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The Promise of Quantum Computers Q IONQ

Quantum computers have the potential to
solve difficult chemistry problems
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The QC-AFQMC Algorithm

Quantum-Classical
Carlg

Q) IONQ

Auxiliary-Field Quantum Monte Carlo
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The QC-AFQMC Algorithm Q) IONQ
Quantum-Classical Auxiliary-Field Quantum Monte Carlo

Prepare the quantum state Number of Measurement on Quantum Computers

1
p= 5(\0> + [V7)) (0] + (¥ VNlog(N)/e?
Overlaps become expectation values
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Cost of Classical Post-Processing

Evaluation of Overlaps (need for every time O(N 4.5 )
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Randomized Measurement for measurement

Nature 2021, 603, 416-420
Commun. Math. Phys. 2023, 629-700
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Algorithmic Improvements Q IONQ

The Post-Processing Bottleneck

Overlap between the trial state and a determinant <\If | gbp>
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Algorithmic Improvements

The Post-Processing Bottleneck

Improvements using finite difference: (Tong et al)

Force bias is a first order derivative of overlaps
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Evaluating with finite difference
Force Bias : O(N°?®)
Local Energy : O(N°>®)

Phys. Rev. Research 7,012038, 2024
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Algorithmic Improvements Q IONQ

The Post-Processing Bottleneck

Improvements using algorithmic differentiation: (This work) Evaluating with algorithmic

Force bias differentiation
e 5.5 45
GPE(A(A))  PEA(R)) _,0A Force Bias : O(N°°)->0(N*~)
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arXiv:2506.224081v1, 2025
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Algorithmic Improvements Q IONQ

Comparison of Algorithms

Algorithm Overlap Force Bias Local Energy Bottleneck GPU?
Huggins et al (2022) 0(eM) o(eM) 0(eM) Matrix Product No

* a theory paper was published later by the Google team to address the exponential scaling, which is used on all later studies, including ours
Huang et al (2024), first O(N*®) O(N”) O(N&?) Matrix Pfaffian No

implementation of matchgate
post-processing

Tong et al (2024), numerical O(N*®) O(N>9) O(N>?®) Matrix Pfaffian No
differentiation

Our work (2025), analytical O(N*®) O(N*9) O(N>?®) Matrix Product Yes
differentiation + GPUs

Nature 2021, 603, 416-420

Phys. Rev. Research 6,043063, 2024
Phys. Rev. Research 7,012038, 2024
arXiv:2506.224081v1, 2025
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Algorithmic Improvements

Q) IONQ

Quantum-Classical Auxiliary-Field Quantum Monte Carlo
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Algorithmic Improvements Q IONQ

Quantum-Classical Auxiliary-Field Quantum Monte Carlo

compute . Prepare trial wave
hardware Calculate active functions and evolve evolve
space (DFT, HF, ...) ST & el walkers walkers
Amazon Braket AWS ParallelCluster
lonQ Forte-1 Nvidia H200 Tensor Core
e Trial stgte preparation GPU
e 24 qubits e Post processing for 3
e 59,000 shots per molecules
molecule e 40 P5eninstances (8

GPUs per instance)
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Algorithmic Improvements

The Virtual Correlation Energy

11
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Allows one to incorporate dynamic correlation
outside of the active space
Minimum computational overhead

Q) IONQ
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arXiv:2506.224081v1, 2025
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Experiments Q IONQ

The Suzuki-Miyaura Reaction

130 orbitals in total , 16 qubits in active space

o —e— This work
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arXiv:2506.224081v1, 2025
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Experiments Q IONQ

Results on QPU and Simulators

Percentage of Correlation Energy Captured Reaction barrier
B Reactant [l Transition State Product Method B — [B-CJ C — [B-CJ*
125.00%
hardware captures close to DFT? 214 71
& 100% correlation energy
§ 100.00% RHF 71.4 85.3
¢ CCSD(T) 53.3 454
>
S 75.00%
& VQE/upCCD 75.1 80.5
S
B 50.00% only active space, ph-AFQMC® 62(4) 76(5)
o .
o slow, and inaccurate
& QC-AFQMC (Ideal simulator)  57(4) 44(4)
&  25.00%
g A/ QC-AFQMC (Forte QPU) 43(3) 55(3)
&
0.00% . . . . .
QC-AFQMC Ideal Simulator QC-AFQMC lonQ Forte VQE Free energies in solution [SMD (1,4-Dioxane)] evaluated with

MO06/Def2-TZVPP//wB97xD/Def2-TZVP(Ni)/Def2-SVP(non-metal).[47]
b Using a single RHF Slater determinant as a trial state.

arXiv:2506.224081v1, 2025
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Experiments Q IONQ

Results on QPU and Simulators

Percentage of Correlation Energy Captured Reaction barrier
B Reactant [l Transition State Product Method B — [B-C]* C — [B-C]*
125.00% DFT underestimate the | p— -~ -
= barrier ' ‘
[=]
§ 100.00% RHF 77.4 85.3
¢ CCSD(T) 53.3 454
>
o
o 75.00%
g ’ VQE/upCCD 75.1 80.5
S
T 50.00% ph-AFQMC® 62(4) 76(5)
8
o QC-AFQMC (Ideal simulator)  57(4) 44(4)
&  25.00%
g QC-AFQMC (Forte QPU) 43(3) 55(3)
&
0.00% QC-AFQMC Ideal Simulator QC-AFQMC lonQ Forte VQE 2 Free energies in solution [SMD (1,4-Dioxane)] evaluated with

