
10 September 2024
Joint OLCF/NERSC Workshop

Andrew Shao, PhD
Principal HPC&AI Research Scientist | HPE Canada

Combining scientific simulations and AI with
SmartSim

Outline of this Workshop

Hands on: Building a complex workflow to train a neural network online

Hands on: Building simple SmartSim applications

ML-around-the-loop: Applications in Molecular Dynamics and CFD

ML-in-the-loop: Applications in Climate Modeling and CFD

Introduction: Why combine AI and scientific simulation?

2Confidential | Authorized

Why HPC and AI instead of HPC VS. AI?

• Can AI replace numerical-based approaches?
• Short answer: no, still limited by data

• Benefits of AI models
• Can be run more quickly than traditional numerical

models
• Simpler to run, does not need complicated software

infrastructure and HPC resources
• Downsides of AI models

• How do you add add process complexity?
• Extrapolation beyond training dataset?

• Challenges to combining HPC&AI
• Numerical: How can you characterize the stability

and accuracy of an ML model in that context
• Technical:

– How do you connect Fortran/C/C++ codebases to ML
packages?

– How do you appropriately balance high-value/cost GPU
resources in predominantly CPU-based code?

3
https://docs.nvidia.com/deeplearning/modulus/modulus-
sym/user_guide/neural_operators/fourcastnet.html#introduction

Archetypes of machine learning

• Supervised learning:

• Inputs and known outputs, derive a relationship

• Linear regression falls under supervised learning

• Artificial neural network:

–Linear and non-linear transformations

–Challenge: Many free parameters requires data to
over-constrain the problem

• Reinforcement learning

• Train model to take actions within a given ruleset
based on predefined reward function

• Unsupervised Learning (not discussed today)

• Find relationships in unlabeled data

All archetypes rely on data to learn and generalize

Inputs

(Features)

Statistical ModelANN

Outputs

(Predictions)

ML in-the-loop
• Embedding machine-learning predictions within numerical solvers

• On-the-fly analysis and visualization (e.g. principal component analysis via streaming SVD)

ML around-the-loop
• Automatic parameter tuning

• Reinforcement learning using the simulation as a testing environment

5

Combining AI/ML with Scientific Simulation

Physics
Simulation

ML in-the-loop:
Inference every
time step &
training online
with model
updates

ML on-the-loop:
Inference and
training every
1k-10k time
steps

ML around-
the-loop:
Inference or
training after
simulation

ML outside-the-loop:
Intelligent sampling

Edge AI:
Cross-facility,
event triggered,
data-driven

The standard way of running simulations

Typical Numerical Workflows

6

Input data
• Set of initial conditions

• File representing geometry

• Hard-coded values

Monolithic
Application
• HPC native

• Parallel C/C++/Fortran

• Contains all needed logic

• Outputs to filesystem

Postprocessing
• Stored on filesystem

• Visualized or analyzed

Characteristics

• Workflow has defined, serial dependencies

• Representable with pipeline or directed acyclic
graph

Leading question

• Can this rigid structure accommodate the scale and
desired applications of numerical simulations?
• How do we couple inputs/outputs across multiple

applications?

• What happens when the data becomes too big to
output?

• How do you define non-unrollable loops or branches?

The new scientific tool: Workflows

• Paradigm shift: The simulation is one
component of a larger application
• Simulation requires inputs from other

components during execution
• Outputs from simulation needed by other

components

• Traditional pipeline?
• Requires branching logic, difficult to

coordinate
• Return to file-based signalling
• Data passed through stages must be

stored

• SmartSim’s role
• Provide a central location to share data
• Allow scientists to define components of

workflow

7

HPC Parallel
Application

• Runs simulation

• Requests
inference on data

Model
Training

ML
Inference

• Executes model and
returns result to
application

• Selects model to
use

Visualization

and Analysis
• Renders in real
time

• Requests in-situ
post-processing

• Adds information
to workflow

• Accesses data
produced by
application and trains
model

• Trains in parallel

• Trains multiple
models and selects
best one

New AI-Enhanced Numerical Workflows

8

About SMARTSIM

SmartSim is an open-source
library
• bridging the divide between

traditional numerical simulation and
data science

• providing a loose-coupling
philosophy for combining HPC & AI

SmartSim allows scientists to create complex workflows, with
simulations and machine learning producing, exchanging, and
consuming data
• Call Machine Learning (ML) inference in existing Fortran/C/C++ simulations

• Exchange data between C, C++, Fortran, and Python applications

• Train ML models online and make predictions using TensorFlow, PyTorch, and ONNX

