
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Containers on Frontier

Subil Abraham

HPC Engineer

OLCF User Assistance

22 Open slide master to edit

What are Containers?

• From Docker’s website: A container is a standard unit of
software that packages up code and all its dependencies so
the application runs quickly and reliably from one computing
environment to another.

33 Open slide master to edit

Containers in HPC: Why even bother?

• Containers package your application along with its software
environment

– Removes dependence on host system’s stack

– Finer control over system level libraries also

• Byzantine build systems are easier to manage

• Potentially easier to port to cloud or other systems*

• Just hand a container image to a new user on your project

– Save time setting up their environment from scratch

• Not a VM, runs like an application. So no real performance
impact.

*Provided they’re the same CPU and GPU architectures (e.g. Nvidia won't work on AMD GPUs)

44 Open slide master to edit

The use of Containers (In the context of HPC systems)

Host

MPI lib CDF lib

HDF5

app

Modules

module load mpich
module load netcdf
module load hdf5

55 Open slide master to edit

The use of Containers (In the context of HPC systems)

Host

MPI lib CDF lib

HDF5

app

Modules

Host

MPI lib

CDF lib

HDF5

app

Modules

Container

MPI lib CDF lib

HDF5

OS libs

66 Open slide master to edit

The use of Containers (In the context of HPC systems)

Host

MPI lib CDF lib

HDF5

app

Modules

Host

MPI lib

CDF lib

HDF5

app

Modules

Container

RUN apt install cdf
RUN apt install
mpich hdf5
....
....
RUN make app

MPI lib CDF lib

HDF5

OS libs

77 Open slide master to edit

The use of Containers (In the context of HPC systems)

Host

MPI lib CDF lib

HDF5

app

Modules

Host

MPI lib

CDF lib

HDF5

app

Modules

Container

RUN apt install cdf
RUN apt install
mpich hdf5
....
....
RUN make app

MPI lib CDF lib

HDF5

Host B

Modules

MPI lib CDF lib

BLAS

OS libs

88 Open slide master to edit

The use of Containers (In the context of HPC systems)

Host

MPI lib CDF lib

HDF5

app

Modules

Host

MPI lib

CDF lib

HDF5

app

Modules

Container

RUN apt install cdf
RUN apt install
mpich hdf5
....
....
RUN make app

MPI lib CDF lib

HDF5

Host B

MPI lib

CDF lib

HDF5

app

Modules

Container

MPI lib CDF lib

BLAS

OS libs
OS libs

99 Open slide master to edit

Goal for OLCF

Empower user to build their own containers to run on Frontier.
Each user's needs are different, so provide the building blocks to
let users get themselves up and going and reach good
performance.

1010 Open slide master to edit

Apptainer on Frontier

• Apptainer is a container image builder and the runtime

• Different from Docker and Podman, doesn't support the
Containerfile format

– But it can pull and convert Docker images to its format

• Supports MPI (through mounting host libraries) and AMD GPUs
(with --rocm flag)

• Container image is a single file, can be stored anywhere on
filesystem. Called SIF files (.sif extension)

• Frontier has Apptainer v1.3.2

1111 Open slide master to edit

Building a container with Apptainer

Bootstrap: docker

From: opensuse/leap:15.4

%files

./hello.c /

%post

zypper --non-interactive --gpg-auto-import-keys refresh

zypper install -y gzip gcc-c++ gcc-fortran

gcc -o /hello /hello.c

$ apptainer build opensusebasic.sif opensusebasic.def

$ apptainer exec opensusebasic.sif /hello

hello, world!

$ apptainer shell opensusebasic.sif

Apptainer> ls /

autofs bin boot ccs dev environment etc hello
hello.c home host_lib64 lib lib64 lustre mnt opt proc
root run sbin selinux singularity srv sw sys tmp usr
var

opensusebasic.def

1212 Open slide master to edit

Building a container with Apptainer (with a local image)

Bootstrap: localimage

From: opensuseleap.sif

%files

./hello.c /

%post

zypper --non-interactive --gpg-auto-import-keys refresh

zypper install -y gzip gcc-c++ gcc-fortran

gcc -o /hello /hello.c

$ apptainer pull opensuseleap.sif
docker://docker.io/opensuse/leap:15.4

$ apptainer build opensusebasic.sif opensusebasic.def

$ apptainer exec opensusebasic.sif /hello

hello, world!