MO06/Def2-TZVPP//wB97xD/Def2-TZVP(Ni)/Def2-SVP(non-metal).[47]
b Using a single RHF Slater determinant as a trial state.

arXiv:2506.224081v1, 2025
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Experiments

Results on QPU and Simulators

Percentage of Correlation Energy Captured

Percentage of Correlation Energy v.s. CCSD(T)

15

125.00%

100.00%

75.00%

50.00%

25.00%

0.00%

B Reactant [l Transition State Product

QC-AFQMC Ideal Simulator QC-AFQMC lonQ Forte

VQE

Reaction barrier

CCSD(T) gets rid of the
underestimation

Q

Method B — [B-C] C — [B-CJ*
DFT® 214 7.1
RHF 774 85.3

| cCsD(T) 533 454
VQE/upCCD 75.1 80.5
ph-AFQMCP 62(4) 76(5)
QC-AFQMC (Ideal simulator) ~ 57(4) 44(4)
QC-AFQMC (Forte QPU) 43(3) 55(3)

2 Free energies in solution [SMD (1,4-Dioxane)] evaluated with

MO06/Def2-TZVPP//wB97xD/Def2-TZVP(Ni)/Def2-SVP(non-metal).[47]

b Using a single RHF Slater determinant as a trial state.

IONQ

arXiv:2506.224081v1, 2025
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Experiments (“! IONQ

Results on QPU and Simulators

Percentage of Correlation Energy Captured Reaction barrier
B Reactant [l Transition State Product Method B — [B-C]* C — [B-C]*
125.00%
DFT® 21.4 4
=
% 100.00% | RHF 71.4 853 |
g CCSD(T) 53.3 45.4
>
& 500% RHF and VQE |V —— —p ~ I
= . .
I overestimates the barrier QE/up : :
o
T 5000% | ph-AFQMC® 62(4) 76(5) |
3
2 QC-AFQMC (Ideal simulator) ~ 57(4) 44(4)
&  25.00%
g QC-AFQMC (Forte QPU) 433) 55(3)
&
0.00% QC-AFQMC Ideal Simulator QC-AFQMC lonQ Forte VQE 2 Free energies in solution [SMD (1,4-Dioxane)] evaluated with

MO06/Def2-TZVPP//wB97xD/Def2-TZVP(Ni)/Def2-SVP(non-metal).[47]
® Using a single RHF Slater determinant as a trial state.

arXiv:2506.224081v1, 2025
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Experiments

Results on QPU and Simulators

Percentage of Correlation Energy Captured

Percentage of Correlation Energy v.s. CCSD(T)
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B Reactant [l Transition State Product

QC-AFQMC Ideal Simulator QC-AFQMC lonQ Forte

VQE

Reaction barrier

Q

QC-AFQMC on ideal
simulator closes agree with
CCSD(T), but some errors
occur on hardware

“ F'ree energies 1n si

Method B — [B-C]* C — [B-CJ
DFT? 21.4 7.1
RHF 714 85.3
CCSD(T) 53.3 454
VQE/upCCD 75.1 80.5
ph-AFQMC® 62(4) 76(5)
QC-AFQMC (Ideal simulator)  57(4) 44(4)
QC-AFQMC (Forte QPU) 43(3) 55(3)

olution [SMD (1,4-Dioxane)] evaluated with

MO06/Def2-TZVPP//wB97xD/Def2-TZVP(Ni)/Def2-SVP(non-metal).[47]
b Using a single RHF Slater determinant as a trial state.

IONQ

arXiv:2506.224081v1, 2025
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Conclusions Q IONQ

Conclusions

What are the advantages of QC-AFQMC and future research directions?

Efficient quantum and classical processing Leverage QPU + CPU + GPU
Improved algorithmic improvements in this work QC-AFQMC is a perfect method for QPU + CPU +
made the method more practical and becomes GPU hybrid computing
comparable to classical counterparts

Noise resilient and efficient o ,  Cantreat large systems

Compared with VQE, QC-AFQMC is much more with the aid of virtual correlation energy,

noise resilient and efficient (no feedback loops . QC-AFQMC is able to capture correlations inside
between the QPU and CPU) and outside the active space

"\ Error Mitigation needed

@ To deliver chemical accuracy, one still needs to apply

error mitigation techniques

18 Copyright © 2025 lonQ, Inc. All Rights Reserved.



Acknowledgement

Acknowledgements

) IONG

5

Joshua J. Goings

Evgeny Epifanovsky

Martin Roetteler

19

AstraZeneca

Anders Broo

<3

NVIDIA.

Jeff Hammond

Elica Kyoseva

Tim Chen

Eric Kessler

Q) IONQ

Michael Brett

Tyler Y. Takeshita

and many others!

Copyright © 2025 lonQ, Inc. All Rights Reserved.



