

Hewlett Packard Enterprise

On Monitoring Energy Consumption of Frontier Applications

Ashesh Sharma, HPE Bruno Villasenor, AMD

January 2025

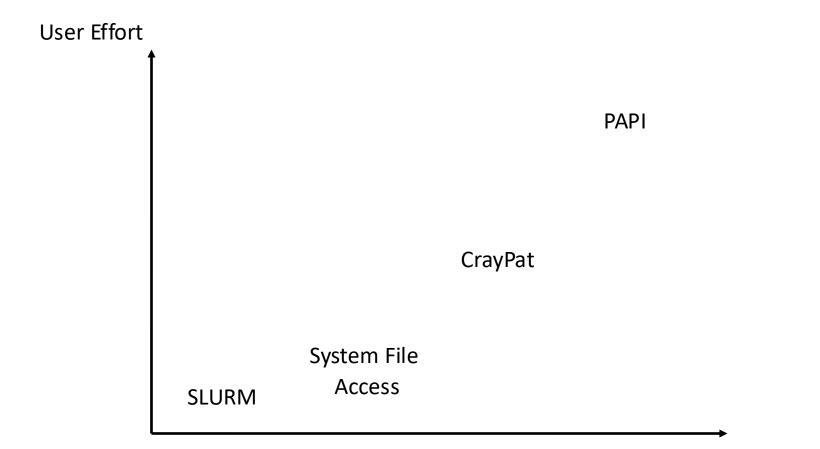
Outline

- Cray power management counters
 - Workload manager plugins
 - Cray PAT
 - PAPI
- AMD's RAPL counters for CPUs
- AMD power monitoring tools for GPUs
 - ROCm-SMI
 - -ROCm-SMI LIB
 - Omnitrace
 - Omnistat
- Power and Energy optimization
- Summary

Acknowledgements

- At HPE:
 - Steve Martin Cray PM counters
 - Bill Homer CrayPat
 - Marcus Wagner and Steve Abbott COE experts on CrayPat/Apprentice
 - Anna Yue RAPL counters
- At AMD:
 - Donald Cheung and Shuzhou (Bill) Liu ROCm-SMI
 - Karl W. Schulz and Jorda Polo Omnistat
 - Ian Chui Firmware
 - Noah Wolfe and Paul Bauman COE experts in power measurements
 - Nick Malaya COE leadership

Resources


- SLURM plugin for Cray PM counters (<u>https://slurm.schedmd.com/slurm.conf.html#OPT_AcctGatherEnergyType</u>)
- CrayPat (<u>https://cpe.ext.hpe.com/docs/latest/performance-tools/index.html#id1</u>)
 - API for Cray PM counters (https://cpe.ext.hpe.com/docs/latest/performance-tools/man5/cray_pm.html)
 - Various components of CrayPat (<u>https://cpe.ext.hpe.com/docs/latest/performance-tools/index.html#man-pages</u>)
- PAPI (https://icl.utk.edu/projects/papi/files/documentation/PAPI_USER_GUIDE.pdf)
- ROCm links
 - ROCm-SMI (<u>https://github.com/ROCm/rocm_smi_lib/tree/master/python_smi_tools#usage</u>)
 - Omnitrace (<u>https://rocm.github.io/omnitrace/</u>)
 - -Recent OLCF tutorial (https://www.olcf.ornl.gov/wp-content/uploads/Omnitrace by Example.pdf)
 - ROCm-SMI LIB (<u>https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/</u>)

Cray Power Management (PM) Counters

Cray PM Counters: Overview

- Node-level power management counters first developed for Cray XC30 systems
 - Energy and power measurements from major components on the node
 - Reflect measurements from sensors on the node card/motherboard at the input end of the bus connecting the component
 - Include power caps for GPUs, modification of which requires elevated privileges
 - Measured values stored in files on compute nodes, in /sys/cray/pm_counters
- PM counter data is produced by the node controller
 - Written in the system files out-of-band, but reading the counter files is in-band
 - Written at 10 Hz update rate
 - Data is cached, so oversampling counters has minimal impact on performance
- Tested and validated
 - Accuracy for readings (on Frontier) are within 5%-10%
- Examples used
 - ECP application PeleC (<u>https://github.com/AMReX-Combustion/PeleC</u>)
 - OLCF multinode PyTorch script (<u>https://docs.olcf.ornl.gov/software/python/pytorch_frontier.html#ex-code</u>)

Cray PM Counters: Overview

Granularity/ Control

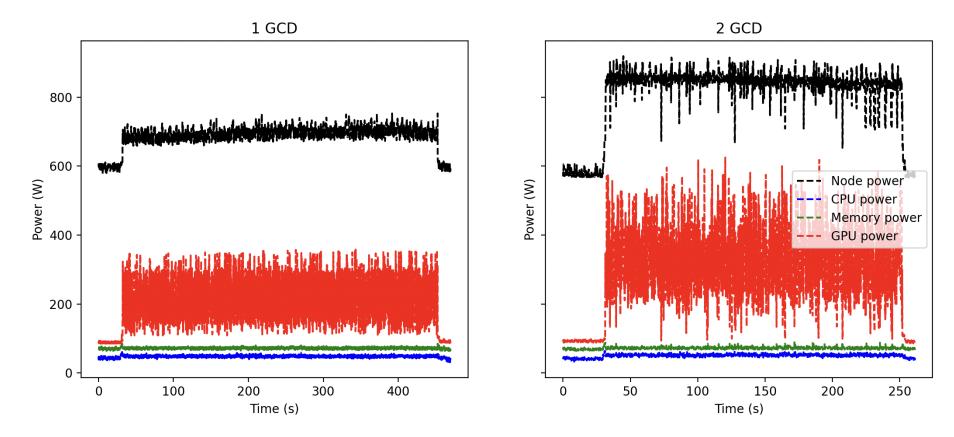
Cray PM Counters: Monitoring Energy using Workload Managers

- Slurm energy plugin
 - Reports energy consumed by entire job
 - Requires that the jobacct_gather plugin be installed and operational; already configured on Frontier –In slurm.conf, set AcctGatherEnergyType=acct_gather_energy/pm_counters
 - Collect information during job execution sstat --jobs=<jobid>.batch --format=ConsumedEnergy
 - Upon job end, can read from the slurm database using sacct -j <JobId> -o ConsumedEnergy 👆 User commands
 - Output gives values for each job step; output total energy across the job using --allsteps

Cray PM Counters: Files in /sys/cray/pm_counters

- 25 files on every compute node
- Node power/energy accounts for GPUs, CPUs, node memory, Cassini cards, node controller
- Freshness counter indicates validity of the data
 - Increments at 10 Hz
 - If not incrementing, all counters are invalid
- Energy counters are monotonically increasing, i.e., take a difference between two readings to get a meaningful value
- Power cap modifications require elevated privileges

