Profiling guide — Novice
level

Alessandro Fanfarillo

AMD 1

together we advance_

Introduction

- Main material taken from blog post:

- Assumptions for “Novice” level:

1. The app leverages a GPU for computation, and you understand the basic purpose of each GPU kernel in your code
2. You recognize that moving data between the CPU and GPU has a cost, even if terms like “latency-bound” or

“memory-bound” are unfamiliar

- Expected outcome of this training talk:
Learn how to measure where your application spends time on the GPU, including kernel execution and data transfers
Discover how to pinpoint basic performance limitations (e.g., poor GPU occupancy, high memory traffic)

- Begin exploring why performance may differ across GPU architectures, even when specifications seem similar

AMDZ1

together we advance_

https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html
https://rocm.blogs.amd.com/software-tools-optimization/profiling-guide/novice/README.html

The code

2D Shallow-water solver, finite-difference for spatial derivatives, RK4 for time stepping

Single precision

Accuracy checks

Performance metric returned at the end

Designed as a playground, not real application

Initial performance:

Domain: 512x512, steps=500, dt=0.0728643

Elapsed: 0.154 s | Throughput (including RK4 stages): 3409.97 MCUPS
Mass: initial=2.626466547e+05, final=2.626464585e+05, rel.err=7.471e-07
Min(h) after run: 0.981776

AMDZ1

together we advance_

First step: rocprofv3

rocprofv3 --kernel-trace --stats -S -T -d outdir -o shallow -- ./shallow

| NAME | DOMAIN | CALLS |DURATION (nsec)| AVERAGE (nsec) | PERCENT (INC)| MIN (nsec) | MAX (nsec) | STDDEV
| | | | | | | | | |

| compute_rhs | KERNEL_DISPATCH | 2000| 26948810| 1.347e+04| 33.591140 | 12480 | 15200 3.689e+02 |

| update_stage | KERNEL_DISPATCH | 1500 21177442 1.412e+04| 26.397248 | 13120 | 16000 | 4.198e+02 |

| apply_reflect_bc | KERNEL_DISPATCH | 2001| 17278248| 8.635e+03| 21.536983 | 7520 | 11680 | 4.578e+02 |

| final_update | KERNEL_DISPATCH | 500| 14813126 2.963e+04 | 18.464258 | 28640 | 32000| 5.007e+02 |

| init_gaussian | KERNEL_DISPATCH | 1] 8320| 8.320e+03| 0.010371| 8320 | 8320| 0.000e+00 |

From this step, we learn where time gets spent, and kernel names. Now let’s see how busy the CUs are:

rocprofv3 --pmc OccupancyPercent -T -d outdir -o shallow -- ./shallow
1,1,1,1,3069691,3069691,262144,5,"init_gaussian",256,0,0,12,4,32,"OccupancyPercent",46.601604,1011230466808020,1011230466816020
2,2,1,1,3069691,3069691,512,4,"apply_reflect_bc",256,0,0,24,0,32,"OccupancyPercent",1.32989986e-01,1011230466910098,1011230466919058
3,3,1,1,3069691,3069691,512,4,"apply_reflect_bc",256,0,0,24,0,32,"OccupancyPercent",1.19206811e-01,1011230483265617,1011230483277457
4,4,1,1,3069691,3069691,262144,3,"compute_rhs",256,0,0,32,0,32,"OccupancyPercent",51.798800,1011230483422097,1011230483436977
5,5,1,1,3069691,3069691,262144,2,"update_stage",256,0,0,16,0,32,"OccupancyPercent",50.337635,1011230483568977,1011230483584337

6,6,1,1,3069691,3069691,512,4,"apply_reflect_bc",256,0,0,24,0,32,"OccupancyPercent",1.38614879e-01,1011230483711377,1011230483721297

AMDZ1

together we advance_

First roofline of compute rhs

5 42138 GFLOP/s

AW

21685 GFLOP/s

Performance (GFLOP/sec)
=
(@)
o
(=]

0.01 0.1 1 10 100
Arithmetic Intensity (FLOPs/Byte)

