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Outline of this Workshop

Hands on: Building a complex workflow to train a neural network online

Hands on: Building simple SmartSim applications

ML-around-the-loop: Applications in Molecular Dynamics and CFD

ML-in-the-loop: Applications in Climate Modeling and CFD

Introduction: Why combine AI and scientific simulation?
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Why HPC and AI instead of HPC VS. AI?

• Can AI replace numerical-based approaches?
• Short answer: no, still limited by data

• Benefits of AI models
• Can be run more quickly than traditional numerical 

models
• Simpler to run, does not need complicated software 

infrastructure and HPC resources
• Downsides of AI models

• How do you add add process complexity?
• Extrapolation beyond training dataset?

• Challenges to combining HPC&AI
• Numerical: How can you characterize the stability 

and accuracy of an ML model in that context
• Technical:

– How do you connect Fortran/C/C++ codebases to ML 
packages?

– How do you appropriately balance high-value/cost GPU 
resources in predominantly CPU-based code?
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Archetypes of machine learning

• Supervised learning:

• Inputs and known outputs, derive a relationship

• Linear regression falls under supervised learning

• Artificial neural network:

–Linear and non-linear transformations

–Challenge: Many free parameters requires data to 
over-constrain the problem

• Reinforcement learning

• Train model to take actions within a given ruleset 
based on predefined reward function

• Unsupervised Learning (not discussed today)

• Find relationships in unlabeled data

All archetypes rely on data to learn and generalize

Inputs

(Features)

Statistical ModelANN

Outputs

(Predictions)



ML in-the-loop
• Embedding machine-learning predictions within numerical solvers

• On-the-fly analysis and visualization (e.g. principal component analysis via streaming SVD)

ML around-the-loop
• Automatic parameter tuning

• Reinforcement learning using the simulation as a testing environment
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Combining AI/ML with Scientific Simulation

Physics
Simulation

ML in-the-loop:
Inference every 
time step &
training online 
with model 
updates

ML on-the-loop:
Inference  and 
training every 
1k-10k time 
steps

ML around-
the-loop:
Inference or 
training after  
simulation

ML outside-the-loop:
Intelligent sampling

Edge AI:
Cross-facility,
event triggered, 
data-driven



The standard way of running simulations

Typical Numerical Workflows
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Input data
• Set of initial conditions

• File representing geometry

• Hard-coded values

Monolithic 
Application
• HPC native

• Parallel C/C++/Fortran

• Contains all needed logic

• Outputs to filesystem

Postprocessing
• Stored on filesystem

• Visualized or analyzed

Characteristics

• Workflow has defined, serial dependencies

• Representable with pipeline or directed acyclic 
graph

Leading question

• Can this rigid structure accommodate the scale and 
desired applications of numerical simulations?
• How do we couple inputs/outputs across multiple 

applications?

• What happens when the data becomes too big to 
output?

• How do you define non-unrollable loops or branches?



The new scientific tool: Workflows

• Paradigm shift: The simulation is one 
component of a larger application
• Simulation requires inputs from other 

components during execution
• Outputs from simulation needed by other 

components

• Traditional pipeline?
• Requires branching logic, difficult to 

coordinate
• Return to file-based signalling
• Data passed through stages must be 

stored

• SmartSim’s role
• Provide a central location to share data
• Allow scientists to define components of 

workflow
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HPC Parallel 
Application

• Runs simulation

• Requests 
inference  on data

Model 
Training

ML 
Inference

• Executes model and 
returns result to 
application

• Selects model to 
use

Visualization

and Analysis
• Renders in real 
time

• Requests in-situ 
post-processing

• Adds information 
to workflow

• Accesses data 
produced by 
application and trains 
model

• Trains in parallel

• Trains multiple 
models and selects 
best one

New AI-Enhanced Numerical Workflows
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About SMARTSIM

SmartSim is an open-source 
library
• bridging the divide between 

traditional numerical simulation and 
data science

• providing a loose-coupling 
philosophy for combining HPC & AI

SmartSim allows scientists to create complex workflows, with 
simulations and machine learning producing, exchanging, and 
consuming data
• Call Machine Learning (ML) inference in existing Fortran/C/C++ simulations