	File	Unit	Description
	accel[0-3]_energy	Joules	GPU energy
	accel[0-3]_power	Watts	GPU power, idle value of \approx 90 W
	accel[0-3]_power_cap	Watts	GPU power cap (modification requires admin privileges)
	cpu0_temp	Celsius	CPU temperature, idle value of \approx 35 °C
	cpu_energy	Joules	CPU energy
	cpu_power	Watts	CPU power, idle value of \approx 35 W
_	memory_energy	Joules	Node memory energy
_	memory_power	Watts	Node memory power, idle value of \approx 60 W
	energy	Joules	Energy for the entire node
	power	Watts	Power for the entire node, idle value of 620 W
_	power_cap	Watts	Power cap for entire node
	raw_scan_hz	Hertz	Rate at which PM counters are updated, set at 10 Hz
_	freshness	-	Increments at raw_scan_hz (10 Hz)
_	generation	-	Increments when a power cap is changed
-	startup	-	Timestamp of counter subsystem
	version	-	Revision of protocol


Cray PM Counters: Reading Files in /sys/cray/pm_counters

- Sample bash script for one compute node
 - Reading counters is in-band
 - Run on a core, if available, that is not running the application
 - For a multi-node job, accumulate readings from every compute node

#/bin/bash	
out_file="power_usage.txt"	
PM=/sys/cray/pm_counters	
NSAMPLES=1000	
for i in \$(seq 1 \$NSAMPLES); do	
start_freshness=\$(cat \$PM/freshness)	
POWER=\$(awk '{print \$1}' "\$PM/power")	
GPU_POWER=\$(awk '{print \$1}' "\$PM/accel2_power")	
end_freshness=\$(cat \$PM/freshness)	
if [\$end_freshness -eq \$start_freshness]; then	
echo >> \$out_file	
echo "\$i \$(date +'%T.%6N')" >> \$out_file	
echo "Total Power: \$POWER" >> \$out_file	
echo "GPU Power: \$GPU_POWER" >> \$out_file	
echo >> \$out_file	
fi	
done	

Cray PM Counters: Reading Files in /sys/cray/pm_counters

- Monitoring power usage of 1 GCD vs 2 GCD for same problem size
 - Recorded power data using bash script from previous slide
 - Sleep for 30 seconds before and after the application to capture idle power of the node
 - Node Energy consumed was 322 kJ for 1 GCD run, and 210 kJ for 2 GCD run

Cray PM Counters: Using CrayPat to Monitor Power and Energy

 Refers to the perftools modules on Frontier 	nid.1				
 Static application binaries can be instrumented using pat_build Requires modules perftools-base and perftools <u>https://cpe.ext.hpe.com/docs/24.07/performance-tools/man1/pat_build.html</u> 	PM Energy Node 1,003 W 233,717 J PM Energy Cpu 83 W 19,270 J PM Energy Memory 82 W 19,169 J PM Energy Acc0 159 W 36,943 J PM Energy Acc1 155 W 36,181 J PM Energy Acc2 159 W 37,047 J PM Energy Acc3 159 W 37,133 J Process Time 233.051299 secs				
 The profiling report can be generated using pat_report <u>https://cpe.ext.hpe.com/docs/24.07/performance-tools/man1/pat_report.html</u> A default output of pat_report is simulation energy consumption 	PM Energy Node 939 W 218,871 J PM Energy Cpu 80 W 18,701 J PM Energy Memory 82 W 19,203 J PM Energy Acc0 159 W 37,013 J PM Energy Acc1 153 W 35,618 J PM Energy Acc2 161 W 37,469 J PM Energy Acc3 155 W 36,192 J Process Time 233.056491 secs				
 Total energy is the default output; per-node energy accessible using pat_report -v -O program_energy -b ni <experiment output=""></experiment> 	nid.3 PM Energy Node 904 W 210,587 J PM Energy Cpu 85 W 19,705 J				
 Can collect specific power counters by setting environment variables, depending on pat_build experiment type List available counters by running papi_native_avail -i cray_pm on a compute node 	PM Energy Memory 82 W 19,082 J PM Energy Acc0 154 W 35,817 J PM Energy Acc1 156 W 36,354 J PM Energy Acc2 158 W 36,852 J PM Energy Acc3 155 W 36,049 J Process Time 233.050952 secs 12				

Cray PM Counters: Fine Grain Reports with CrayPat Tracing Experiments

- CrayPat's tracing experiments for collecting Cray PM counters
 - Instrument executable using pat_build -w -g mpi,omp,io,hip -o <instrumented executable> <target executable>
 - Counters are collected at entry and exit of functions; trace energy (not power) counters
 - -Set the counters to sample : export PAT_RT_PERFCTR="<list of PM counters separated by comma, no spaces>"
 - -Valid for summary runs: export PAT_RT_SUMMARY=0 ; \approx 8% overhead for the examples presented

Time%		46.1%	Time%			39.8%
Time		117.765059 secs	Time			101.465940 secs
Imb. Time		9.772030 secs	Imb. Time			secs
Imb. Time%		7.8%	Imb. Time%			
Calls	143.287 /sec	16,874.2 calls	Calls	0.020	/sec	2.0 calls
PM_ENERGY:NODE	1,039 W	122,324 J	PM_ENERGY:NODE	767	W	77,803 J
PM_ENERGY:ACC0	174 W	20,442 J	PM_ENERGY:ACC0	128	W	12,993 J
PM_ENERGY:ACC1	172 W	20,249 J	PM_ENERGY:ACC1	128	W	12,953 J
PM_ENERGY:ACC2	173 W	20,326 J	PM_ENERGY:ACC2	129	W	13,097 J
PM_ENERGY:ACC3	171 W	20,136 J	PM_ENERGY:ACC3	128	W	12,998 J
Average Time per C	all	0.006979 secs	Average Time per Call			50.732970 secs
CrayPat Overhead :	Time 0.0%		CrayPat Overhead : Time	0.0%		

Cray PM Counters: Fine Grain Reports with CrayPat Tracing Experiments

- Explore pat_help to parse power usage statistics
 - E.g., pat_report -d PM_ENERGY:NODE%,ti,tr,P -b ca,pe=HIDE gives a bottom-up call stack ordered by functions with highest percentage of node energy

PM_ENERGY:NODE%		18.1%	6
Time		51.524670	ð secs
Calls			- calls
PM_ENERGY:NODE	820 W	42,266	δJ
PM_ENERGY:ACC0	140 W	7,193	3 J
PM_ENERGY:ACC1	139 W	7,186	δJ
PM_ENERGY:ACC2	142 W	7,292	2 J
PM_ENERGY:ACC3	141 W	7,251	1 J
Average Time per Cal	1		- secs
CrayPat Overhead : T	ime 0.0%		

amrex::Gpu::Device::streamSynchronize / pele::physics::reactions::ReactorCvode::cF_RHS / cvLsDQJtimes