1000

——— HBM-FP32

= | 2-FP32

= |1-FP32

——— LDS-FP32
Peak VALU-FP32
Peak MFMA-FP32
FP32_ai_l1
FP32_ai_l2
FP32_ai_hbm

Compute_rhs has some compute but it is still memory

bound

The distance from roofline communicates a series of

possible things:
1. Inefficient memory accesses

2. Insufficient parallelism to hide latency

The low occupancy and the roofline strongly suggest
that there is not enough parallelism to hide the latency

costs of accessing memory
Let’s try to increase the domain size

From 512x512 to 2048x2048

AMDZ1

together we advance_

Check Occupancy after domain size increase

1,1,1,1,3072041,3072041,4194304,5,"init_gaussian",256,0,0,12,4,32,"OccupancyPercent",62.256694,1011333016314232,1011333016402392
2,2,1,1,3072041,3072041,2048,3,"apply_reflect_bc",256,0,0,32,0,32,"OccupancyPercent",5.61374392e-01,1011333016467032,1011333016477912
3,3,1,1,3072041,3072041,2048,3,"apply_reflect_bc",256,0,0,32,0,32,"OccupancyPercent",4.95447153e-01,1011333044785613,1011333044800653
4,4,1,1,3072041,3072041,4194304,4,"compute_rhs",256,0,0,32,0,32,"OccupancyPercent",87.123946,1011333044846093,1011333045024333
5,5,1,1,3072041,3072041,4194304,2,"update_stage",256,0,0,16,0,32,"OccupancyPercent",91.281051,1011333045067053,10113330452574 54
6,6,1,1,3072041,3072041,2048,3,"apply_reflect_bc",256,0,0,32,0,32,"OccupancyPercent",5.47154444e-01,1011333045296014,1011333045306894

7,7,1,1,3072041,3072041,4194304,4,"compute_rhs",256,0,0,32,0,32,"OccupancyPercent",86.724880,1011333045351214,1011333045527854
By increasing the domain size, we provide enough work to hide the latency from memory access

Domain: 2048x2048, steps=500, dt=0.0728643

Elapsed: 0.965 s | Throughput (including RK4 stages): 8695.79 MCUPS

Mass: initial=4.194806655e+06, final=4.194806458e+06, rel.err=4.67/8e-08

Min(h) after run: 0.981776

Increased from 3049 to 8696 MCUPS — 2.85x faster

AMDZ1

together we advance_

Performance (GFLOP/sec)

Roofline before and after domain size increase

0.01

Before

i

0.1 1 10
Arithmetic Intensity (FLOPs/Byte)

100

42138 GFLOP/s = HBM-FP32

21685 GFLOP/s LEZFREZ
— | 1-FP32
—— | DS-FP32

Peak VALU-FP32
=== Peak MFMA-FP32
e FP32 aill
FP32_ai_l2
FP32_ai_hbm

1000

Performance (GFLOP/sec)

After

LA

42140 GFLOP/s

21685 GFLOP/s

0.01

0.1 i 10
Arithmetic Intensity (FLOPs/Byte)

100 1000

AMDZ1

together we advance_

Check hiptrace from rocprofv3

For an application developer, it is very helpful to visually see the host runtime API activity and all device activities on a timeline trace

rocprofv3 --kernel-trace --hip-trace --output-format pftrace -d outdir -o shallow -- ./shallow

These gaps after kernels are due to the presence of hipDeviceSynchronize() and they add up to the global runtime

Because we are only working on a single stream, the kernels’ executions are already sequentially executed
We can completely remove the hipDeviceSynchronize() after each kernel launch

This change improves the overall performance without impacting correctness
New performance:

Domain: 2048x2048, steps=500, dt=0.0728643

Elapsed: 0.887 s | Throughput (including RK4 stages): 9452.20 MCUPS
Mass: initial=4.194806655e+06, final=4.194806458e+06, rel.err=4.678e-08
Min(h) after run: 0.981776

From 8696 to 9452 MCUPS — 1.09x faster
AMDZ\

together we advance_

Performance (GFLOP/sec)

Check roofline after removing hipDeviceSynchronize()