• Analyze data streamed from HPC applications while they are running

All of these can be done without touching the filesystem

SmartRedis
Client API

AI Models AI Models

Data Sources Code / Scripts

Native C/C++/Fortran
simulation

Feature Store (Orchestrator)

SmartRedis
Client API

Analysis and
Visualization

PYTORCH | TENSORFLOW | ONNX

Interactive or
Automated

ML-in-the-loop: Scientific
Applications

9

Physics
Simulation

ML in-the-loop:
Inference every
time step &
training online
with model
updates

ML on-the-loop:
Inference and
training every
1k-10k time
steps

ML around-
the-loop:
Inference or
training after
simulation

ML outside-the-loop:
Intelligent sampling

Edge AI:
Cross-facility,
event triggered,
data-driven

10

Turbulence modelling in ocean models

In-Memory Feature Store
Orchestrator

EKEResnetShard 1

Shard 2

Shard 16

MOM6 Ensemble

.

.

.

Step 1
Send features from

MOM6 to the
database

Fortran
client

Rank 910

.
Fortran
client

Rank 1

.

...

Fortran
client

Rank 910

.
Fortran
client

Rank 1

.

...

Fortran
client

Rank 910

.
Fortran
client

Rank 1

.

...

Step 2
Run the machine

learning model in the
database

Problem 1:
• Eddy kinetic energy computed via a prognostic

equation (Jansen et al., 2015)
• EKE equation has terms which are tunable

and/or have errors which may be first-order
Problem 2
• Ocean turbulence energizes large-scale flow
• Coarse simulations overly diffusive

Step 3
Retrieve the

inference results in
MOM6

Proposed ML-based solution
• Train an ML model to estimate EKE
• Train an ML model from high-res data to add

energy (increase velocities) to the system
• Embed predictions in simulation

• Simulation accuracy improves
with AI-based
parameterizations

• Scales well with ensembles or
large individual simulation

• Parameterizations add 10-
20% cost when run on GPU

• Online accuracy of neural
network better than offline

• May form the basis of
science-oriented
MLCommons benchmark
[Brewer and von Laszewski]

Online AI improves simulation accuracy

11

Surface relative vorticity from ¼-degree MOM6
with AI turbulence model

[Frontier 2023]

AI-based Eddy Kinetic Energy

[Partee et al., 2022]

Integrating SmartSim with OpenFOAM

• SmartSim Team and OpenFOAM Data-Driven
Modeling Special Interest Group
• Paper:

Combining machine learning with computational
fluid dynamics using OpenFOAM and SmartSim
Maric et al. [2024]

• Examples with OpenFOAM
• Online training/inference for moving mesh

–Train on boundary displacements

–Predict on interior parts of the mesh

• Use SmartSim to perform streaming calculations
–PCA using distributed, partitioned SVD

–Use cases: Data decimation, physical understanding

12

https://link.springer.com/article/10.1007/s11012-024-01797-z
https://link.springer.com/article/10.1007/s11012-024-01797-z

• Typical offline training
• Relies on post-hoc simulation output

• Data reduction (aliasing time/space)

• Expensive to store

• MFIX-Exa Application
• Parameter study (ensemble of 33 simulations)

• Multi-phase, particle/fluid-based simulation

• ~50TB of compressed data

• Online training solution
• Stream timestep data from every ensemble member

• Intelligent sampling to train on “interesting” data

• Train ML model on data

Note: Toy version for hands-on portion of workshop

Gel, Musser, Fullmer, and Shao [2024] as part of a ASCR Leadership Computing Challenge project

Training surrogate models of subgrid-scale physics online

13Confidential | Authorized

ML-around-the-loop: Scientific
Applications

14

Physics
Simulation

ML in-the-loop:
Inference every
time step &
training online
with model
updates

ML on-the-loop:
Inference and
training every
1k-10k time
steps

ML around-
the-loop:
Inference or
training after
simulation

ML outside-the-loop:
Intelligent sampling

Edge AI:
Cross-facility,
event triggered,
data-driven

• Goal: predict the folded configuration of a protein starting from its atomic structure
• The original paper: DeepDriveMD: Deep-Learning Driven Adaptive Molecular Simulations for Protein

Folding

• Problems:
• Protein folding happens in discrete steps driven by energy minimization, but with random fluctuations

• How can one efficiently explore the space of all possible shapes of the protein [conformation]?
–Most trajectories will end up in suboptimal states

–Trajectories far apart may collapse on the same one after a sufficiently large number of steps

• Solution:
• Run short simulations, store steps and predict possible conformations