PM_ENERGY:NODE%		14.1%
Time		39.332558 secs
Calls		calls
PM_ENERGY:NODE	837 W	32,926 J
PM_ENERGY:ACC0	143 W	5,631 J
PM_ENERGY:ACC1	143 W	5,627 J
PM_ENERGY:ACC2	145 W	5,713 J
PM_ENERGY:ACC3	144 W	5,681 J
Average Time per Call		secs
CrayPat Overhead : Time	0.0%	

Cray PM Counters: Fine Grain Reports with CrayPat APA Experiments

- CrayPat's automatic program analysis for sampling Cray PM counters
 - Instrument executable using pat_build –o <instrumented executable> <target executable>
 - Counters are collected at specific time intervals; sample power (not energy) counters; reports max power across nodes
 Sampling frequency
 - -Tell the program to collect performance counters: export PAT_RT_SAMPLING_DATA=perfctr@10
 - -Set the PM counters to sample : export PAT_RT_PERFCTR="<list of PM counters separated by comma, no spaces>"
 - -Valid for summary runs: export PAT_RT_SUMMARY=0; \approx 1% overhead for the examples presented
- Default pat_report output includes tables for function groups that have significant sample hits across ranks

ner	HIP / hipMemcpyAsync		
4.9%	Samp%	3.8%	
1,162.8	Samp	894.8	
163.2	Imb. Samp	196.2	
12.5%	Imb. Samp%	18.2%	
1,304 W	PM_POWER:NODE	1,329 W	
372 W	PM_POWER:ACC0	466 W	
358 W	PM_POWER:ACC1	438 W	
361 W	PM_POWER: ACC2	451 W	
367 W	PM_POWER: ACC3	446 W	
	4.9% 1,162.8 163.2 12.5% 1,304 W 372 W 358 W 361 W	4.9% Samp% 1,162.8 Samp 163.2 Imb. Samp 12.5% Imb. Samp% 1,304 W PM_POWER:NODE 372 W PM_POWER:ACC0 358 W PM_POWER:ACC1 361 W PM_POWER:ACC2	

Cray PM Counters: Fine Grain Reports with CrayPat APA Experiments

- Explore pat_help to parse power usage statistics
 - E.g., pat_report -d PM_POWER:NODE%,ti,tr,P -b ca,pe=HIDE gives a bottom-up call stack ordered by functions with highest percentage of node power

PM_POWER	Samp	I PM_F	POWER PM_P	OWER PM_PO	OWER PM_P	OWER PM_P	OWER Caller
:NODE%		1 :	NODE I :	ACCØ :/	ACC1 :/	ACC2 :	ACC3 PE=HIDE
I		I	(W)	(W)	(W)	(W)	(W)
100.0% 2	3,848.6	1	L,329	484	463 I	451	474 Total
100.0%	20.6	5 5	1,329	371	337	377	359 amrex::launch⇔
100.0%	11.	.9	1,329	371	337	337	359 amrex::detail::ParallelFor_doit⇔
 100.0% 	3	3.1	1,329	300	314	337	359 amrex::FabArray<>::pack_send_buffer_gpu<>
100.0%		2.9	1,329	300	314	337	359 amrex::FabArray<>::ParallelCopy_nowait
5 100.0	% 	1.9	1,329	300	314	337	359 amrex::FillPatchSingleLevel<>
5 100.	0%	1.1	1,329	300	I 314	337	359 amrex::FillPatcher<>::fill<>
'	1		1			I	amrex::AmrLevel::FillPatcherFill
81111	1		I	I	I	I	<pre>PeleC::do_sdc_iteration</pre>
)	1		I	I	I	I	<pre>PeleC::do_sdc_advance</pre>
0 0	1		I	I	I	I	PeleC::advance
.1	1		Ι	I	I	I	amrex::Amr::timeStep
2	1		I	I	I	I	amrex::Amr::coarseTimeStep
.3	1		I	I	I	I	I I main
51111 82.	3%	0.8	1,094	157	l 159	l 101	157 amrex::FillPatchIterator::FillFromLevel0
'	1		T .	L	I	I	<pre>amrex::FillPatchIterator::Initialize</pre>
81111	I.		I	I	I	I	<pre>amrex::FillPatchIterator::FillPatchIterator</pre>
)	1		I	L	I	I	amrex::AmrLevel::FillPatch

Cray PM Counters: Monitoring Energy Consumption of Python Applications

- Most AI/ML applications are coded in Python which is dynamically typed
 - pat_run can be used for tracing and sampling experiments; arguments are similar to pat_build;
 - Requires modules perftools-base and perftools-preload; use perftools-base/24.11.0
 - <u>https://cpe.ext.hpe.com/docs/24.07/performance-tools/man1/pat_run.html</u>
 - Tracing the OLCF multimode PyTorch example
 - -srun -N2 -n16 -c7 --gpus-per-task=1 --gpu-bind=closest pat_run -w -g <options> python3 -W ignore -u ./multinode_olcf.py 2000 10 --master_addr=\$MASTER_ADDR --master_port=3442
 - -Set the PM counters to sample : export PAT_RT_PERFCTR="<list of PM counters separated by comma, no spaces>"
- Default pat_report output includes tables for function groups that have significant time across ranks

HIP				HIP / hipMemcpyWithSt	ream	
Time%			57.8%	Time%		56.3%
Time			71.033646 secs	Time		69.190204 secs
Imb. Time			secs	Imb. Time		0.943970 secs
Imb. Time%				Imb. Time%		1.4%
Calls	0.007	M/sec	466,662.9 calls	Calls	232.302 /sec	16,073.0 calls
PM_ENERGY:NODE	848	W	60,215 J	PM_ENERGY:NODE	853 W	59,008 J
PM_ENERGY:ACC0	141	W	10,025 J	PM_ENERGY:ACC0	142 W	9,829 J
PM_ENERGY:ACC1	148	W	10,479 J	PM_ENERGY:ACC1	149 W	10,276 J
PM_ENERGY:ACC2	148	W	10,498 J	PM_ENERGY:ACC2	149 W	10,296 J
PM_ENERGY:ACC3	138	W	9,836 J	PM_ENERGY:ACC3	139 W	9,643 J
Average Time per Call			0.000152 secs	Average Time per Call		0.004305 secs
CrayPat Overhead : Time	0.5%			CrayPat Overhead : Tir	ne 0.0%	
Acc Util			0.4%	Acc Util		0.1%

