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Outline of this Workshop

Introduction: Why combine Al and scientific simulation?

ML-in-the-loop: Applications in Climate Modeling and CFD

ML-around-the-loop: Applications in Molecular Dynamics and CFD

Hands on: Building simple SmartSim applications

Hands on: Building a complex workflow to train a neural network online
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Why HPC and Al instead of HPC VS. Al?

e Can Al replace numerical-based approaches? e s
e Short answer: no, still limited by data
» Benefits of Al models

e Can be run more quickly than traditional numerical
models

e Simpler to run, does not need complicated software
infrastructure and HPC resources

e Downsides of Al models
* How do you add add process complexity? 0 200 400 500 800
e Extrapolation beyond training dataset? ERAS, lead time = 24 hours
e Challenges to combining HPC&AI

 Numerical: How can you characterize the stability
and accuracy of an ML model in that context
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e Technical: .
—How do you connect Fortran/C/C++ codebases to ML o1
packages? 500

—How do you appropriately balance high-value/cost GPU
resources in predominantly CPU-based code?

600

700
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https://docs.nvidia.com/deeplearning/modulus/modulus-
sym/user_guide/neural_operators/fourcastnet.html#introduction I



Archetypes of machine learning

e Supervised learning:
e Inputs and known outputs, derive a relationship

e Linear regression falls under supervised learning

e Artificial neural network:
—Linear and non-linear transformations
—Challenge: Many free parameters requires data to

over-constrain the problem l l
e Reinforcement learning
e Train model to take actions within a given ruleset
i ANN Statistical Model

(Features)

-
= nputs

based on predefined reward function

e Unsupervised Learning (not discussed today)
e Find relationships in unlabeled data

All archetypes rely on data to learn and generalize

(Predictions)

—
E Outputs
— -



Combining Al/ML with Scientific Simulation

ML in-the-loop
e Embedding machine-learning predictions within numerical solvers

e On-the-fly analysis and visualization (e.g. principal component analysis via streaming SVD)
ML around-the-loop

e Automatic parameter tuning
e Reinforcement learning using the simulation as a testing environment

Edge Al: ML around- ML on-the-loop: ML in-the-loop:

Cross-facility, the-loop: Inference and Inference every

event triggered, Inference or training every time step & Physics ML outside-the-loop:

data-driven training afte 1k-10k time training online Simulation Intelligent sampling
simulation steps with model

dates




The standard way of running simulations

Typical Numerical Workflows Characteristics
Input data e Workflow has defined, serial dependencies

e Set of initial conditions e Representable with pipeline or directed acyclic

e File representing geometry graph
e Hard-coded values

Leading question

v e Can this rigid structure accommodate the scale and
Application desired applications of numerical simulations?

e HPC native e How do we couple inputs/outputs across multiple

e Parallel C/C++/Fortran applications?
e Contains all needed logic  What happens when the data becomes too big to
Quitpul jecug output?

N 4  How do you define non-unrollable loops or branches?

Postprocessing

e Stored on filesystem

: e Visualized or analyzed |
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The new scientific tool: Workflows

component of a larger application

e Simulation requires inputs from other 'ﬂf;‘jf::‘::sﬂ‘t"zg'a”d
components during execution application

e Outputs from simulation needed by other * Selects model to
components use

e Traditional pipeline?
e Requires branching logic, difficult to

coordinate
e Return to file-based signalling M(-)d_el
e Data passed through stages must be Training ¢
Stored e Accesses data V|Sual|zat|0n
produced by .
s ) application and trains H PC Pa ra ”El and AnalyS'S
e SmartSim’s role .. - :
model A ||Cat|0n Renders in real
 Provide a central location to share data * Trains in parallel PP time
 Allow scientists to define components of * Trains multiple * Requests in-situ
workflow models and selects e Runs simulation post-processing
\‘best‘cme—j e Adds information

¢ Requests
inference on data

E—



About SMARTSIM

SmartSim is an open-source
library

* bridging the divide between
traditional numerical simulation and
data science

* providing a loose-coupling
philosophy for combining HPC & Al

Native C/C++/Fortran
simulation

- SmartRedis
— Client API

SmartSim allows scientists to create complex workflows, with
simulations and machine learning producing, exchanging, and
consuming data

* Call Machine Learning (ML) inference in existing Fortran/C/C++ simulations

* Exchange data between C, C++, Fortran, and Python applications

* Train ML models online and make predictions using TensorFlow, PyTorch, and ONNX
* Analyze data streamed from HPC applications while they are running