Before After
5 42140 GFLOP/s 5 42140 GFLOP/s — HBM-FP32
/// / 21685 GFLOP/s /// / SR —— 2-FP32
2 2 —— L1-FP32
—— LDS-FP32
— 1ok Peak VALU-FP32
5 S 5 Peak MFMA-FP32
g FP32_ai Il
2 S 2 FP32_ai_I2
= FP32_ai_hbm
1000 © 1000
(O]
5 = 5
@©
S
2) 2
o
100 % 100
5 5
2 2
10 10
0.01 0.1 i 10 100 1000 0.01 0.1 1 10 100 1000
Arithmetic Intensity (FLOPs/Byte) Arithmetic Intensity (FLOPs/Byte)
No change. Next step is to optimize the code. Let’s look at more metrics
AMDZ1

together we advance_

Check VALUBusy and new performance

1,1,1,1,818317,818317,4194304,5,"init_gaussian",256,0,0,12,4,32,"VALUBusy",37.622438,1606927748825612,1606927748894892
2,2,1,1,818317,818317,2048,4,"apply_reflect_bc",256,0,0,32,0,32,"VALUBuUsy",6.43171047e-02,1606927748956652,1606927748968012
3,3,1,1,818317,818317,2048,4,"apply_reflect_bc",256,0,0,32,0,32,"VALUBusY",4.93171973e-02,1606927776662430,1606927776676990
4,4,1,1,818317,818317,4194304,3,"compute_rhs",256,0,0,32,0,32,"VALUBusy",54.070862,1606927776708350,1606927776884831
5,5,1,1,818317,818317,4194304,2,"update_stage",256,0,0,16,0,32,"VALUBusy",7.308252,1606927776918751,1606927777110431

6,6,1,1,818317,818317,2048,4,"apply_reflect_bc",256,0,0,32,0,32,"VALUBuUsY",6.62305718e-02,1606927777143871,1606927777154591
VALUBusy measures the percentage of GPUTime vector ALU instructions are processed (ideally close to 100%)

One way of potentially improving the performance of a stencil kernel is to use a large thread block (better caching, etc.)
Use tiles of 32x32 instead of 16x16. New performance:

Domain: 2048x2048, steps=500, dt=0.0728643

Elapsed: 0.735 s | Throughput (including RK4 stages): 11417.18 MCUPS

Mass: initial=4.194806655e+06, final=4.194806458e+06, rel.err=4.678e-08

Min(h) after run: 0.981776

From 9452 to 11417 MCUPS — 1.21x faster

AMDZ1

together we advance_

Performance (GFLOP/sec)

Check roofline block size from 16x16 to 32x32

Before
5 S—) 42140 GFLOP/s —— HBM-FP32 5
/ // / 21682 GFLOP/s L2-FESE
2 —— L1-FP32 2
. — LDS-FP32

19 Peak VALU-FP32 10k
5 ' - Peak MFMA-FP32 —~ 5

)

e FP32.aill Q

i 12 o
5 FP32_ai_ S 5

FP32_ai_hbm =
1000 O 1000

(O]
5 o 5

©

e

-
2 8 2

-

(O]
100 & 100
5 5
2 2
10 10

0.01 0.1 1 10 100

Arithmetic Intensity (FLOPs/Byte)

1000 0.01

0.1 i
Arithmetic Intensity (FLOPs/Byte)

After

42137 GFLOP/s

AW

21686 GFLOP/s

10 100 1000

AMDZ1

together we advance_

Check VALUBusy after optimization

1,1,1,1,820965,820965,4194304,5,"init_gaussian“,1024,0,0,12,4,32,"VALUBusy",51.151937,1615275137641414,1615275137692294
2,2,1,1,820965,820965,2048,4,"apply_reflect_bc",256,0,0,32,0,32,"VALUBusy",6.51420313e-02,1615275137760134,1615275137771174
3,3,1,1,820965,820965,2048,4,"apply_reflect_bc",256,0,0,32,0,32,"VALUBusy",4.95911257e-02,1615275165596957,1615275165611677
4,4,1,1,820965,820965,4194304,3,"compute_rhs",1024,0,0,32,0,32,"VALUBusy",70.718763,1615275165640957,1615275165775997

5,5,1,1,820965,820965,4194304,1,"update_stage",1024,0,0,16,0,32,"VALUBusy",8.445584,1615275165810397,1615275165975997

VALUBusYy increased to 71% from 50% by just setting a larger tile size

Can we do better? Reading long, consecutive, memory segments has the potential to bring the most benefits.