• Exchange data between C, C++, Fortran, and Python applications

• Train ML models online and make predictions using TensorFlow, PyTorch, and ONNX

• Analyze data streamed from HPC applications while they are running

All of these can be done without touching the filesystem

SmartRedis 
Client API

AI Models AI Models

Data Sources Code / Scripts

Native C/C++/Fortran 
simulation 

Feature Store (Orchestrator)

SmartRedis 
Client API

Analysis and 
Visualization

PYTORCH  |   TENSORFLOW   |   ONNX

Interactive or 
Automated 



ML-in-the-loop: Scientific 
Applications
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Physics
Simulation

ML in-the-loop:
Inference every 
time step &
training online 
with model 
updates

ML on-the-loop:
Inference  and 
training every 
1k-10k time 
steps

ML around-
the-loop:
Inference or 
training after  
simulation

ML outside-the-loop:
Intelligent sampling

Edge AI:
Cross-facility,
event triggered, 
data-driven



10

Turbulence modelling in ocean models

In-Memory Feature Store 
Orchestrator

EKEResnetShard 1

Shard 2

Shard 16

MOM6 Ensemble

.

.

.

Step 1
Send features from 

MOM6 to the 
database

Fortran 
client

Rank 910

.
Fortran 
client

Rank 1

.

...

Fortran 
client

Rank 910

.
Fortran 
client

Rank 1

.

...

Fortran 
client

Rank 910

.
Fortran 
client

Rank 1

.

...

Step 2
Run the machine 

learning model in the 
database

Problem 1:
• Eddy kinetic energy computed via a prognostic 

equation (Jansen et al., 2015)
• EKE equation has terms which are tunable 

and/or have errors which may be first-order 
Problem 2
• Ocean turbulence energizes large-scale flow
• Coarse simulations overly diffusive

Step 3
Retrieve the 

inference results in 
MOM6

Proposed ML-based solution
• Train an ML model to estimate EKE
• Train an ML model from high-res data to add 

energy (increase velocities) to the system
• Embed predictions in simulation



• Simulation accuracy improves 
with AI-based 
parameterizations

• Scales well with ensembles or 
large individual simulation

• Parameterizations add 10-
20% cost when run on GPU

• Online accuracy of neural 
network better than offline

• May form the basis of 
science-oriented 
MLCommons benchmark 
[Brewer and von Laszewski]

Online AI improves simulation accuracy
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Surface relative vorticity from ¼-degree MOM6 
with AI turbulence model

[Frontier 2023]

AI-based Eddy Kinetic Energy

[Partee et al., 2022]



Integrating SmartSim with OpenFOAM

• SmartSim Team and OpenFOAM Data-Driven 
Modeling Special Interest Group
• Paper: 

Combining machine learning with computational 
fluid dynamics using OpenFOAM and SmartSim 
Maric et al. [2024]

• Examples with OpenFOAM
• Online training/inference for moving mesh

–Train on boundary displacements

–Predict on interior parts of the mesh

• Use SmartSim to perform streaming calculations
–PCA using distributed, partitioned SVD

–Use cases: Data decimation, physical understanding
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https://link.springer.com/article/10.1007/s11012-024-01797-z
https://link.springer.com/article/10.1007/s11012-024-01797-z


• Typical offline training
• Relies on post-hoc simulation output

• Data reduction (aliasing time/space)

• Expensive to store

• MFIX-Exa Application
• Parameter study (ensemble of 33 simulations)

• Multi-phase, particle/fluid-based simulation

• ~50TB of compressed data

• Online training solution
• Stream timestep data from every ensemble member

• Intelligent sampling to train on “interesting” data 

• Train ML model on data

Note: Toy version for hands-on portion of workshop

Gel, Musser, Fullmer, and Shao [2024] as part of a ASCR Leadership Computing Challenge project

Training surrogate models of subgrid-scale physics online
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ML-around-the-loop: Scientific 
Applications
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Physics
Simulation

ML in-the-loop:
Inference every 
time step &
training online 
with model 
updates