Interactive or
Automated

SmartRedis el Analysis and
Client API — Visualization

PYTORCH | TENSORFLOW | ONNX



ML-in-the-loop: Scientific
Applications

Edge Al: ML around- ML on-the-loop: ML in-the-loop:

Cross-facility, the-loop: Inference and Inference every , _

event triggered, Inference or training every time step & P.hy5|cs. ML oytmde—the—lgop:

data-driven training afte 1k-10k time training online Simulation Intelligent sampling
simulation steps with model

dates




. . 0y -
Turbulence modelling in ocean models =rma=T EXbo

Problem 1:
* Eddy kinetic energy computed via a prognostic

equation (Jansen et al., 2015) BT s W 4w N
* EKE equation has terms which are tunable VR B F - EKEResnet

and/or have errors which may be first-order = P8 A Step 1 = = =

M ‘o Send features from a
Problem 2 S MOMS6 to the
: < e —————]>
* Ocean turbulence energizes large-scale flow T
» Coarse simulations overly diffusive N e
Step 2
. d v L — Run the machine

Proposed ML-based solution R Y learning model in the

e Train an ML model to estimate EKE = (- database
e Train an ML model from high-res data to add :
energy (increase velocities) to the system BT Step 3
* Embed predictions in simulation " F AP Retrieve the

inference results in

%

O PyTorch

MOMS6 Ensemble In-Memory Feature Store
Orchestrator

E— | 10



Online Al improves simulation accuracy

e Simulation accuracy improves
with Al-based
parameterizations

1/4° SmartSim-EKE Ensemble Average

g 7 o o ‘ T
5 = b =
R -
K 8
! 5 .

e Scales well with ensembles or
large individual simulation

0.00 0.01 0.02 0.03 0.04 0.05

e Parameterizations add 10- B s M B o
20% cost when run on GPU
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——  SmartSim-EKE
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e Online accuracy of neural
network better than offline
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~
v

-

log

=2.50 4

e May form the basis of

-2.75

science-oriented YY) SRS Lol S |
MLCommons benchmark Lttuse (N
[Brewer and von Laszewski] Al-based Eddy Kinetic Energy Surface relative vorticity from %-degree MOMG6

[Partee et al., 2022] with Al turbulence model
[Frontier 2023]
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Integrating SmartSim with OpenFOAM

e SmartSim Team and OpenFOAM Data-Driven
Modeling Special Interest Group
e Paper:
Combining machine learning with computational

fluid dynamics using OpenFOAM and SmartSim
Maric et al. [2024]

e Examples with OpenFOAM

e Online training/inference for moving mesh
—Train on boundary displacements
—Predict on interior parts of the mesh

e Use SmartSim to perform streaming calculations
—PCA using distributed, partitioned SVD
—Use cases: Data decimation, physical understanding

E—



https://link.springer.com/article/10.1007/s11012-024-01797-z
https://link.springer.com/article/10.1007/s11012-024-01797-z

Training surrogate models of subgrid-scale physics online

e Typical offline training
 Relies on post-hoc simulation output
 Data reduction (aliasing time/space)
e Expensive to store Cluster-Induced Turbulence
e MFIX-Exa Application b

e Parameter study (ensemble of 33 simulations) a=0139
e Multi-phase, particle/fluid-based simulation ytms)

|wg| (s71)
4000.

00
80 I 3000.
60

- 2000.

e “50TB of compressed data
e Online training solution

40

2.0

l 0.0
| 20 B
» Stream timestep data from every ensemble member [ER&

* Intelligent sampling to train on “interesting” data
e Train ML model on data

1000.

.35 0.

Note: Toy version for hands-on portion of workshop
Gel, Musser, Fullmer, and Shao [2024] as part of a ASCR Leadership Computing Challenge project
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ML-around-the-loop: Scientific
Applications

Edge Al:
Cross-facility,
event triggered,
data-driven

ML around-
the-loop:
Inference or
training afte
simulation

ML on-the-loop:
Inference and
training every
1k-10k time
steps

ML in-the-loop:
Inference every
time step &
training online
with model
dates

Physics
Simulation

ML outside-the-loop:

Intelligent sampling

14



Molecular Dynamics with DeepDriveMD

e Goal: predict the folded configuration of a protein starting from its atomic structure

e The original paper: DeepDriveMD: Deep-Learning Driven Adaptive Molecular Simulations for Protein
Folding

e Problems:
» Protein folding happens in discrete steps driven by energy minimization, but with random fluctuations