17

Cray PM Counters: Monitoring Energy Consumption of Python Applications

- Explore pat_help to parse power usage statistics
 - E.g., pat_report -d PM_ENERGY:NODE%,ti,tr,P -b ca,pe=HIDE gives a bottom-up call stack ordered by functions with highest percentage of node energy

hipLaunchKernel / python.cross_entropy / pythonrun_batch / pythonrun_epoch						
PM_ENERGY:NODE%		0.2%	6			
Time		0.405565	secs			
Calls	0.099 M/sec	40,000.0	calls			
PM_ENERGY:NODE	448 W	182	: J			
PM_ENERGY:ACC0	76 W	31	. J			
PM_ENERGY:ACC1	80 W	32	: J			
PM_ENERGY:ACC2	78 W	32	: J			
PM_ENERGY:ACC3	72 W	29)]			
Average Time per Cal	.1	0.000010	secs			
CrayPat Overhead : T	ime 8.2%					
Acc Util		0.1%				
hipLaunchKernel / py	/thon.cross_entro	by / pythor	mrun_batch / pythonrun_epoch / python.train			
PM_ENERGY:NODE%		0.2%				
Time		0.405565	secs			
Calls		0.405505				
CALLS	0.099 M/sec	40,000.0				
PM_ENERGY:NODE	0.099 M/sec 448 W		calls			
		40,000.0	calls J			
PM_ENERGY:NODE	448 W	40,000.0 182	calls J J			
PM_ENERGY:NODE PM_ENERGY:ACC0	448 W 76 W	40,000.0 182 31	calls J J J			
PM_ENERGY:NODE PM_ENERGY:ACC0 PM_ENERGY:ACC1	448 W 76 W 80 W	40,000.0 182 31 32	calls J J J J			
PM_ENERGY:NODE PM_ENERGY:ACC0 PM_ENERGY:ACC1 PM_ENERGY:ACC2	448 W 76 W 80 W 78 W 72 W	40,000.0 182 31 32 32	calls J J J J J J			
PM_ENERGY:NODE PM_ENERGY:ACC0 PM_ENERGY:ACC1 PM_ENERGY:ACC2 PM_ENERGY:ACC3	448 W 76 W 80 W 78 W 72 W	40,000.0 182 31 32 32 29	calls J J J J J J			

Cray PM Counters: Suggested PM Counters for CrayPat Experiments

• With the perftools-base modules loaded, users can list all available counters by running papi_native_avail -i cray_pm on a compute node

Suggested counters for Tracing	Suggested counters for APA (Sampling)
PM_ENERGY:NODE	PM_POWER:NODE
PM_ENERGY:CPU	PM_POWER:CPU
PM_ENERGY:ACC0	PM_POWER:ACC0
PM_ENERGY:ACC1	PM_POWER:ACC1
PM_ENERGY:ACC2	PM_POWER:ACC2
PM_ENERGY:ACC3	PM_POWER:ACC3
PM_ENERGY:MEMORY	PM_POWER:MEMORY

Cray PM Counters: Interfacing with Apprentice3

- GUI support through Apprentice3 to monitor power usage
 - Apprentice3 available since perftools-base/24.03.0

t Report	•							Enable Thresh
			Calitree View	by Function with Counters				
	Samp%	Samp	PM_POWER:NODE (W)	PM_POWER:ACC0 (W)	PM_POWER:ACC1 (W)	PM_POWER:ACC2 (W)	PM_POWER:ACC3 (W)	Calitree
,	100.0%	23848.6	1318	361	406	371	375	Total
•	99.9%	23825.0	1318	361	385	371	375	main
•	98.7%	23537.9		-	-	-	-	amrex::Amr::coarseTimeStep
•	98.5%	23501.4	-		-	-	-	amrex::Amr::timeStep
•	88.5%	21108.8	1130	329	336	344	219	PeleC::advance
•	88.5%	21108.6	1130	329	336	344	219	PeleC::do_sdc_advance
•	88.5%	21106.7	-	-		-	-	PeleC::do_sdc_iteration
•	0.0%	1.3	1130	204	236	325	219	amrex::MultiFab::Copy
•	0.0%	0.4	875	329	336	344	205	amrex::FabArray ::setVal
•	0.0%	0.1		-		-	-	amrex::StateData::allocOldData
•	0.0%	0.0						amrex::Print::~Print

Table Notes

- Table options
- This table shows functions that have significant exclusive time, averaged across ranks, as the leaves in a calltree view. Time shown for a caller (non-leaf) is the sum of times below it in the tree. Processor HW counter data is also shown, if available

For further explanation, use: pat_report -v -O calltree+hwpc ...

Table option: -O calltree+hwpc -s table.show_data="cols" Options implied by table option: -d ti%,ti,tr,P -b ct,pe=HIDE -s table.group=Calltree -s table.show_data=cols Other options: -s content='tables'

-T

Cray PM Counters: Manual Code Instrumentation using PAPI

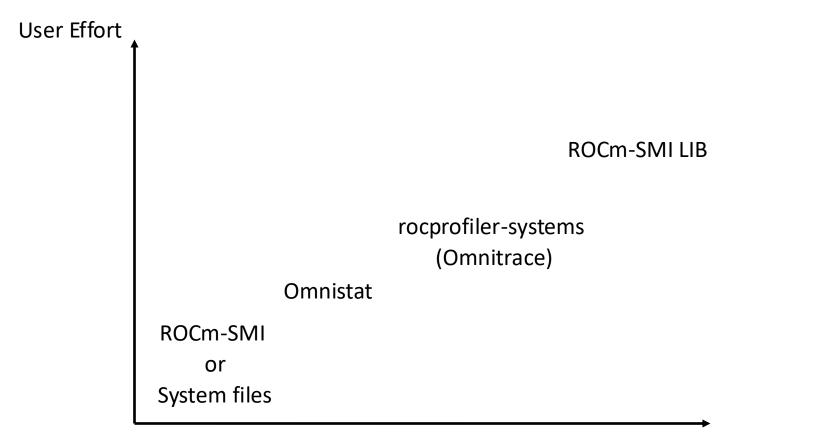
- Performance Application Programming Interface (PAPI) for monitoring power usage
 - Just need to module load papi, and #include <papi.h> for C or #include "f90papi.h" for Fortran
 - List available counters by running papi_native_avail -i cray_pm on a compute node
 - PAPI code modifications need to execute on only 1 rank per node

int	eventset = PAPI_NULL;
int	events[2] = {0};
lon	g long count[2] = {0};
PAP	I_library_init(PAPI_VER_CURRENT); // initialize PAPI
PAP	I_create_eventset(&eventset); // create an eventset
PAP strir	I_event_name_to_code("cray_pm:::PM_POWER:NODE", & events[0]); // get PAPI code from ev ng
PAP	I_event_name_to_code("cray_pm:::PM_POWER:ACC2", & events[1]);
PAP	I_add_events(eventset, events, 2); // add events to the eventset
PAP	I_reset(eventset); // reset counters
PAP	I_start(eventset); // start counters
PAP	I_read(eventset, count); // read counters
PAP	I_stop(eventset, count); // stop counters
PAP	I_cleanup_eventset(eventset); // cleanup PAPI data structures
ΡΔΡ	L destroy_eventset(&eventset):

PAPI modifications for a C program

Cray PM Counters: Manual Code Instrumentation using PAPI

- Upsides of using PAPI
 - API is lightweight and straightforward to implement
 - If intimately familiar with code, PAPI_read calls can be placed strategically to capture PM counters during GPU kernel execution
- Complexities with using PAPI
 - Intrusive
 - -Requires knowledge of code
 - -Recompilation
 - Need additional code/logic to process and aggregate counter values from each node
 - Needs additional consideration to process counters from different counter groups simultaneously
 - -Need one PAPI_create_eventset call per counter group
 - -Examples of different counter groups include Cray PM counters, Linux perf_event counters, ROCm counters, etc.