ML on-the-loop:
Inference  and 
training every 
1k-10k time 
steps

ML around-
the-loop:
Inference or 
training after  
simulation

ML outside-the-loop:
Intelligent sampling

Edge AI:
Cross-facility,
event triggered, 
data-driven



• Goal: predict the folded configuration of a protein starting from its atomic structure
• The original paper: DeepDriveMD: Deep-Learning Driven Adaptive Molecular Simulations for Protein 

Folding

• Problems:
• Protein folding happens in discrete steps driven by energy minimization, but with random fluctuations

• How can one efficiently explore the space of all possible shapes of the protein [conformation]?
–Most trajectories will end up in suboptimal states

–Trajectories far apart may collapse on the same one after a sufficiently large number of steps

• Solution:
• Run short simulations, store steps and predict possible conformations

• Cluster discovered conformations

• Explore less sampled regions

Molecular Dynamics with DeepDriveMD
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https://arxiv.org/pdf/1909.07817.pdf
https://arxiv.org/pdf/1909.07817.pdf
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DeepDriveMD Data flow

ML Training

ML Training

ML Training

Outlier 
Detection

MD Simulation

MD Simulation

MD Simulation

Each simulation 
discovers and uploads 
configurations 
independently

Each training 
process waits for 
new configurations 
to train a new 
generative model

Checkpoint
s

Configurations

Generative Model

The outlier detection app 
waits for new trajectories and 
uses the best generative 
model for inference

MD simulations wait 
for new checkpoints 
or use initial 
configuration

Outliers and best configurations are 
selected as new starting iterations

Data 
prod
Data dep



Active flow control through deep Reinforcement learning

• Goal: Reduce Turbulent Separation Bubble 
formation

• Method: Deep Reinforcement Learning with small 
NN
• Reward based on recirculation length of turbulent 

bubble
– Aim: minimize recirculation area

• Environment: 72 points for the NN to “observe”

• Action: NN can control actuators upwind of bubble
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Scientific advancement with Simulation and AI

• A new paradigm is emerging for computational science: Workflows
• A scientific simulation is only a part of a larger, more complex workflow
• AI may be a component of the workflow
• These workflows are difficult to describe as a directed acyclic graph (loops, conditionals)

• Most scientists can pickup ML fairly quickly
• ML for science can be simpler than most “splashy” AI (e.g. LLMs, generative AI)
• Speedbumps:

– Overcoming technical challenges for connecting simulation/AI
– Expressing the workflow

• AI+Simulation is open for innovation and experimentation
• Even “simple” applications provide new opportunities for scientific discovery

• SmartSim team is open to collaboration
• Thanks to all our existing collaborators at MLCommons, OpenFOAM, NCAR, GFDL, National Energy Technology 

Laboratory, Argonne National Lab, Oak Ridge National Lab, M2Lines, NEMO, and the MOM6 communites
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Learning more about SmartSim

• To get more information about SmartSim you can

• Read the documentation: 
https://craylabs.org

• Star SmartSim Repository: 
https://github.com/CrayLabs/SmartSim

• Star SmartRedis Repository: 
https://github.com/CrayLabs/SmartRedis

• SmartSim Slack workspace: 
https://join.slack.com/t/craylabs/shared_in
vite/zt-2pvvwwjjq-
_f~gGxYcJVUxfoD7t5Dkfw
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https://github.com/CrayLabs/SmartSim
https://github.com/CrayLabs/SmartRedis


SmartSim: Hands-on introduction
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• Using SmartSim
• User writes a driver script in python

• Add SmartRedis codes to simulation code

• SmartSim Driver
• Create components of the workflow

–Model (e.g. simulation)

–RunSettings (e.g. how to run)

–Database

• Create run directories

• Launches components

import argparse

import pathlib

from smartsim import Experiment

# Define the top-level SmartSim object

exp = Experiment("hello_world", launcher=”slurm")

# Define the settings to run a perroquet with

perroquet_run_settings = exp.create_run_settings(

    exe="echo",

    exe_args=["Hello", "World!"],

    run_command="mpirun"

)

perroquet_run_settings.set_tasks(1)

# Create a SmartSim representative of a numerical model

perroquet = exp.create_model(

    "hello_world",

    perroquet_run_settings,

)

exp.start(perroquet, block=True, summary=True)