» How can one efficiently explore the space of all possible shapes of the protein [conformation]?
—Most trajectories will end up in suboptimal states
—Trajectories far apart may collapse on the same one after a sufficiently large number of steps

e Solution:
e Run short simulations, store steps and predict possible conformations
e Cluster discovered conformations
» Explore less sampled regions

— |
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https://arxiv.org/pdf/1909.07817.pdf
https://arxiv.org/pdf/1909.07817.pdf

DeepDriveMD Data flow

Each simulation
discovers and uploads
configurations
independently

MD Simulation

MD Simulation

MD simulations wait
= = == P {or new checkpoints
or use initial
configuratio

MD Simulation \
Outliers and best configurations are

v
selected as new starting iteration “\%{ ‘@ \
A A A

Checkpomt

Outlier \\\u % % ;% y
Detection ; y

: . Configurations
The ot n detecuw
waits f@r new trajectories an = Data

uses the best generative e
model for inference === Data dep
‘I.\ C— ML Training .
Each training
o process waits for
\.nl.\ :—'_ ML Training new configurations
: '\‘l. to train a new
Y ——— ML Trainin ti del I 16
Gengrative Modeél & generative mode




Active flow control through deep Reinforcement learning

e Goal: Reduce Turbulent Separation Bubble i3 sop2p @ RL model
fo rmation Ell\"l['()lllll(?]'lt 1 EllVll’()Illl'l(EIlT 2
e Method: Deep Reinforcement Learning with small GPU GPU CPU
NN
. . GPU GPU
e Reward based on recirculation length of turbulent
bUbee ~ \ J \. , )
— Aim: minimize recirculation area e | | Actions oate 1| Actions
== Redis in-memory database
5o, = [0.5,0.7,0.9] ro, = [0.9] e, = [1.0,0.3]
Sep = [—0.1,1.1,02] 7, = [0.1] (e, = [0.2,—0.6]
250 250+ 250+
200+ 1 2001 200+ 1
W e $150/\‘\MWW\/
100¢ 100 100t 1

501

-

~

12000 14000 16000 18000

t

2000

4000 6000 8000
t

2000 4000 6000 8000
t



Scientific advancement with Simulation and Al

e A new paradigm is emerging for computational science: Workflows
e A scientific simulation is only a part of a larger, more complex workflow
e Al may be a component of the workflow
e These workflows are difficult to describe as a directed acyclic graph (loops, conditionals)

e Most scientists can pickup ML fairly quickly
e ML for science can be simpler than most “splashy” Al (e.g. LLMs, generative Al)
e Speedbumps:
—Overcoming technical challenges for connecting simulation/Al
—Expressing the workflow

e Al+Simulation is open for innovation and experimentation
e Even “simple” applications provide new opportunities for scientific discovery

e SmartSim team is open to collaboration

e Thanks to all our existing collaborators at MLCommons, OpenFOAM, NCAR, GFDL, National Energy Technology
Laboratory, Argonne National Lab, Oak Ridge National Lab, M2Lines, NEMO, and the MOM®6 communites
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Learning more about SmartSim

e To get more information about SmartSim you can
* Read the documentation: St 090

https://cray!abs.org | documentation Ty,
e Star SmartSim Repository:
https://github.com/CraylLabs/SmartSim  [S——"

+ Star SmartRedis Repository: o

Basic Installation

https://github.com/CraylLabs/SmartRedis [

platforms

° S Mma rtS | m S |a C k WO r'kS p dace. Corbibufing Guid fvr;‘lrakrltosai:senables scientists to utilize machine learning inside traditional HPC
https://join.slack.com/t/craylabs/shared injkEEeEs
vite/zt-2pvvwwijjg- Tutoril

Getting Started 1. Automating the deployment of HPC workloads and distributed, in-memory

_f~gGxYcJVUxfoD7t5Dkfw . e o

SmartSim provides this capability by

2. Making TensorFlow, Pytorch, and ONNX callable from Fortran, C, and C++

Online Inference

- o simulations.
Online Training

3. Providing flexible data communication and formats for hierarchical data,

SmartSim enabling online analysis, visualization, and processing of simulation data.