Running Average Power Limit (RAPL) Counters

RAPL Counters: Overview

- Socket- and core-level power monitoring counters
 - PACKAGE_ENERGY reports energy used by CPU socket
 - PP0_ENERGY reports energy used by energy used by all cores and caches of a socket
 - Depending on architecture, will measure all cores, or only 1; through PAPI, it will measure all cores
 - -Excludes uncore components
- Collected in model-specific registers (MSR)
 - 32-bit raw values that require scaling for conversion to SI units
 - Written at 1 kHz update rate
 - Wraparound time, which varies based on energy consumption; can be as low as 60 seconds
 - Direct access to registers requires elevated privileges
- Supported by CrayPat and PAPI
 - Obtaining counter values follows exact approach described for Cray PM counters

AMD Tools for Power Management of GPUs

AMD Power Management Overview

Granularity/ Control

ROCm System Management Interface (ROCm-SMI)

ROCm-SMI: Overview

- GPU-level resources management framework
 - Shows information about GPU power, shader and memory frequency, temperature, GPU utilization, memory usage, etc.
 - Average power measurements from GPU, accounting for both GCDs on MI250X
 - -Device-specific power can be parsed using rocm-smi -d <Device> --showpower
 - Include nower cans modification of which requires elevated privileges

Device	Node	IDs (DID,	GUID)	Temp (Edge)		Partitions (Mem, Compute, ID)	SCLK	MCLK	Fan	Perf	PwrCap	VRAM%	GPU%
9 9	4	0x7408,	29312	30.0°C	91.0W	N/A, N/A, 0	800Mhz	1600Mhz	0%	auto	560.0W	0%	0%
1	5	0x7408,	27578	30.0°C	N/A	N/A, N/A, O	800Mhz	1600Mhz	0%	auto	0.0W	0%	0%
2	6	0x7408,	3292	23.0°C	91.0W	N/A, N/A, O	800Mhz	1600Mhz	0%	auto	560.OW	0%	0%
3	7	0x7408,	26097	23.0°C	N/A	N/A, N/A, O	800Mhz	1600Mhz	0%	auto	0.0W	0%	0%
ŧ	8	0x7408,	7704	25.0°C	87.0W	N/A, N/A, O	800Mhz	1600Mhz	0%	auto	560.OW	0%	0%
5	9	0x7408,	30477	28.0°C	N/A	N/A, N/A, O	800Mhz	1600Mhz	0%	auto	0.0W	0%	0%
5	10	0x7408,	10324	23.0°C	80.0W	N/A, N/A, O	800Mhz	1600Mhz	0%	auto	560.OW	0%	0%
7	11	0x7408,	329	24.0°C	N/A	N/A, N/A, O	800Mhz	1600Mhz	0%	auto	0.0W	0%	0%

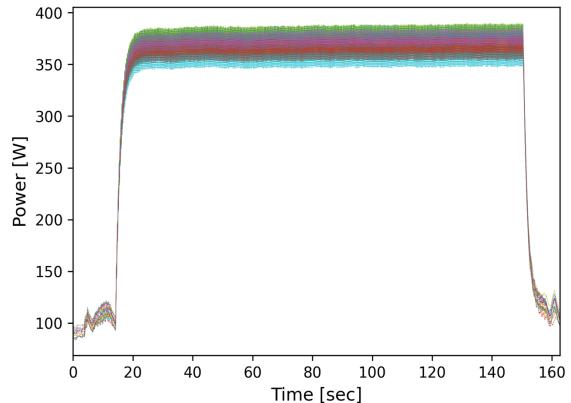
rocm-smi output on an idle compute node

- Reflects measurements from the system management unit (SMU) and reported by the firmware
 - ROCm-SMI queries system files written by the firmware for resources monitoring
 - On Frontier compute nodes, these system files are in /sys/class/drm/cardX/device/hwmon/hwmonX/ where X is the device ID (0,2,4,6) for each of the 4 MI250X GPUs on a node
 - Written at up to 1 kHz update rate
 - Files are written out-of-band and read/queried in-band

ROCm-SMI: Instrumenting Applications using ROCm-SMI LIB

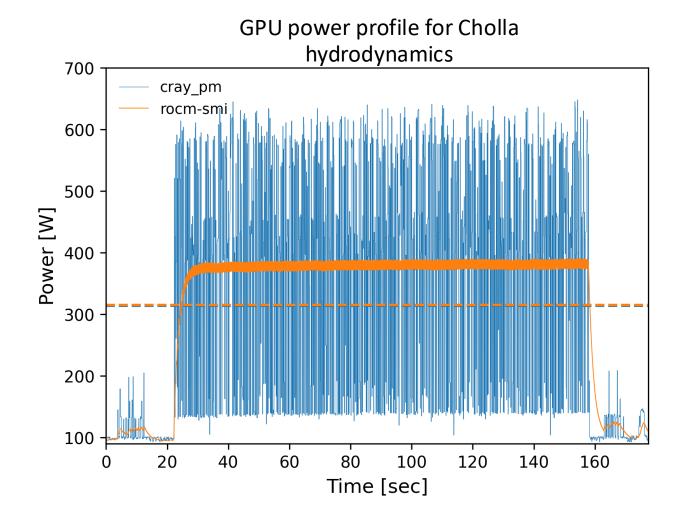
- ROCm-SMI lib is a C library for Linux that provides interface for applications to monitor and control GPU resources
 - Part of the ROCm software stack
 - <u>https://rocm.docs.amd.com/projects/rocm_smi_lib/en/latest/</u>
 - Example of ROCm-SMI lib API calls for power measurement