• Cluster discovered conformations

• Explore less sampled regions

Molecular Dynamics with DeepDriveMD

15

https://arxiv.org/pdf/1909.07817.pdf
https://arxiv.org/pdf/1909.07817.pdf

16

DeepDriveMD Data flow

ML Training

ML Training

ML Training

Outlier
Detection

MD Simulation

MD Simulation

MD Simulation

Each simulation
discovers and uploads
configurations
independently

Each training
process waits for
new configurations
to train a new
generative model

Checkpoint
s

Configurations

Generative Model

The outlier detection app
waits for new trajectories and
uses the best generative
model for inference

MD simulations wait
for new checkpoints
or use initial
configuration

Outliers and best configurations are
selected as new starting iterations

Data
prod
Data dep

Active flow control through deep Reinforcement learning

• Goal: Reduce Turbulent Separation Bubble
formation

• Method: Deep Reinforcement Learning with small
NN
• Reward based on recirculation length of turbulent

bubble
– Aim: minimize recirculation area

• Environment: 72 points for the NN to “observe”

• Action: NN can control actuators upwind of bubble

17

Scientific advancement with Simulation and AI

• A new paradigm is emerging for computational science: Workflows
• A scientific simulation is only a part of a larger, more complex workflow
• AI may be a component of the workflow
• These workflows are difficult to describe as a directed acyclic graph (loops, conditionals)

• Most scientists can pickup ML fairly quickly
• ML for science can be simpler than most “splashy” AI (e.g. LLMs, generative AI)
• Speedbumps:

– Overcoming technical challenges for connecting simulation/AI
– Expressing the workflow

• AI+Simulation is open for innovation and experimentation
• Even “simple” applications provide new opportunities for scientific discovery

• SmartSim team is open to collaboration
• Thanks to all our existing collaborators at MLCommons, OpenFOAM, NCAR, GFDL, National Energy Technology

Laboratory, Argonne National Lab, Oak Ridge National Lab, M2Lines, NEMO, and the MOM6 communites

18

Learning more about SmartSim

• To get more information about SmartSim you can

• Read the documentation:
https://craylabs.org

• Star SmartSim Repository:
https://github.com/CrayLabs/SmartSim

• Star SmartRedis Repository:
https://github.com/CrayLabs/SmartRedis

• SmartSim Slack workspace:
https://join.slack.com/t/craylabs/shared_in
vite/zt-2pvvwwjjq-
_f~gGxYcJVUxfoD7t5Dkfw

19

https://github.com/CrayLabs/SmartSim
https://github.com/CrayLabs/SmartRedis

SmartSim: Hands-on introduction

\

• Using SmartSim
• User writes a driver script in python

• Add SmartRedis codes to simulation code

• SmartSim Driver
• Create components of the workflow

–Model (e.g. simulation)

–RunSettings (e.g. how to run)

–Database

• Create run directories

• Launches components

import argparse

import pathlib

from smartsim import Experiment

Define the top-level SmartSim object

exp = Experiment("hello_world", launcher=”slurm")

Define the settings to run a perroquet with

perroquet_run_settings = exp.create_run_settings(

 exe="echo",

 exe_args=["Hello", "World!"],

 run_command="mpirun"

)

perroquet_run_settings.set_tasks(1)

Create a SmartSim representative of a numerical model

perroquet = exp.create_model(

 "hello_world",

 perroquet_run_settings,

)

exp.start(perroquet, block=True, summary=True)

SmartSim Basics

21

Fortran Application Example

use smartredis_client, only : client_type

! Format the suffix for a key as a zero-padded version of the rank

write(key_suffix, "(A,I1.1)") "_",pe_id

! Initialize a client

result = client%initialize("smartredis_mnist")

! Set up model and script for the computation

if (pe_id == 0) then

 result = client%set_model_from_file(model_key, model_file, "TORCH", "CPU")

 result = client%set_script_from_file(script_key, "CPU", script_file)

endif

result = client%put_tensor(in_key, array, shape(array))

! Prepare the script inputs and outputs

inputs(1) = in_key

outputs(1) = script_out_key

result = client%run_script(script_name, "pre_process", inputs, outputs)

inputs(1) = script_out_key

outputs(1) = out_key

result = client%run_model(model_name, inputs, outputs)

result = client%unpack_tensor(out_key, output_result, shape(output_result))

22

C++ Application Example

#include "client.h"

// Get our rank

int rank = 0;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

std::string logger_name("Client ");

logger_name += std::to_string(rank);

// Initialize a SmartRedis client

SmartRedis::Client client(logger_name);

// Put the tensor in the database

std::string key = "3d_tensor_" + std::to_string(rank);

client.put_tensor(key, input_tensor.data(), dims,

 SRTensorTypeDouble,
 SRMemLayoutContiguous);

// Retrieve the tensor from the database using the
unpack feature.

std::vector<double> unpack_tensor(n_values, 0);

client.unpack_tensor(key, unpack_tensor.data(),
{n_values},

 SRTensorTypeDouble,

 SRMemLayoutContiguous);

 // Retrieve the tensor from the database using the get
feature.

