
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Accelerating OpenFOAM on Frontier GPUs for
Fusion Multiphysics Simulations

Arpan Sircar
R&D Associate Staff
Nuclear Energy and Fuel Cycle Division

September 11, 2024

2

Background and Significance

• Target: integrated simulation of
fusion blankets for faster design
analyses

• How: accurate high-fidelity
computational tools
– FERMI (ARPAe award for

engineering multiphysics)
– FREDA (SciDAC award to

coupled plasma physics and
engineering modules)

– INCITE award for exascale
simulations

• This work: focus on acceleration
of the fluid simulations

The ARC-class fusion device is a tokamak fusion design
from Commonwealth Fusion Systems (CFS)

3

FERMI: Fusion
Energy Reactor
Models Integrator
Multiphysics simulations for
engineering analysis of fusion
blankets

• Coupled simulations for multiphysics phenomena

• Scalable procedures for advanced high
performance computing architectures

• Optimization, parameterization, validation &
verification, predictions and informed design

4

Coupled neutronics and CFD simulations are performed

Heat deposition from neutronics is transferred to the
CFD domain and mapped onto the CFD grid

Reduced
order CHT
simulations of
full vacuum
vessel

5

Sensitivity of simulations to turbulence models

6

Conjugate heat transfer
analysis of 3D ARC vacuum
vessel and blanket

Heat deposition
from neutronics
on the solid
components

Mesh shows solid
components. Contours
show continuity of
temperature through
fluid-solid interfaces

7

Need for exascale simulations

• As we add more physics, computational time increases.

• Exploration of design space, parametric studies, optimization of design require ensemble simulations.

• OpenFOAM simulations are time consuming – each simulation can take days (up to a week).

• Fusion blankets require more physics such as MHD which is poorly understood.

• For quick time to solution, GPU acceleration is investigated – however, OpenFOAM solvers are native
to CPUs. One approach is to use other linear solvers such as PETSc and leverage architecture agnostic
models such as Kokkos.

88

Quick introduction to PETSc

• Exascale HPC is moving towards millions of cores with
high-density cores

• PETSc includes a large suite of parallel linear, nonlinear
equation solvers and ODE integrators that are easily used in
application codes written in C, C++, Fortran and Python

• Offers simple parallel matrix and vector assembly routines
that allow the overlap of communication and computation
with support for MPI, GPU (through CUDA or OpenCL)
and hybrid MPI-GPU

• PETSc modules includes – index sets, vectors, matrices,
Krylov subspace methods, preconditioners, multigrid
solvers, block solvers and sparse direct solvers

99

petsc4FOAM framework
• Execution flow of OpenFOAM is unchanged except for the solving part – the final lduMatrix in

OpenFOAM (obtained from discretization) is converted to a PETSc csrMatrix.
Matrix conversion introduces about 2% overhead but allows no intrusion of the OpenFOAM source code

• The csrMatrix is operated on by PETSc Krylov Subspace solvers and a preconditioner object

• The PETSc4FOAM library is decoupled from the OpenFOAM build

PETSc4FOAM
library structure

Changes in OpenFOAM
input file fvSolution

1010

PETSc options in fvSolution

1111

AMGx solvers can be used for Nvidia GPUs

Scaling of OpenFOAM for full 3D ARC simulations using CFD+MHD on Summit.
Wall clock time per time step on 1 node with 18M cells = 3.03 s
Wall clock time per time step on 1 node with 44M cells: CPUs only = 14.48s &
CPUs+GPUs = 3.3s

12

petscKokkos4Foam – developed in the INCITE project
(https://code.ornl.gov/2as/petsckokkos4foam)

Step 1: Build OpenFOAM from source using Frontier's MPICH libraries
(note: you will need this to run OpenFOAM on Frontier CPUs as well).

Step 2: Install PETSc with Kokkos and HIP – PETSc needs to be
configured with the appropriate gfx90a accelerators of Frontier

Step 3: Install petsc4Foam

Step 4: Build the petsc-kokkos interface to OpenFOAM

Step 5: Run simulations by calling the mataijkokkos libraries from PETSc
and use Hypre preconditioning

1313

Changes in OpenFOAM configuration

• Building the different libraries does not interfere with the OpenFOAM installation,
in fact, its modular nature allows easy update when new versions are released

• Running OpenFOAM requires no changes in the pre or post processing or even the
case setup besides for changes in the solver selection files listed below

• system/fvSolution will need to be changed to enable the AmgX solver path
▪ Add in the options, caching selections, tolerances and maxIterations for AmgX

• For each linear solver that is being accelerated with AmgX a corresponding
configuration file is necessary as system/amgx<system>Options
▪ <system> takes on the linear system being solved, for e.g., p for pressure, Ux

for first velocity component, Uy for second velocity component and so on
▪ Solver details, preconditioner details, convergence and iterations criterion

14

Debugging tools

Particularly useful when setting up existing code for GPU acceleration to identify
where there might be issues.

Valgrind – Tool for debugging memory leaks

• Checks for memory leaks
• Checks for invalid memory access – In our case, was particularly useful to identify

CPU-GPU communications.

Rocgdb – AMD source level debugger for linux which enables debugging on ROCm

• Identifies architecture dependent issues – Informed us of need to explicitly pass
the GTL to use at run-time.

• Mismatch in libraries used by different codes can be tracked – Guided choice of
some library versions (amd-mixed, cpe) we needed.

15

Profiling tools

rocProf – https://github.com/ROCm/rocprofiler

• Allows timing different function calls in the code
• Can be used to estimate the time spent by CPU and GPU in

computation and memory transfer
• Useful to assess latencies

Simple kernel timer (Kokkos) –
https://github.com/kokkos/kokkos-tools/wiki/SimpleKernelTimer

• Gives details of kernel calls by Kokkos
• Useful for identifying time taken by GPU kernel calls

Goals of profiling: -

• Increase compute time spent on GPUs
• Ensure proper domain decomposition to leverage high GPU throughput

https://github.com/ROCm/rocprofiler
https://github.com/kokkos/kokkos-tools/wiki/SimpleKernelTimer

16

Scaling of OpenFOAM on Frontier for fusion blanket simulations

17

MHD effects can be
investigated in
reasonable time frames No

MHD
With MHD

Approximations:-

• Uniform magnetic
field of 5 T

• Toroidal direction
(into plane of paper)

• Constant FLiBe
electrical conductivity
of 400 S/m

18

Next steps

Improving performance on GPUs

• Hypre preconditioners can not use GPU aware MPI for multi-node simulations yet.
• Further profiling analyses to identify bottlenecks of simulation performance.

Enhancing physical understanding of MHD effects

• Ensemble simulations to test sensitivity of flow parameters (Re, Ha, Pr, Gr) on MHD.
• Generate data sets to train AI/ML models for turbulent MHD simulations.

Inclusion of additional physical effects

• Work underway to couple with neutronics (Shift) on GPUs
• Plans to also include structural mechanics to enable full FERMI suite running on Frontier

Explore large-scale data handling

• Investigate parallel meshing and post-processing
• Interface with the IRI program

1919

THANK YOU