	#include "rocm_smi/rocm_smi.h"	
	 rsmi_status_t ret; uint32_t num_devices; uint16_t dev_id; RSMI_POWER_TYPE power_type; uint64_t power, rsmi_power_avrg, rsmi_power_socket;	
-	 rsmi_init(0); rsmi_num_monitor_devices(#_devices); rsmi_dev_power_ave_get (<device index="">, 0, &rsmi_power_avrg); rsmi_dev_power_get(<device index="">, &power, &power_type); rsmi_shut_down();</device></device>	→ Returns average power on MI250X


Power-related ROCm-SMI LIB calls

ROCm-SMI: Power Profiling

- Power profile for the Cholla hydrodynamics app (<u>https://github.com/cholla-</u> <u>hydro/cholla</u>) running on 4 Frontier nodes
 - Sampling at 100 Hz
 - One background process per node queries power draw of the 4 GPUs
 - A section of the output for node 0:


#date time pow-gpu0 pow-gpu1 pow-gpu2 pow-gpu3
2024-07-06 12:18:21.383780 379 373 369 365
2024-07-06 12:18:21.393852 377 371 367 363
2024-07-06 12:18:21.403927 376 370 366 362
2024-07-06 12:18:21.414002 374 368 364 360
2024-07-06 12:18:21.424077 373 367 363 359
2024-07-06 12:18:21.434152 371 366 361 357
2024-07-06 12:18:21.454302 370 364 360 356
2024-07-06 12:18:21.454302 370 364 360 356
2024-07-06 12:18:21.464373 370 364 360 356
2024-07-06 12:18:21.484896 372 367 362 359
2024-07-06 12:18:21.495376 374 368 364 360
2024-07-06 12:18:21.495376 374 368 364 360

GPU power profile for all 16 MI250X

ROCm-SMI: Comparison with Cray PM Counters

- Currently, on MI250X GPUs, ROCm-SMI returns average power usage which differs from the instantaneous power reported by Cray PM counters
 - ROCm-SMI measurements are averaged over a time interval of ~6 milliseconds
 - Ongoing efforts to have the firmware report instantaneous power for MI250X
- The averaged measurements from Cray PM counters and ROCm-SMI over the entire application run are consistent (dashed horizontal lines)

rocprofiler-systems (Omnitrace)

rocprof-systems (Omnitrace): Overview

- High level view of the entire application run
- Holistic view of CPU, GPU, and system activity
 - Kernel-level power profile can be collected
 - Calls rocm-smi to collect power information
- Visualize in Perfetto (<u>https://ui.perfetto.dev/</u>); One Perfetto trace file for each MPI rank
- OLCF tutorial on Omnitrace by Gina Sitaraman: <u>https://www.olcf.ornl.gov/wp-content/uploads/Omnitrace_by_Example.pdf</u>

 lulesh-kokkosp.inst 2072429 		
lulesh-kokkasp. 2072429 🗲	hpManop. Demain: Demain. Demai	
	50	
[CPU 0] Frequency (S)	2.5K	
[CPU 1] Frequency (S)	5K	
[CPU 2] Frequency (S)	2.5 K	
[CPU 3] Frequency (S)	2.5 K	
[CPU] Memory Usage (S)	0.25 K	
[GPU 0] Memory Usage	0.25 K	
[GPU 0] Power	56	
[GPU 0] Temperature	56	
/home/jrmadsen/devel/c++/AARInternal /hosttrace-dvninst/huild-vscode/lulesh-		
omni.roctracer 2072433		
Current Selection Flow Events		$\overline{\tau}$ \checkmark
Flow events		
Direction	Connected Slice ID	Connected Slice Name
Outgoing	2736	void Kokkos:Experimental:Impl:hip.parallel_launch_constant_memory <kokkos:i mpl:ParallelFor<calcforcefornodes(domain&):(jambda(mt)#t), Kokkos:RangePolicy<kokkos:experimental:hip>, Kokkos:Experimental:HIP>>()</kokkos:experimental:hip></calcforcefornodes(domain&):(jambda(mt)#t), </kokkos:i

Omnitrace: How To Use

- Step 1: Load Omnitrace on Frontier module load rocm module load omnitrace/1.11.4
- Step 2: After building your application, instrument the executable omnitrace-instrument -o cholla.hydro.frontier.inst -- cholla.hydro.frontier
- Step 3: Run your application as usual, but calling omnitrace-run -- <instrumented_binary> srun -u -n 32 --ntasks-per-node=8 --gpus-per-node=8 --gpu-bind=closest \ omnitrace-run -- cholla.hydro.frontier.inst parameter_file.txt

Omnitrace: Runtime Configuration


- Create an Omnitrace configuration file and edit it for your needs omnitrace-avail -G \$PATH_TO_CONFIG/omnitrace.cfg
- Relevant configuration options for GPU power profiling

= true
= true
= true
lG = true
= true
= 100
= \$env:HIP_VISIBLE_DEVICES
= none

- Set your Omnitrace configuration file export OMNITRACE_CONFIG_FILE=\$PATH_TO_CONFIG/omnitrace.cfg
- Measured a 2-4% overhead when running without CPU sampling
- Measured a 25-30% overhead when sampling the CPUs

Omnitrace: Power Timelines

• Omnitrace profile for Cholla on 4 nodes showing GPU power usage.

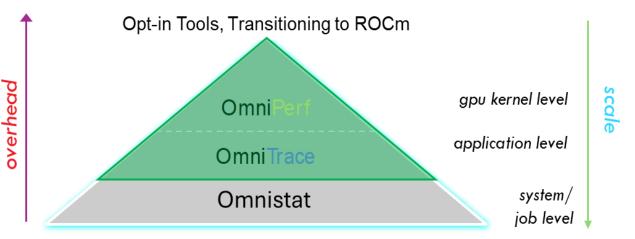
Omnitrace: Power Statistics

- Omnitrace outputs several statistics for each MPI rank
 - GPU power statistics are available at the kernel level
 - Example GPU power statistics in file sampling_gpu_power-0.txt