 SRTensorType get_type;

 std::vector<size_t> get_dims;

 void* get_tensor;

 client.get_tensor(key, get_tensor, get_dims,
get_type, SRMemLayoutNested);

23

SmartSim: Building a workflow for online
training

\

25

• Numerical surrogates need
timestep-level data
• Can lead to large data volumes

• Generally want to map a function-
space to another function space
• Oversampling a portion of the sample

space biases model

• Questions:
• How do you store this amount of data?

• How do you train on this amount of
data?

• Solution:
• Sample the data in an ‘intelligent’ way

• Train surrogate in a streaming manner

Why online training?

Disk
Store Load

Simulate Train

Traditional Pipeline

Simulate

DatabaseStage Sample

Train

Step 1 Step 2 Step 3

Streaming Asynchronous Workflow

26

• Problem: AI susceptible to sampling bias
• With most PDEs, no part of the solution space

is more “valid”
• Naïve training of AI models leads to

–Fixating on the well-sampled parts of the domain
– Ignoring the outliers

• Solution: Intelligently sample the data to
promote uniform sampling
• For low-dimension data

–Calculate PDF of data
–Use inverse of PDF as a sampling “chance”

• For high-dimension data
–PDF expensive to calculate
–Use Generative AI techniques to estimate PDF

Hassanaly M, Perry BA, Mueller ME, Yellapantula S. Uniform-in-phase-
space data selection with iterative normalizing flows. Data-Centric
Engineering. 2023

Intelligent sampling for point-by-point predictions

27

Setting up the asynchronous, workflow

Mock Simulation

• Store 16 data points per “timestep”

• Stage in database

• Sent using SmartRedis

• Stored in SmartSim database

Intelligent Sampler

• Polls database for new datasets

• Performs statistical comparison to
accept/reject new samples

• Stores downsampled data in
database

• Delete original data

Trainer

• Check for new training data

• Whenever new data is available, do
a training step

Simulate

DatabaseStage Sample

Train

https://github.com/CrayLabs/smartsim_workshops/tree/nersc_olcf_2024

Objectives:
• Create a workflow with multiple components based on data-availability
• Instrument a C++/Fortran code with SmartRedis
• Use SmartSim’s integration with pyTorch dataloaders

Hands-on Portion of Workshop

28

https://github.com/CrayLabs/smartsim_workshops/tree/nersc_olcf_2024

© 2024 Hewlett Packard Enterprise Development LP

Andrew.Shao@hpe.com

For more information about SmartSim: https://craylabs.org

Questions?

mailto:Andrew.Shao@hpe.com
https://craylabs.org/

	Presentation
	Slide 1: Combining scientific simulations and AI with SmartSim
	Slide 2: Outline of this Workshop
	Slide 3: Why HPC and AI instead of HPC VS. AI?
	Slide 4: Archetypes of machine learning
	Slide 5: Combining AI/ML with Scientific Simulation
	Slide 6: The standard way of running simulations
	Slide 7: The new scientific tool: Workflows
	Slide 8: About SMARTSIM
	Slide 9: ML-in-the-loop: Scientific Applications
	Slide 10: Turbulence modelling in ocean models
	Slide 11: Online AI improves simulation accuracy
	Slide 12: Integrating SmartSim with OpenFOAM
	Slide 13: Training surrogate models of subgrid-scale physics online
	Slide 14: ML-around-the-loop: Scientific Applications
	Slide 15: Molecular Dynamics with DeepDriveMD
	Slide 16: DeepDriveMD Data flow
	Slide 17: Active flow control through deep Reinforcement learning
	Slide 18: Scientific advancement with Simulation and AI
	Slide 19: Learning more about SmartSim
	Slide 20: SmartSim: Hands-on introduction
	Slide 21: SmartSim Basics
	Slide 22: Fortran Application Example
	Slide 23: C++ Application Example
	Slide 24: SmartSim: Building a workflow for online training
	Slide 25: Why online training?
	Slide 26: Intelligent sampling for point-by-point predictions
	Slide 27: Setting up the asynchronous, workflow
	Slide 28: Hands-on Portion of Workshop
	Slide 29: Questions?

