI: Instrumenting Applications using ROCm-SMI LIB

29

• ROCm-SMI lib is a C library for Linux that provides interface for applications to monitor and control GPU resources

• Part of the ROCm software stack

• https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/

• Example of ROCm-SMI lib API calls for power measurement

#include "rocm_smi/rocm_smi.h”

…

rsmi_status_t ret;

uint32_t num_devices;

uint16_t dev_id;

RSMI_POWER_TYPE power_type;

uint64_t power, rsmi_power_avrg, rsmi_power_socket;

…

rsmi_init(0);

rsmi_num_monitor_devices(&num_devices);

…

rsmi_dev_power_ave_get (<device index>, 0, &rsmi_power_avrg);

rsmi_dev_power_get(<device index>, &power, &power_type);

…

rsmi_shut_down();

Returns average power on
MI250XPower-related ROCm-SMI LIB

calls

https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/

ROCm-SMI: Power Profiling

30

• Power profile for the Cholla hydrodynamics
app (https://github.com/cholla-
hydro/cholla) running on 4 Frontier nodes

• Sampling at 100 Hz

• One background process per node queries power draw of
the 4 GPUs

• A section of the output for node 0:

GPU power profile
for all 16 MI250X

https://github.com/cholla-hydro/cholla
https://github.com/cholla-hydro/cholla

ROCm-SMI: Comparison with Cray PM Counters

31

• Currently, on MI250X GPUs, ROCm-SMI
returns average power usage which differs from the
instantaneous power reported by Cray PM counters

• ROCm-SMI measurements are
averaged over a time interval of ~6 milliseconds

• Ongoing efforts to have the firmware report
instantaneous power for MI250X

• The averaged measurements from Cray PM counters
and ROCm-SMI over the entire application run are
consistent (dashed horizontal lines)

GPU power profile for Cholla
hydrodynamics

rocprofiler-systems (Omnitrace)

32

rocprof-systems (Omnitrace): Overview

33

• High level view of the entire application run

• Holistic view of CPU, GPU, and system activity

• Kernel-level power profile can be collected

• Calls rocm-smi to collect power information

• Visualize in Perfetto (https://ui.perfetto.dev/); One Perfetto trace file for each MPI rank

• OLCF tutorial on Omnitrace by Gina Sitaraman: https://www.olcf.ornl.gov/wp-content/uploads/Omnitrace_by_Example.pdf

https://ui.perfetto.dev/
https://www.olcf.ornl.gov/wp-content/uploads/Omnitrace_by_Example.pdf

Omnitrace: How To Use

34

• Step 1: Load Omnitrace on Frontier

module load rocm

module load omnitrace/1.11.4

• Step 2: After building your application, instrument the executable

omnitrace-instrument –o cholla.hydro.frontier.inst -- cholla.hydro.frontier

• Step 3: Run your application as usual, but calling omnitrace-run -- <instrumented_binary>

srun -u -n 32 --ntasks-per-node=8 --gpus-per-node=8 --gpu-bind=closest \

omnitrace-run -- cholla.hydro.frontier.inst parameter_file.txt

• Step 4: Copy the Omnitrace output to your

 local system and visualize the traces in

 Perffeto (https://ui.perfetto.dev/)

https://ui.perfetto.dev/

Omnitrace: Runtime Configuration

• Create an Omnitrace configuration file and edit it for your needs

omnitrace-avail -G $PATH_TO_CONFIG/omnitrace.cfg

• Relevant configuration options for GPU power profiling

OMNITRACE_TRACE = true

OMNITRACE_PROFILE = true

OMNITRACE_USE_SAMPLING = true

OMNITRACE_USE_PROCESS_SAMPLING = true

OMNITRACE_USE_ROCM_SMI = true

OMNITRACE_SAMPLING_FREQ = 100

OMNITRACE_SAMPLING_GPUS = $env:HIP_VISIBLE_DEVICES

OMNITRACE_SAMPLING_CPUS = none

• Set your Omnitrace configuration file export OMNITRACE_CONFIG_FILE=$PATH_TO_CONFIG/omnitrace.cfg

• Measured a 2-4% overhead when running without CPU sampling

• Measured a 25-30% overhead when sampling the CPUs

35

Omnitrace: Power Timelines

36

• Omnitrace profile for Cholla on 4 nodes showing GPU power usage.