L1 cache hit is particularly important, using a rectangular grid instead of square improves the overall performance
Using a block size of 64x4-:

Domain: 2048x2048, steps=500, dt=0.0728643

Elapsed: 0.654 s | Throughput (including RK4 stages): 12829.58 MCUPS

Mass: initial=4.194806655e+06, final=4.194806458e+06, rel.err=4.678e-08

Min(h) after run: 0.981776

From 11417 to 12830 MCUPS — 1.12x faster

AMDZ1

together we advance_

Check roofline block size from 32x32 to 64x4

10k

YT 5
O]
QL
(o

@) 2
|
Ll

9O 1000
Q

o 5
©
€
T

8 2
(O]

R T

5

2

10

0.01

0.1
Arithmetic Intensity (FLOPs/Byte)

Before

42137 GFLOP/s

ALTAA

1 10 100

21686 GFLOP/s

1000

Performance (GFLOP/sec)

0.01

After

AW

42152 GFLOP/s

0.1 1) 10 100
Arithmetic Intensity (FLOPs/Byte)

——— HBM-FP32

| 2-FP32

= L1-FP32

——— LDS-FP32
Peak VALU-FP32

=== Peak MFMA-FP32

e FP32_ai_ll

FP32_ai_I2
FP32_ai_hbm

21695 GFLOP/s

1000

AMDZ1

together we advance_

Conclusions

* Final speedup: 3.76x

* Profiling is an iterative process

« Profiling tools, no matter how powerful, do not tell the whole story

« A combination of tools and intuition is needed to build solid understanding

- How to optimize a HIP kernel to achieve a certain goal (e.g., improve occupancy) remains complicated
« Knowing the GPU architecture helps a lot in understanding the most successful optimizations

* Al can help with intelligent suggestions and code changes to try out

AMDZ1

together we advance_

DISCLAIMERS AND ATTRIBUTIONS

The information contained herein is for informational purposes only and is subject to change without notice. While every precaution has been taken in the preparation of this
document, it may contain technical inaccuracies, omissions and typographical errors, and AMD is under no obligation to update or otherwise correct this information. Advanced
Micro Devices, Inc. makes no representations or warranties with respect to the accuracy or completeness of the contents of this document, and assumes no liability of any kind,
including the implied warranties of noninfringement, merchantability or fitness for particular purposes, with respect to the operation or use of AMD hardware, software or other
products described herein. No license, including implied or arising by estoppel, to any intellectual property rights is granted by this document. Terms and limitations applicable to
the purchase or use of AMD’s products are as set forth in a sighed agreement between the parties or in AMD's Standard Terms and Conditions of Sale. GD-18

THIS INFORMATION IS PROVIDED ‘AS 1S.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND
ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY
DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT
WILLAMD BE LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE
USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2026 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow logo, Radeon, Instinct, ROCm, and combinations thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this
publication are for identification purposes only and may be trademarks of their respective companies.

AMDZ1

together we advance_

	Slide 1: Profiling guide – Novice level
	Slide 2: Introduction
	Slide 3: The code
	Slide 4: First step: rocprofv3
	Slide 5: First roofline of compute_rhs
	Slide 6: Check Occupancy after domain size increase
	Slide 7: Roofline before and after domain size increase
	Slide 8: Check hiptrace from rocprofv3
	Slide 9: Check roofline after removing hipDeviceSynchronize()
	Slide 10: Check VALUBusy and new performance
	Slide 11: Check roofline block size from 16x16 to 32x32
	Slide 12: Check VALUBusy after optimization
	Slide 13: Check roofline block size from 32x32 to 64x4
	Slide 14: Conclusions
	Slide 15: DISCLAIMERS AND ATTRIBUTIONS
	Slide 16