Experiments


https://github.com/CrayLabs/SmartSim
https://github.com/CrayLabs/SmartRedis
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SmartSim: Hands-on introduction



SmartSim Basics

import argparse

mport pathlib e Using SmartSim

e User writes a driver script in python
e Add SmartRedis codes to simulation code
# Define the top-level SmartSim object ° Sma rtS|m Driver

exp = Experiment("hello_world", launcher="slurm")
e Create components of the workflow
—Model (e.g. simulation)

from smartsim import Experiment

# Define the settings to run a perroquet with

perroquet_run_settings = exp.create_run_settings( —RunSettings (e'g' how to run)
exe="echo", —Database
exe_args=["Hello", "World!"], . .
run_command="mpirun" o Create run directories

) e Launches components

perroquet_run_settings.set_tasks(1)

# Create a SmartSim representative of a numerical model
perroquet = exp.create_model(

"hello_world",

perroquet_run_settings,
)

exp.start(perroquet, block=True, summary=True)

E—



Fortran Application Example

use smartredis_client, only : client_type

I Format the suffix for a key as a zero-padded version of the rank
write(key_suffix, "(A,11.1)") " _",pe_id

I'Initialize a client
result = client%initialize("smartredis_mnist")

I Set up model and script for the computation

if (pe_id == 0) then
result = client%set_model_from_file(model_key, model_file, "TORCH", "CPU")
result = client%set_script_from_file(script_key, "CPU", script_file)

endif

result = client%put_tensor(in_key, array, shape(array))

I Prepare the script inputs and outputs

inputs(1) = in_key

outputs(1) = script_out_key

result = client%run_script(script_name, "pre_process", inputs, outputs)
inputs(1) = script_out_key

outputs(1) = out_key

result = client%run_model(model_name, inputs, outputs)

result = client%unpack_tensor(out_key, output_result, shape(output_result))

E—
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C++ Application Example

#include "client.h"

// Get our rank

intrank =0;
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
std::string logger _name("Client ");

logger name += std::to_string(rank);

// Initialize a SmartRedis client
SmartRedis::Client client(logger_name);

// Put the tensor in the database
std::string key = "3d_tensor_"
client.put_tensor(key, input_tensor.data(), dims,

SRTensorTypeDouble,
SRMemLayoutContiguous);

+ std::to_string(rank);

// Retrieve the tensor from the database using the
unpack feature.

std::vector<double> unpack tensor(n_values, 0);

client.unpack tensor(key, unpack tensor.data(),
{n_values},

SRTensorTypeDouble,
SRMemLayoutContiguous);

// Retrieve the tensor from the database using the get
feature.

SRTensorType get type;
std::vector<size t> get dims;
void* get tensor;

client.get tensor(key, get tensor, get dims,
get type, SRMemLayoutNested);
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Why online training?

e Numerical surrogates need
timestep-level data

e Can lead to large data volumes

e Generally want to map a function-
space to another function space

e Oversampling a portion of the sample
space biases model

e Questions:

» How do you store this amount of data?

e How do you train on this amount of
data?

e Solution:

e Sample the datain an ‘intelligent” way
e Train surrogate in a streaming manner

E—

Siulate

Simulate

Traditional Pipeline
Step 2

Streaming Asynchronous Workflow




Intelligent sampling for point-by-point predictions

e Problem: Al susceptible to sampling bias

» With most PDEs, no part of the solution space
is more “valid”

 Naive training of Al models leads to
—Fixating on the well-sampled parts of the domain
—lgnoring the outliers

e Solution: Intelligently sample the data to
promote uniform sampling
e For low-dimension data
—Calculate PDF of data
—Use inverse of PDF as a sampling “chance”

* For high-dimension data
—PDF expensive to calculate

—Use Generative Al techniques to estimate PDF

Hassanaly M, Perry BA, Mueller ME, Yellapantula S. Uniform-in-phase-
space data selection with iterative normalizing flows. Data-Centric
Engineering. 2023

E—

—4.0 —-3.5 -3.0
logig Probability of Sampling

Original Dataset
e Sampled Dataset

0 2

4
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Setting up the asynchronous, workflow

| en
Output

Simulate

Intelligent Sampler
* Polls database for new datasets
* Performs statistical comparison to

Trainer
e Check for new training data

* Whenever new data is available, do
a training step

Mock Simulation
* Store 16 data points per “timestep”

e Stage in database :
accept/reject new samples

" oent us.mg Smart'Redls e Stores downsampled data in
e Stored in SmartSim database database

* Delete original data



Hands-on Portion of Workshop

https://github.com/CrayLabs/smartsim workshops/tree/nersc olcf 2024

Objectives:

* Create a workflow with multiple components based on data-availability
 |nstrument a C++/Fortran code with SmartRedis

 Use SmartSim’s integration with pyTorch dataloaders

: | 28


https://github.com/CrayLabs/smartsim_workshops/tree/nersc_olcf_2024

Questions?

Andrew.Shao@hpe.com

For more information about SmartSim: https://craylabs.org

j-o
SMaT L
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