POWER USAGE OF GPU(S)											
LABEL	COUNT	DEPTH	METRIC	UNITS	MEAN	MIN	MAX	VAR	STDDEV	8 SELF	
CopyHostToDevice	 166	0	sampling_gpu_power	 watts	339.37	98.00	379.00	7963.46	89.24	100.0	
CopyDeviceToHost	179	0	<pre>sampling_gpu_power</pre>	watts	372.23	100.00	381.00	526.97	22.96	100.0	
Calc_dt_3D	118	0	<pre>sampling_gpu_power</pre>	watts	369.21	101.00	381.00	1582.34	39.78	100.0	
FillBuffer	2	0	<pre>sampling_gpu_power</pre>	watts	103.50	102.00	105.00	4.50	2.12	100.0	
PCM_Reconstruction_3D	1358	0	<pre>sampling_gpu_power</pre>	watts	364.47	108.00	372.00	590.49	24.30	100.0	
Calculate_HLLC_Fluxes_CUDA	2781	0	<pre>sampling_gpu_power</pre>	watts	368.47	113.00	379.00	541.36	23.27	100.0	
Update_Conserved_Variables_3D_half	1407	0	<pre>sampling_gpu_power</pre>	watts	368.66	118.00	375.00	536.20	23.16	100.0	
Partial_Update_Advected_Internal_Energy_3D	261	0	<pre>sampling_gpu_power</pre>	watts	372.78	131.00	379.00	515.55	22.71	100.0	
Update_Conserved_Variables_3D	1200	0	<pre>sampling_gpu_power</pre>	watts	373.75	133.00	380.00	468.30	21.64	100.0	
Select_Internal_Energy_3D	169	0	<pre>sampling_gpu_power</pre>	watts	371.37	136.00	380.00	839.40	28.97	100.0	
Sync_Energies_3D	141	0	<pre>sampling_gpu_power</pre>	watts	375.12	171.00	380.00	443.81	21.07	100.0	
PackBuffers3DKernel	27	0	<pre>sampling_gpu_power</pre>	watts	371.33	225.00	381.00	884.77	29.75	100.0	
Temperature_Floor_Kernel	120	0	<pre>sampling_gpu_power</pre>	watts	375.57	264.00	380.00	142.15	11.92	100.0	
UnpackBuffers3DKernel	32	0	sampling_gpu_power	watts	372.91	322.00	380.00	97.44	9.87	100.0	

rocprofiler-systems: How To Use (When available in Frontier)

- Load ROCm: module load rocm/6.3.x
- Instrument your binary: rocprof-sys-instrument –o cholla.hydro.frontier.inst -- cholla.hydro.frontier
- Run your application as: rocprof-sys-run -- <instrumented_binary> <application_options>
- Create a configuration file: rocprof-sys -G \$PATH_TO_CONFIG/roctprof-sys.cfg
- Relevant configuration options for GPU power profiling


ROCPROFSYS_TRACE= trueROCPROFSYS_PROFILE= trueROCPROFSYS_USE_SAMPLING= trueROCPROFSYS_USE_PROCESS_SAMPLING = trueROCPROFSYS_USE_ROCM_SMIROCPROFSYS_SAMPLING_FREQ= 100ROCPROFSYS_SAMPLING_GPUS= \$env:HIP_VISIBLE_DEVICESROCPROFSYS_SAMPLING_CPUS= none

• Set your configuration file: export ROCPROFSYS_CONFIG_FILE=\$PATH_TO_CONFIG/rocprof-sys.cfg

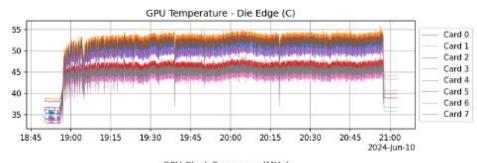
Omnistat

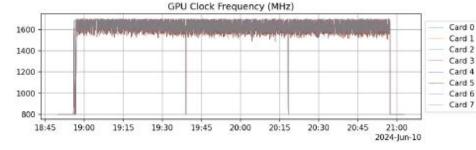
Omnistat: Overview

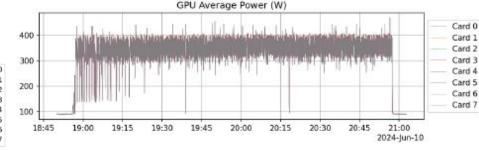
- AMD research tool designed to have lower overhead than profiling tools like Omniperf or Omnitrace, and monitor resource usage at the job level, but can scale up to system level monitoring
- <u>https://github.com/AMDResearch/omnistat</u>
- Provides monitoring of system resources usage, e.g.
 - GPU utilization
 - HBM high water mark
 - GPU power
 - Host memory utilization
 - Network inbound/outbound traffic
 - -Slingshot is not yet supported

- Simple invocation by placing a pair of commands at the beginning and at the end of the SLURM script.
- Already used by a team at ORNL to measure energy consumption of the HydraGNN large language model running on 128
 Frontier nodes

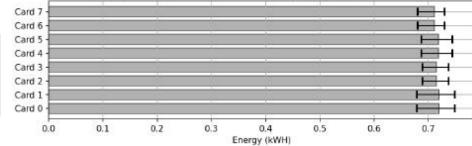
Scalable Training of Graph Foundation Models for Atomistic Materials Modeling: A Case Study with HydraGNN <u>https://arxiv.org/abs/2406.12909</u>

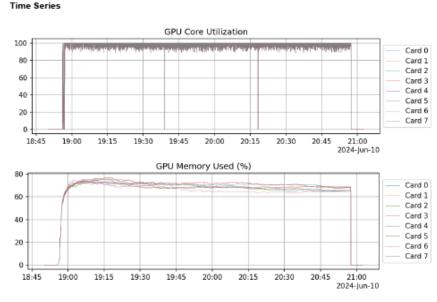

Omnistat: Summary Report


- Summary report at end of the job showing time profile of resource usage and relevant statistics
- Can help identifying potentially problematic hosts or GPUs
- Potential to provide summary usage statistics of all jobs on a cluster


Report Card: JobID = 2012377 Start Time: 2024-06-10 13:50:00 End Time: 2024-06-10 16:03:00

GPU Statistics


	Utilization (%)		Memory Use (%)		Tempera	ature (C)	Powe	er (W)	Energy (kWh)	
GPU	Max	Mean	Max	Mean	Max	Mean	Max	Mean	Total	
0	100.00	88.85	99.98	64.33	64.00	49.77	514.00	326.46	92.08	
1	100.00	88.85	99.98	62.39	68.00	51.64	0.00	0.00	0.00	
2	100.00	88.84	99.98	62.28	59.00	44.24	512.00	324.26	91.51	
3	100.00	88.86	99.98	65.02	57.00	45.50	0.00	0.00	0.00	
4	100.00	88.84	99.97	61.90	61.00	48.34	522.00	326.06	91.97	
5	100.00	88.85	99.98	63.29	65.00	50.79	0.00	0.00	0.00	
6	100.00	88.85	99.99	60.91	56.00	43.09	522.00	322.45	91.00	
7	100.00	88.85	99.98	62.85	57.00	44.41	0.00	0.00	0.00	



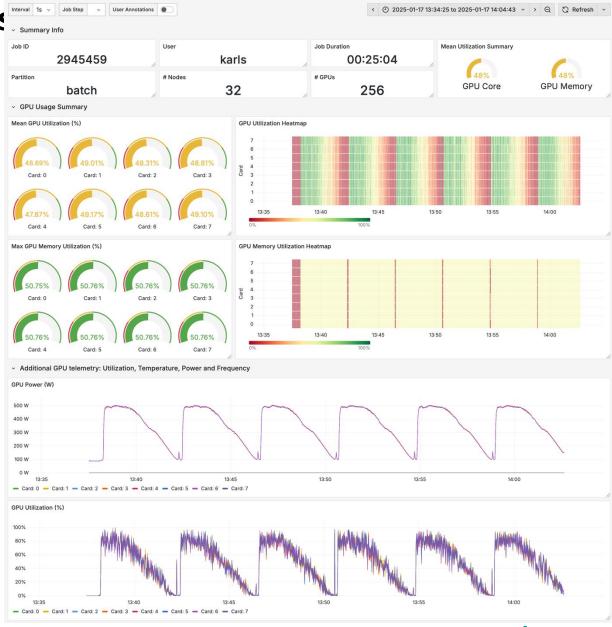
Total GPU Energy Consumed = 366.56 kWh

Omnistat: How to use in Frontier

 Example calling Omnistat on a SLURM script in Frontier: # Set your environment (load other modules) module load ...