SmartSim Basics
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Fortran Application Example

use smartredis_client, only : client_type

! Format the suffix for a key as a zero-padded version of the rank

write(key_suffix, "(A,I1.1)") "_",pe_id

! Initialize a client

result = client%initialize("smartredis_mnist")

! Set up model and script for the computation

if (pe_id == 0) then

    result = client%set_model_from_file(model_key, model_file, "TORCH", "CPU")

    result = client%set_script_from_file(script_key, "CPU", script_file)

endif

result = client%put_tensor(in_key, array, shape(array))

! Prepare the script inputs and outputs

inputs(1) = in_key

outputs(1) = script_out_key

result = client%run_script(script_name, "pre_process", inputs, outputs)

inputs(1) = script_out_key

outputs(1) = out_key

result = client%run_model(model_name, inputs, outputs)

result = client%unpack_tensor(out_key, output_result, shape(output_result))
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C++ Application Example

#include "client.h"

// Get our rank

int rank = 0; 

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

std::string logger_name("Client ");

logger_name += std::to_string(rank);

// Initialize a SmartRedis client

SmartRedis::Client client(logger_name);

// Put the tensor in the database

std::string key = "3d_tensor_" + std::to_string(rank);

client.put_tensor(key, input_tensor.data(), dims,

 SRTensorTypeDouble,  
 SRMemLayoutContiguous);

// Retrieve the tensor from the database using the 
unpack feature.

std::vector<double> unpack_tensor(n_values, 0);

client.unpack_tensor(key, unpack_tensor.data(), 
{n_values},

 SRTensorTypeDouble,

 SRMemLayoutContiguous);

 // Retrieve the tensor from the database using the get 
feature.

    SRTensorType get_type;

    std::vector<size_t> get_dims;

    void* get_tensor;

    client.get_tensor(key, get_tensor, get_dims, 
get_type, SRMemLayoutNested);
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SmartSim: Building a workflow for online 
training

\
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• Numerical surrogates need 
timestep-level data
• Can lead to large data volumes

• Generally want to map a function-
space to another function space
• Oversampling a portion of the sample 

space biases model

• Questions:
• How do you store this amount of data?

• How do you train on this amount of 
data?

• Solution:
• Sample the data in an ‘intelligent’ way

• Train surrogate in a streaming manner

Why online training?

Disk
Store Load

Simulate Train

Traditional Pipeline

Simulate

DatabaseStage Sample

Train

Step 1 Step 2 Step 3

Streaming Asynchronous Workflow
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• Problem: AI susceptible to sampling bias
• With most PDEs, no part of the solution space 

is more “valid”
• Naïve training of AI models leads to

–Fixating on the well-sampled parts of the domain
– Ignoring the outliers

• Solution: Intelligently sample the data to 
promote uniform sampling
• For low-dimension data

–Calculate PDF of data
–Use inverse of PDF as a sampling “chance”

• For high-dimension data
–PDF expensive to calculate
–Use Generative AI techniques to estimate PDF

Hassanaly M, Perry BA, Mueller ME, Yellapantula S. Uniform-in-phase-
space data selection with iterative normalizing flows. Data-Centric 
Engineering. 2023

Intelligent sampling for point-by-point predictions
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Setting up the asynchronous, workflow

Mock Simulation

• Store 16 data points per “timestep”

• Stage in database

• Sent using SmartRedis

• Stored in SmartSim database

Intelligent Sampler

• Polls database for new datasets

• Performs statistical comparison to 
accept/reject new samples

• Stores downsampled data in 
database

• Delete original data

Trainer

• Check for new training data

• Whenever new data is available, do 
a training step

Simulate

DatabaseStage Sample

Train



https://github.com/CrayLabs/smartsim_workshops/tree/nersc_olcf_2024

Objectives:
• Create a workflow with multiple components based on data-availability 
• Instrument a C++/Fortran code with SmartRedis
• Use SmartSim’s integration with pyTorch dataloaders

Hands-on Portion of Workshop
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For more information about SmartSim: https://craylabs.org

Questions?

mailto:Andrew.Shao@hpe.com
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