$ apptainer shell opensusebasic.sif

Apptainer> ls /

autofs bin boot ccs dev environment etc hello
hello.c home host_lib64 lib lib64 lustre mnt opt proc
root run sbin selinux singularity srv sw sys tmp usr
var

1313 Open slide master to edit

Pushing a container to Dockerhub with ORAS

$ apptainer registry login --username <your dockerhub username> oras://registry-1.docker.io

Password/Token: <enter your dockerhub password>

$ apptainer push opensusebasic.sif oras://registry-1.docker.io/<your docker username>/opensusebasic:latest

NOTE: the above image will not work if you try to pull the image with Docker or Podman on another system.
Apptainer images are not compatible with Docker and Podman. It will only work with Apptainer.

$ rm opensusebasic.sif

$ apptainer pull opensusebasic.sif oras://docker.io/<your docker username>/opensusebasic:latest

NOTE: If you get an error like:

FATAL: While performing build: conveyor failed to get: while fetching library image: cached file hash(sha256:247d71...) and
expected hash(sha256:d0c012...) does not match
when pulling an Apptainer image from an ORAS registry, try building with apptainer pull --disable-cache ...

1414 Open slide master to edit

Building a container with base image in ORAS

Bootstrap: oras

From: docker.io/<your docker
username>/opensusebasic:latest

%post

zypper install -y hostname

$ apptainer build opensusehostname.sif
opensusehostname.def

$ apptainer exec opensusehostname.sif hostname

login05

1515 Open slide master to edit

Apptainer definition files vs Docker/Podman containerfiles

FROM opensuse/leap:15.4

COPY ./hello.c /hello.c

RUN zypper --non-interactive --gpg-auto-import-keys
refresh

RUN zypper install -y gzip gcc-c++ gcc-fortran

RUN gcc -o /hello /hello.c

Bootstrap: docker

From: opensuse/leap:15.4

%files

./hello.c /

%post

zypper --non-interactive --gpg-auto-import-keys refresh

zypper install -y gzip gcc-c++ gcc-fortran

gcc -o /hello /hello.c

1616 Open slide master to edit

Filesystem access in container

• Several paths are automatically mounted into your container
by default, including /lustre/orion and /ccs/home

• See /etc/apptainer/apptainer.conf on Frontier for the full list

$ apptainer exec \
 opensusehostname.sif ls /lustre/orion/stf007/

proj-shared
scratch
world-shared

1717 Open slide master to edit

Running your container with Slurm

#!/bin/bash

#SBATCH -A stf007uanofn
#SBATCH -J test
#SBATCH -N 4
#SBATCH -o subil_%j.out
#SBATCH -t 00:10:00

srun -N4 -n4 --tasks-per-node=1 apptainer exec \
 opensusehostname.sif hostname

Output:
frontier09298
frontier10202
frontier10196
frontier10233

1818 Open slide master to edit

Building container images with MPI+GPU applications

• Build your container with MPICH 3.4.2 or 3.4.3 and ROCm
installed

– MPICH 3.4.[2|3] is ABI compatible with Cray MPICH. Will let us use Cray
MPICH during runtime.

• See https://github.com/olcf/olcf_containers_examples for
example (opensusempich342rocm571.def under frontier-
>containers_on_frontier_docs->gpu_aware_mpi_example)

https://github.com/olcf/olcf_containers_examples
https://github.com/olcf/olcf_containers_examples/blob/main/frontier/containers_on_frontier_docs/gpu_aware_mpi_example/opensusempich342rocm571.def

1919 Open slide master to edit

Running container with MPI+GPU application

• See https://github.com/olcf/olcf_containers_examples for
example (submit.sbatch under frontier-
>containers_on_frontier_docs->gpu_aware_mpi_example)

• Let's walk through the example

https://github.com/olcf/olcf_containers_examples

2020 Open slide master to edit

Container modules

<load other modules>
module load olcf-container-tools
module load apptainer-enable-mpi
module load apptainer-enable-gpu