Load Omnistat
ml use /autofs/nccs-svm1_sw/crusher/amdsw/modules
ml omnistat-wrapper

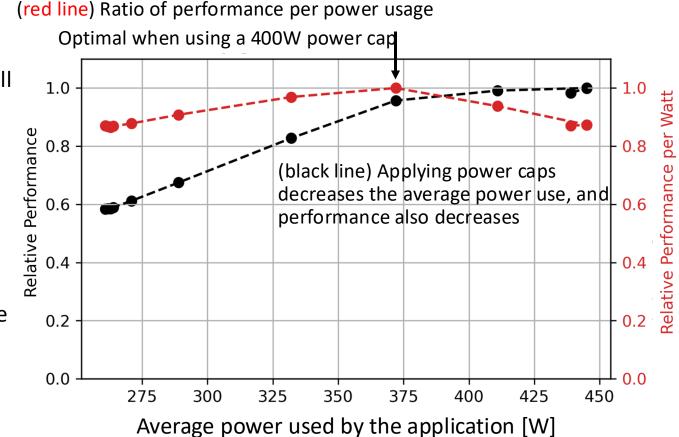
Start Omnistat – enable data collection
\${OMNISTAT_WRAPPER} usermode --start --interval 1


Run your application srun ...

Stop Omnistat – generate summary report and stop data collection \${OMNISTAT_WRAPPER} usermode --stopexporters \${OMNISTAT_WRAPPER} query --interval 1 --job \${SLURM_JOB_ID} --pdf omnistat.\${SLURM_JOB_ID}.pdf \${OMNISTAT_WRAPPER} usermode --stopserver mv /tmp/omnistat/\${SLURM_JOB_ID} data_omnistat.\${SLURM_JOB_ID}

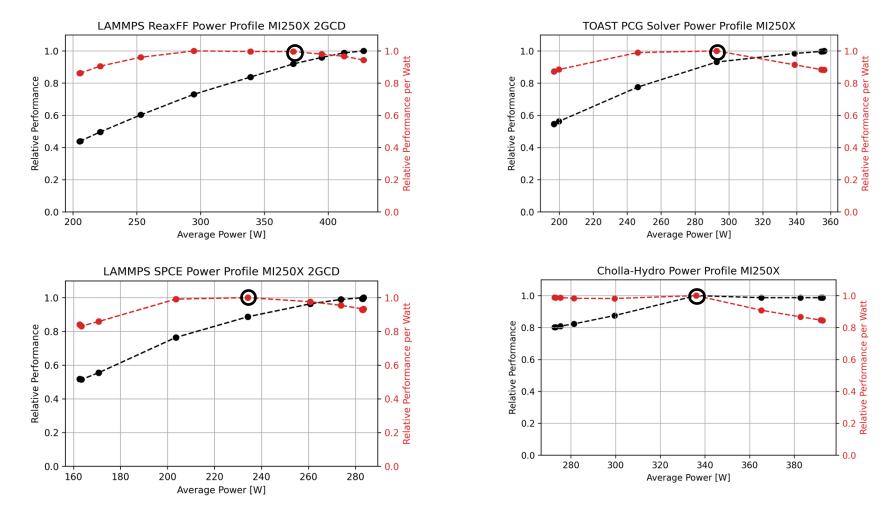
Omnistat: Grafana Real-time Dashboard

- Omnistat output database is compatible with Grafana for interactive visualization
 - Copy the Omnistat output database to your local system and visualize with Grafana
 - Example visualization of six consecutive LINPACK runs on 32 nodes



Power and Energy Optimization

Energy Optimization Using GPU Power Caps


- The GPU power cap can be changed on Frontier through SLURM
 - #SBATCH --gpu-powercap=<power_cap_in_watts>
 - Sets to power cap for all GPUs in the node, and all nodes for the job.
 - Default MI250X power cap is 560 W
- Iterate over several values for the power cap, measure the application performance and the average power draw
- The performance per watt (red) is optimal when the GPU power is capped
- The performance per watt ratio is proportional to the inverse of the energy used for the run

MILC Power Profile MI250X

Energy Optimization Using GPU Power Caps

• We observe similar performance per watt curves for other HPC applications

Energy Efficiency: Other Considerations

- Applying power caps can improve the GPU energy efficiency but might not improve the system energy efficiency as other expenses need to be considered (e.g. cooling, network, etc.)
- An alternative is to set GPU frequency caps
 - Through SLURM

#SBATCH --gpu-gpu-srange=<min_gpu_clock> - <max_gpu_clock>
Set the GPU sclk range in MHz. Default is 500-1700

- Through a script available on Frontier compute nodes /usr/bin/set_gpu_max_sclk [-g gpu_id] <frequency_in_MHz>
- Lowering the max GPU frequency for bandwidth-bound applications could lower the GPU energy footprint without significantly impacting performance
- Explore single/mixed precision operations
 - Less runtime is always better!

Summary

Overview of Power Monitoring on Frontier

- Cray PM counters provide node-level power information
 - Report power and energy usage from CPUs, GPUs, Memory; can also set power cap
 - Can query using SLURM, system files, CrayPat, PAPI
 - –Updated out-of-band, at 10 Hz
 - -SLURM accumulates energy across all nodes
 - -System files, CrayPat, and PAPI report per-node information
- RAPL counters provide AMD CPU socket- and core-level power data
 - Can query using Cray PAT and PAPI
- ROCm power management counters provide GPU-level average power
 - Can also set power cap
 - Can query using system files, ROCm-SMI, Omnitrace, Omnistat
 - –Updated out-of-band, at 1 kHz
 - -Omnitrace can provide application and kernel-level power statistics
 - -Omnistat can provide job/system-level statistics
 - -Currently, Omnitrace and Omnistat use rocm-smi in the backend for power measurements

Thank you

Ashesh Sharma – A<u>shesh.Sharma@hpe.com</u> Bruno Villasenor Alvarez - <u>Bruno.VillasenorAlvarez@amd.com</u>