Omnitrace: Power Statistics

37

• Omnitrace outputs several statistics for each MPI rank

• GPU power statistics are available at the kernel level

• Example GPU power statistics in file sampling_gpu_power-0.txt

rocprofiler-systems: How To Use (When available in Frontier)

38

• Load ROCm: module load rocm/6.3.x

• Instrument your binary: rocprof-sys-instrument –o cholla.hydro.frontier.inst -- cholla.hydro.frontier

• Run your application as: rocprof-sys-run -- <instrumented_binary> <application_options>

• Create a configuration file: rocprof-sys -G $PATH_TO_CONFIG/roctprof-sys.cfg

• Relevant configuration options for GPU power profiling

ROCPROFSYS_TRACE = true

ROCPROFSYS_PROFILE = true

ROCPROFSYS_USE_SAMPLING = true

ROCPROFSYS_USE_PROCESS_SAMPLING = true

ROCPROFSYS_USE_ROCM_SMI = true

ROCPROFSYS_SAMPLING_FREQ = 100

ROCPROFSYS_SAMPLING_GPUS = $env:HIP_VISIBLE_DEVICES

ROCPROFSYS_SAMPLING_CPUS = none

• Set your configuration file: export ROCPROFSYS_CONFIG_FILE=$PATH_TO_CONFIG/rocprof-sys.cfg

Omnistat

39

Omnistat: Overview

40

• AMD research tool designed to have lower overhead than profiling tools like Omniperf or Omnitrace, and monitor
resource usage at the job level, but can scale up to system level monitoring

• https://github.com/AMDResearch/omnistat

• Provides monitoring of system resources usage, e.g.

• GPU utilization

• HBM high water mark

• GPU power

• Host memory utilization

• Network inbound/outbound traffic

–Slingshot is not yet supported

• Simple invocation by placing a pair of commands at the beginning and at the end of the SLURM script.

• Already used by a team at ORNL to measure energy consumption of the HydraGNN large language model running on 128
Frontier nodes

Scalable Training of Graph Foundation Models for Atomistic Materials
Modeling: A Case Study with HydraGNN https://arxiv.org/abs/2406.12909

https://github.com/AMDResearch/omnistat
https://arxiv.org/abs/2406.12909

Omnistat: Summary Report

41

• Summary report at end of the
job showing time profile of
resource usage and relevant
statistics

• Can help identifying
potentially problematic hosts
or GPUs

• Potential to provide summary
usage statistics of all jobs on a
cluster

Omnistat: How to use in Frontier

42

• Example calling Omnistat on a SLURM script in Frontier:
Set your environment (load other modules)
module load ...

Load Omnistat
ml use /autofs/nccs-svm1_sw/crusher/amdsw/modules
ml omnistat-wrapper

Start Omnistat – enable data collection
${OMNISTAT_WRAPPER} usermode --start --interval 1

Run your application
srun …

Stop Omnistat – generate summary report and stop data collection
${OMNISTAT_WRAPPER} usermode --stopexporters
${OMNISTAT_WRAPPER} query --interval 1 --job ${SLURM_JOB_ID} --pdf omnistat.${SLURM_JOB_ID}.pdf
${OMNISTAT_WRAPPER} usermode --stopserver
mv /tmp/omnistat/${SLURM_JOB_ID} data_omnistat.${SLURM_JOB_ID}

Omnistat: Grafana Real-time Dashboards

43

• Omnistat output database is compatible with Grafana for
interactive visualization

• Copy the Omnistat output database to your local system
and visualize with Grafana

• Example visualization of six consecutive LINPACK runs on
32 nodes

Power and Energy Optimization

44

• The GPU power cap can be changed on Frontier
through SLURM

• #SBATCH --gpu-power-
cap=<power_cap_in_watts>

• Sets to power cap for all GPUs in the node, and all
nodes for the job.

• Default MI250X power cap is 560 W

• Iterate over several values for the power
cap, measure the application performance and
the average power draw

• The performance per watt (red) is optimal when the
GPU power is capped

• The performance per watt ratio is proportional to
the inverse of the energy used for the run

Energy Optimization Using GPU Power Caps

45

(black line) Applying power caps
decreases the average power use, and
performance also decreases

Average power used by the application [W]

MILC Power Profile MI250X

(red line) Ratio of performance per power usage

 Optimal when using a 400W power cap

• We observe similar performance per watt curves for other HPC applications

Energy Optimization Using GPU Power Caps

46

Energy Efficiency: Other Considerations

47

• Applying power caps can improve the GPU energy efficiency but might not improve the system energy efficiency as other
expenses need to be considered (e.g. cooling, network, etc.)

• An alternative is to set GPU frequency caps

• Through SLURM

#SBATCH --gpu-gpu-srange=<min_gpu_clock> - <max_gpu_clock>

Set the GPU sclk range in MHz. Default is 500-1700

• Through a script available on Frontier compute nodes

/usr/bin/set_gpu_max_sclk [-g gpu_id] <frequency_in_MHz>

• Lowering the max GPU frequency for bandwidth-bound applications could lower the GPU energy footprint without
significantly impacting performance

• Explore single/mixed precision operations

• Less runtime is always better!

