
Profiling guide – Novice

level

Alessandro Fanfarillo

2 |

Introduction

• Main material taken from blog post: https://rocm.blogs.amd.com/software-tools-optimization/profiling-

guide/novice/README.html

• Assumptions for “Novice” level:

1. The app leverages a GPU for computation, and you understand the basic purpose of each GPU kernel in your code

2. You recognize that moving data between the CPU and GPU has a cost, even if terms like “latency-bound” or

“memory-bound” are unfamiliar

• Expected outcome of this training talk:

• Learn how to measure where your application spends time on the GPU, including kernel execution and data transfers

• Discover how to pinpoint basic performance limitations (e.g., poor GPU occupancy, high memory traffic)

• Begin exploring why performance may differ across GPU architectures, even when specifications seem similar

https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html

3 |

The code

• 2D Shallow-water solver, finite-difference for spatial derivatives, RK4 for time stepping

• Single precision

• Accuracy checks

• Performance metric returned at the end

• Designed as a playground, not real application

Initial performance:

Domain: 512x512, steps=500, dt=0.0728643

Elapsed: 0.154 s | Throughput (including RK4 stages): 3409.97 MCUPS

Mass: initial=2.626466547e+05, final=2.626464585e+05, rel.err=7.471e-07

Min(h) after run: 0.981776

4 |

First step: rocprofv3

rocprofv3 --kernel-trace --stats -S -T -d outdir -o shallow -- ./shallow

| NAME | DOMAIN | CALLS | DURATION (nsec) | AVERAGE (nsec) | PERCENT (INC) | MIN (nsec) | MAX (nsec) | STDDEV |

|--|-----------------|-----------------|-----------------|-----------------|---------------|-----------------|-----------------|-----------------|

| compute_rhs | KERNEL_DISPATCH | 2000 | 26948810 | 1.347e+04 | 33.591140 | 12480 | 15200 | 3.689e+02 |

| update_stage | KERNEL_DISPATCH | 1500 | 21177442 | 1.412e+04 | 26.397248 | 13120 | 16000 | 4.198e+02 |

| apply_reflect_bc | KERNEL_DISPATCH | 2001 | 17278248 | 8.635e+03 | 21.536983 | 7520 | 11680 | 4.578e+02 |

| final_update | KERNEL_DISPATCH | 500 | 14813126 | 2.963e+04 | 18.464258 | 28640 | 32000 | 5.007e+02 |

| init_gaussian | KERNEL_DISPATCH | 1 | 8320 | 8.320e+03 | 0.010371 | 8320 | 8320 | 0.000e+00 |

From this step, we learn where time gets spent, and kernel names. Now let’s see how busy the CUs are:

rocprofv3 --pmc OccupancyPercent -T -d outdir -o shallow -- ./shallow

1,1,1,1,3069691,3069691,262144,5,"init_gaussian",256,0,0,12,4,32,"OccupancyPercent",46.601604,1011230466808020,1011230466816020

2,2,1,1,3069691,3069691,512,4,"apply_reflect_bc",256,0,0,24,0,32,"OccupancyPercent",1.32989986e-01,1011230466910098,1011230466919058

3,3,1,1,3069691,3069691,512,4,"apply_reflect_bc",256,0,0,24,0,32,"OccupancyPercent",1.19206811e-01,1011230483265617,1011230483277457

4,4,1,1,3069691,3069691,262144,3,"compute_rhs",256,0,0,32,0,32,"OccupancyPercent",51.798800,1011230483422097,1011230483436977

5,5,1,1,3069691,3069691,262144,2,"update_stage",256,0,0,16,0,32,"OccupancyPercent",50.337635,1011230483568977,1011230483584337

6,6,1,1,3069691,3069691,512,4,"apply_reflect_bc",256,0,0,24,0,32,"OccupancyPercent",1.38614879e-01,1011230483711377,1011230483721297

5 |

First roofline of compute_rhs

Compute_rhs has some compute but it is still memory

bound

The distance from roofline communicates a series of

possible things:

1. Inefficient memory accesses

2. Insufficient parallelism to hide latency

The low occupancy and the roofline strongly suggest

that there is not enough parallelism to hide the latency

costs of accessing memory

Let’s try to increase the domain size

From 512x512 to 2048x2048

6 |

Check Occupancy after domain size increase

1,1,1,1,3072041,3072041,4194304,5,"init_gaussian",256,0,0,12,4,32,"OccupancyPercent",62.256694,1011333016314232,1011333016402392

2,2,1,1,3072041,3072041,2048,3,"apply_reflect_bc",256,0,0,32,0,32,"OccupancyPercent",5.61374392e-01,1011333016467032,1011333016477912

3,3,1,1,3072041,3072041,2048,3,"apply_reflect_bc",256,0,0,32,0,32,"OccupancyPercent",4.95447153e-01,1011333044785613,1011333044800653

4,4,1,1,3072041,3072041,4194304,4,"compute_rhs",256,0,0,32,0,32,"OccupancyPercent",87.123946,1011333044846093,1011333045024333

5,5,1,1,3072041,3072041,4194304,2,"update_stage",256,0,0,16,0,32,"OccupancyPercent",91.281051,1011333045067053,1011333045257454

6,6,1,1,3072041,3072041,2048,3,"apply_reflect_bc",256,0,0,32,0,32,"OccupancyPercent",5.47154444e-01,1011333045296014,1011333045306894

7,7,1,1,3072041,3072041,4194304,4,"compute_rhs",256,0,0,32,0,32,"OccupancyPercent",86.724880,1011333045351214,1011333045527854

By increasing the domain size, we provide enough work to hide the latency from memory access

Domain: 2048x2048, steps=500, dt=0.0728643

Elapsed: 0.965 s | Throughput (including RK4 stages): 8695.79 MCUPS

Mass: initial=4.194806655e+06, final=4.194806458e+06, rel.err=4.678e-08

Min(h) after run: 0.981776

Increased from 3049 to 8696 MCUPS – 2.85x faster

7 |

Roofline before and after domain size increase

Before After

8 |

Check hiptrace from rocprofv3

For an application developer, it is very helpful to visually see the host runtime API activity and all device activities on a timeline trace

rocprofv3 --kernel-trace --hip-trace --output-format pftrace -d outdir -o shallow -- ./shallow

These gaps after kernels are due to the presence of hipDeviceSynchronize() and they add up to the global runtime

Because we are only working on a single stream, the kernels’ executions are already sequentially executed

We can completely remove the hipDeviceSynchronize() after each kernel launch

This change improves the overall performance without impacting correctness

New performance:

Domain: 2048x2048, steps=500, dt=0.0728643

Elapsed: 0.887 s | Throughput (including RK4 stages): 9452.20 MCUPS

Mass: initial=4.194806655e+06, final=4.194806458e+06, rel.err=4.678e-08

Min(h) after run: 0.981776

From 8696 to 9452 MCUPS – 1.09x faster

9 |

Check roofline after removing hipDeviceSynchronize()

Before After

No change. Next step is to optimize the code. Let’s look at more metrics

10 |

Check VALUBusy and new performance

1,1,1,1,818317,818317,4194304,5,"init_gaussian",256,0,0,12,4,32,"VALUBusy",37.622438,1606927748825612,1606927748894892

2,2,1,1,818317,818317,2048,4,"apply_reflect_bc",256,0,0,32,0,32,"VALUBusy",6.43171047e-02,1606927748956652,1606927748968012

3,3,1,1,818317,818317,2048,4,"apply_reflect_bc",256,0,0,32,0,32,"VALUBusy",4.93171973e-02,1606927776662430,1606927776676990

4,4,1,1,818317,818317,4194304,3,"compute_rhs",256,0,0,32,0,32,"VALUBusy",54.070862,1606927776708350,1606927776884831

5,5,1,1,818317,818317,4194304,2,"update_stage",256,0,0,16,0,32,"VALUBusy",7.308252,1606927776918751,1606927777110431

6,6,1,1,818317,818317,2048,4,"apply_reflect_bc",256,0,0,32,0,32,"VALUBusy",6.62305718e-02,1606927777143871,1606927777154591

VALUBusy measures the percentage of GPUTime vector ALU instructions are processed (ideally close to 100%)

One way of potentially improving the performance of a stencil kernel is to use a large thread block (better caching, etc.)

