

Summit Supercomputer

Elijah MacCarthy HPC Engineer OLCF

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- Summit System Overview
- Summit Programming Environment

OLCF Summit Overview

The system includes

- 4,680 nodes •
- Dual-port Mellanox EDR InfiniBand network ٠
- 50 PB IBM file system ٠

System Performance

- Peak of 200 Petaflops (FP₆₄) for modeling & • simulation
- Peak of 3.3 ExaOps (FP_{16}) for data analytics and ٠ artificial intelligence

Each node has

- 2 IBM POWER9 processors
- 6 NVIDIA Tesla V100 GPUs ٠
- 608 GB of fast memory (96 GB HBM2 + 512 GB DDR4) ٠
- 1.6 TB of NV memory ٠

Summit Node Schematic

4

Summit Node Schematic

CAK RIDGE National Laboratory

5

IBM Power9 Processor

- Summit's P9s: 22 cores (4 hwthreads/core)
- PCI-Express 4.0
 - Twice as fast as PCIe 3.0
- NVLink 2.0
 - Coherent, high-bandwidth links to GPUs
- 14nm FinFET SOI technology
 - 8 billion transistors
- Cache
 - L11: 32 KiB (per core, 8-way set associative)
 - L1D: 32 KiB (per core, 8-way)
 - L2: 512 KiB (per pair of cores)
 - L3: 120 MiB eDRAM, 20-way (shared by all cores)

Summit Contains 28,080 NVIDIA Tesla v100s

Each Tesla v100 GPU has:

- 150+150 GB/s total BW (NVLink v2.0)
- 5,120 CUDA cores (64 on each of 80 SMs)
- 640 Tensor cores (8 on each of 80 SMs)
- 20MB Registers | 16MB Cache | 16GB HBM2 @ 900 GB/s
- 7.5 DP TFLOPS | 15 SP TFLOPS | 120 FP₁₆ TOPS

• Tensor cores do mixed precision multiply-add of 4x4 matrices

Туре	Size	Range	$u = 2^{-t}$
half	16 bits	10 ^{±5}	$2^{-11}\approx 4.9\times 10^{-4}$
single double	32 bits 64 bits	10 ^{±38} 10 ^{±308}	$\begin{array}{l} 2^{-24} \approx 6.0 \times 10^{-8} \\ 2^{-53} \approx 1.1 \times 10^{-16} \end{array}$
quadruple	128 bits	10 ^{±4932}	$2^{-113}\approx9.6\times10^{-35}$

D = AB + C

https://docs.olcf.ornl.gov/systems/summit_user_guide.html#tensor-cores

(2) IBM Power9 + (6) NVIDIA Volta V100

8

Summit Board (1 node) showing the Water Cooling

Summit Specs

Feature	Summit	
Peak FLOPS	200 PF	
Max possible Power	13 MW	
Number of Nodes	4,608	
Node performance	42 TF	
Memory per Node	512 GB DDR4 + 96 GB HBM2	
NV memory per Node	1.6 TB	
Total System Memory	2.8 PB + 7.4 PB NVM	
System Interconnect	Dual Port EDR-IB (25 GB/s)	
Interconnect Topology	Non-blocking Fat Tree	
Bi-Section Bandwidth	115.2 TB/s	
Processors on node	2 IBM POWER9™ 6 NVIDIA Volta™	
File System	50 PB, GPFS™	

Available File Systems / Storage Areas on Summit

NFS Directories – This is where you might want to keep source code and build your application. *NOTE: These directories are read-only from the compute nodes!*

/ccs/home/<userid>

• Your personal home directory

/ccs/proj/<project_id>

• Can be accessed by all participants of this event

<u>GPFS Directories (parallel file system)</u> – This is where you should write data when running on Summit's compute nodes.

/gpfs/alpine2/<project_id>/scratch/<userid>

• Your personal GPFS scratch directory

/gpfs/alpine2/<project_id>/proj-shared

• Can be accessed by all participants of the event