Summary

48

• Cray PM counters provide node-level power information
• Report power and energy usage from CPUs, GPUs, Memory; can also set power cap
• Can query using SLURM, system files, CrayPat, PAPI

–Updated out-of-band, at 10 Hz
–SLURM accumulates energy across all nodes
–System files, CrayPat, and PAPI report per-node information

• RAPL counters provide AMD CPU socket- and core-level power data
• Can query using Cray PAT and PAPI

• ROCm power management counters provide GPU-level average power
• Can also set power cap
• Can query using system files, ROCm-SMI, Omnitrace, Omnistat

–Updated out-of-band, at 1 kHz
–Omnitrace can provide application and kernel-level power statistics
–Omnistat can provide job/system-level statistics
–Currently, Omnitrace and Omnistat use rocm-smi in the backend for power measurements

Overview of Power Monitoring on Frontier

49

© 2025 Hewlett Packard Enterprise Development LP

Ashesh Sharma – Ashesh.Sharma@hpe.com
Bruno Villasenor Alvarez - Bruno.VillasenorAlvarez@amd.com

Thank you

mailto:ashesh.sharma@hpe.com
mailto:Bruno.VillasenorAlvarez@amd.com

	Presentation
	Slide 1: On Monitoring Energy Consumption of Frontier Applications
	Slide 2: Outline
	Slide 3: Acknowledgements
	Slide 4: Resources
	Slide 5: Cray Power Management (PM) Counters
	Slide 6: Cray PM Counters: Overview
	Slide 7: Cray PM Counters: Overview
	Slide 8: Cray PM Counters: Monitoring Energy using Workload Managers
	Slide 9: Cray PM Counters: Files in /sys/cray/pm_counters
	Slide 10: Cray PM Counters: Reading Files in /sys/cray/pm_counters
	Slide 11: Cray PM Counters: Reading Files in /sys/cray/pm_counters
	Slide 12: Cray PM Counters: Using CrayPat to Monitor Power and Energy
	Slide 13: Cray PM Counters: Fine Grain Reports with CrayPat Tracing Experiments
	Slide 14: Cray PM Counters: Fine Grain Reports with CrayPat Tracing Experiments
	Slide 15: Cray PM Counters: Fine Grain Reports with CrayPat APA Experiments
	Slide 16: Cray PM Counters: Fine Grain Reports with CrayPat APA Experiments
	Slide 17: Cray PM Counters: Monitoring Energy Consumption of Python Applications
	Slide 18: Cray PM Counters: Monitoring Energy Consumption of Python Applications
	Slide 19: Cray PM Counters: Suggested PM Counters for CrayPat Experiments
	Slide 20: Cray PM Counters: Interfacing with Apprentice3
	Slide 21: Cray PM Counters: Manual Code Instrumentation using PAPI
	Slide 22: Cray PM Counters: Manual Code Instrumentation using PAPI
	Slide 23: Running Average Power Limit (RAPL) Counters
	Slide 24: RAPL Counters: Overview
	Slide 25: AMD Tools for Power Management of GPUs
	Slide 26: AMD Power Management Overview
	Slide 27: ROCm System Management Interface (ROCm-SMI)
	Slide 28: ROCm-SMI: Overview
	Slide 29: ROCm-SMI: Instrumenting Applications using ROCm-SMI LIB
	Slide 30: ROCm-SMI: Power Profiling
	Slide 31: ROCm-SMI: Comparison with Cray PM Counters
	Slide 32: rocprofiler-systems (Omnitrace)
	Slide 33: rocprof-systems (Omnitrace): Overview
	Slide 34: Omnitrace: How To Use
	Slide 35: Omnitrace: Runtime Configuration
	Slide 36: Omnitrace: Power Timelines
	Slide 37: Omnitrace: Power Statistics
	Slide 38: rocprofiler-systems: How To Use (When available in Frontier)
	Slide 39: Omnistat
	Slide 40: Omnistat: Overview
	Slide 41: Omnistat: Summary Report
	Slide 42: Omnistat: How to use in Frontier
	Slide 43: Omnistat: Grafana Real-time Dashboards
	Slide 44: Power and Energy Optimization
	Slide 45: Energy Optimization Using GPU Power Caps
	Slide 46: Energy Optimization Using GPU Power Caps
	Slide 47: Energy Efficiency: Other Considerations
	Slide 48: Summary
	Slide 49: Overview of Power Monitoring on Frontier
	Slide 50: Thank you