Use tiles of 32x32 instead of 16x16. New performance:

Domain: 2048x2048, steps=500, dt=0.0728643

Elapsed: 0.735 s | Throughput (including RK4 stages): 11417.18 MCUPS

Mass: initial=4.194806655e+06, final=4.194806458e+06, rel.err=4.678e-08

Min(h) after run: 0.981776

From 9452 to 11417 MCUPS – 1.21x faster

11 |

Check roofline block size from 16x16 to 32x32

Before After

12 |

Check VALUBusy after optimization

1,1,1,1,820965,820965,4194304,5,"init_gaussian",1024,0,0,12,4,32,"VALUBusy",51.151937,1615275137641414,1615275137692294

2,2,1,1,820965,820965,2048,4,"apply_reflect_bc",256,0,0,32,0,32,"VALUBusy",6.51420313e-02,1615275137760134,1615275137771174

3,3,1,1,820965,820965,2048,4,"apply_reflect_bc",256,0,0,32,0,32,"VALUBusy",4.95911257e-02,1615275165596957,1615275165611677

4,4,1,1,820965,820965,4194304,3,"compute_rhs",1024,0,0,32,0,32,"VALUBusy",70.718763,1615275165640957,1615275165775997

5,5,1,1,820965,820965,4194304,1,"update_stage",1024,0,0,16,0,32,"VALUBusy",8.445584,1615275165810397,1615275165975997

VALUBusy increased to 71% from 50% by just setting a larger tile size

Can we do better? Reading long, consecutive, memory segments has the potential to bring the most benefits.

L1 cache hit is particularly important, using a rectangular grid instead of square improves the overall performance

Using a block size of 64x4:

Domain: 2048x2048, steps=500, dt=0.0728643

Elapsed: 0.654 s | Throughput (including RK4 stages): 12829.58 MCUPS

Mass: initial=4.194806655e+06, final=4.194806458e+06, rel.err=4.678e-08

Min(h) after run: 0.981776

From 11417 to 12830 MCUPS – 1.12x faster

13 |

Check roofline block size from 32x32 to 64x4

Before After

14 |

Conclusions

• Final speedup: 3.76x

• Profiling is an iterative process

• Profiling tools, no matter how powerful, do not tell the whole story

• A combination of tools and intuition is needed to build solid understanding

• How to optimize a HIP kernel to achieve a certain goal (e.g., improve occupancy) remains complicated

• Knowing the GPU architecture helps a lot in understanding the most successful optimizations

• AI can help with intelligent suggestions and code changes to try out

15 |

DISCLAIMERS AND ATTRIBUTIONS

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this
document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other
products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to
the purchase or use of AMD’s products are as set forth in a signed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18​

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND

ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY

DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT

WILL AMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE

USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2026 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon, Instinct, ROCm, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this

publication are for identification purposes only and may be trademarks of their respective companies.

	Slide 1: Profiling guide – Novice level
	Slide 2: Introduction
	Slide 3: The code
	Slide 4: First step: rocprofv3
	Slide 5: First roofline of compute_rhs
	Slide 6: Check Occupancy after domain size increase
	Slide 7: Roofline before and after domain size increase
	Slide 8: Check hiptrace from rocprofv3
	Slide 9: Check roofline after removing hipDeviceSynchronize()
	Slide 10: Check VALUBusy and new performance
	Slide 11: Check roofline block size from 16x16 to 32x32
	Slide 12: Check VALUBusy after optimization
	Slide 13: Check roofline block size from 32x32 to 64x4
	Slide 14: Conclusions
	Slide 15: DISCLAIMERS AND ATTRIBUTIONS
	Slide 16