• The above modules sets the environment variables necessary for MPI

and GPU support
• More convenient than explicitly setting the environment variables

• You can still set stuff like APPTAINERENV_LD_LIBRARY_PATH=blahblah,
apptainer wrapper will prepend 'blahblah' to the rest of the
mandatory entries in APPTAINERENV_LD_LIBRARY_PATH before running

container
• Experimental. If you run into bugs, please email help@olcf.ornl.gov

2121 Open slide master to edit

Container modules

• You can still modify those APPTAINER* environment variables if
you want to in your job script

• the apptainer wrapper script set up by the module will automatically
prepend your custom values to the APPTAINER* environment variables
it sets.

• So container will have values set by you and the module

• See submit.slurm in
https://github.com/olcf/olcf_containers_examples (under
frontier->containers_on_frontier_docs-
>apptainer_wrappers_lammps)

https://github.com/olcf/olcf_containers_examples

2222 Open slide master to edit

OLCF base images
• OLCF provides base images that matches software versions

from CPE/23.12

– These are NOT official Cray PE containers with Cray software. We try to
match the software versions to match the indicated CPE/23.12.

– They are SIF files, so use `oras://` or `Bootstrap: oras` to retrieve the base
image

• Provides a suitable starting point to build your own containers

• See docs

• See example def files in
https://github.com/olcf/olcf_containers_examples (Under
frontier->containers_on_frontier_docs-
>apptainer_wrappers_lammps)

https://docs.olcf.ornl.gov/software/containers_on_frontier.html
https://github.com/olcf/olcf_containers_examples

2323 Open slide master to edit

No performance impact

• Running LAMMPS OLCF-6 benchmark

5.70

5.75

5.80

5.85

5.90

5.95

6.00

6.05

6.10

6.15

6.20

container native

1
0

^
9

 a
to

m
-s

te
p

s/
se

c

LAMMPS SPC/e benchmark (512 nodes)

54

55

56

57

58

59

60

61

62

container native

1
0
^

9
 a

to
m

-s
te

p
s/

se
c

LAMMPS SPC/e benchmark (4096 nodes)

*higher is better

If you find consistent performance degradations for your particular code, please let us know. We
would be interested in documenting.

https://www.olcf.ornl.gov/draft-olcf-6-technical-requirements/benchmarks/

2424 Open slide master to edit

Apptainer on Andes

• Apptainer is available and installed on Andes.

• We don't have Andes specific docs yet for Apptainer, but feel
free to experiment.

2525 Open slide master to edit

Links and Resources

• Apptainer documentation:
https://apptainer.org/docs/user/main/index.html

• Containers on Frontier documentation:
https://docs.olcf.ornl.gov/software/containers_on_frontier.html

• Container examples (which the docs reference):
https://github.com/olcf/olcf_containers_examples/

2626 Open slide master to edit

Greatest Acknowledgments

• Asa Rentschler

• Elijah MacCarthy

	Slide 1: Containers on Frontier
	Slide 2: What are Containers?
	Slide 3: Containers in HPC: Why even bother?
	Slide 4: The use of Containers (In the context of HPC systems)
	Slide 5: The use of Containers (In the context of HPC systems)
	Slide 6: The use of Containers (In the context of HPC systems)
	Slide 7: The use of Containers (In the context of HPC systems)
	Slide 8: The use of Containers (In the context of HPC systems)
	Slide 9: Goal for OLCF
	Slide 10: Apptainer on Frontier
	Slide 11: Building a container with Apptainer
	Slide 12: Building a container with Apptainer (with a local image)
	Slide 13: Pushing a container to Dockerhub with ORAS
	Slide 14: Building a container with base image in ORAS
	Slide 15: Apptainer definition files vs Docker/Podman containerfiles
	Slide 16: Filesystem access in container
	Slide 17: Running your container with Slurm
	Slide 18: Building container images with MPI+GPU applications
	Slide 19: Running container with MPI+GPU application
	Slide 20: Container modules
	Slide 21: Container modules
	Slide 22: OLCF base images
	Slide 23: No performance impact
	Slide 24: Apptainer on Andes
	Slide 25: Links and Resources
	Slide 26: Greatest Acknowledgments

