
Porting Applications to HIP

Presenter: Maria Ruiz Varela, AMD



2 |

[Public]

Acknowledgements

Suyash Tandon

Justin Chang

Julio Maia

Noel Chalmers

Paul T. Bauman

Nicholas Curtis

Nicholas Malaya

Alessandro Fanfarillo

Jose Noudohouenou

Chip Freitag

Damon McDougall

Noah Wolfe

Jakub Kurzak

Samuel Antao

George Markomanolis

Bob Robey

Maria Ruiz Varela

August 28th, 2023 HIP Lecture Series



3 |

[Public]

Agenda
1. Porting applications to the HIP API

2. Code Conversion Tools

3. Portable HIP Build System

4. Other porting paths

5. Hipify example – Pennant mini-app

6. Questions



Porting applications to the HIP API

August 28th, 2023 HIP Lecture Series



5 |

[Public]

HIP Lecture Series



6 |

[Public]

What is HIP?

AMD’s Heterogeneous-compute Interface for 

Portability, or HIP, is a C++ runtime API and kernel 

language that allows developers to create portable 

applications that can run on AMD’s accelerators as well 

as CUDA devices

HIP:

• Is open-source

• Provides an API for an application to leverage GPU 

acceleration for both AMD and CUDA devices

• Syntactically similar to CUDA. Most CUDA API calls 

can be converted in place: cuda -> hip

• Supports a strong subset of CUDA runtime 

functionality

Portable HIP C++ (Host & Device Code)

#include “cuda.h”
#include 

“hip_runtime.h”

nvcc hipcc

Nvidia GPU AMD GPU

Aug 14, 2023 HIP Lecture Series



Code Conversion Tools

August 28th, 2023 HIP Lecture Series



Code Conversion 
Tools

EXTEND YOUR APPLICATION 
PLATFORM SUPPORT BY 

CONVERTING CUDA® CODE 

Single source

Maintain portability

Maintain performance

Hipify-perl
◢ Easiest to use; point at a directory and it will hipify CUDA code

◢ Very simple string replacement technique; may require manual post-
processing

◢ It replaces cuda with hip, sed -e ‘s/cuda/hip/g’, (e.g., cudaMemcpy 
becomes hipMemcpy)

◢ Recommended for quick scans of projects

◢ It will not translate if it does not recognize a CUDA call and it 
will report it

◢ Does not check for correctness

Hipify-clang
◢ More robust translation of the code

◢ Checks for correctness

◢ Checks all files during translation

◢ Generates warnings and assistance for additional analysis

◢ High quality translation, particularly for cases where the user is 
familiar with the make system

August 28th, 2023 HIP Lecture Series



9 |

[Public]

Hipify tools

Individual file tools

• hipify-perl

• hipify-clang

Recursive directory tools

• hipconvertinplace.sh

• hipconvertinplace-perl.sh

• hipexamine.sh

• hipexamine-perl.sh

The perl® scripts are a set and the shell/clang tools are a set. The directory-based tools basically call the 

base tools, hipify-perl and hipify-clang, respectively

August 28th, 2023 HIP Lecture Series



10 |

[Public]

Hipify-perl

• It is located in $HIP/bin/ (export PATH=$PATH:[MYHIP]/bin)

• Command line tool: hipify-perl foo.cu > new_foo.cpp

• Compile: hipcc new_foo.cpp

• How does this this work in practice? 

• Hipify source code

• Check it in to your favorite version control

• Try to build

• Manually work on the rest

August 28th, 2023 HIP Lecture Series



11 |

[Public]

Hipify-clang

• Build from source

• hipify-clang has unit tests using LLVM™ lit/FileCheck (44 tests)

• Hipification requires same headers that would be needed to compile it with clang:

• ./hipify-clang foo.cu -I /usr/local/cuda-8.0/samples/common/inc

• https://github.com/ROCm-Developer-Tools/HIPIFY/blob/master/README.md

August 28th, 2023 HIP Lecture Series

https://github.com/ROCm-Developer-Tools/HIPIFY/blob/master/README.md


12 |

[Public]

Recursive directory-based tools
hipifyexamine.sh and hipifyexamine-perl.sh

• hipifyexamine-perl.sh recursively runs hipify-perl with the -no-output -print-stats options (-examine option is a 

shorthand for -no-output -print-stats options).

hipifyconvertinplace.sh and hipifyconvertinplace-perl.sh

• hipifyexamine-perl.sh recursively runs hipify-perl with the -inplace -print-stats options.

Let’s show the convert script to understand what they do. 

August 28th, 2023 HIP Lecture Series



13 |

[Public]

August 28th, 2023 HIP Lecture Series

Source code for hipconvertinplace-perl.sh

Calls the findcode.sh script which recursively looks for files with the extensions seen below.



14 |

[Public]

Gotchas

• Hipify tools are not running your application, or checking correctness

• Code relying on specific Nvidia hardware aspects (e.g., warp size == 32) may need attention after 

conversion

• Certain functions may not have a correspondent hip version (e.g., __shfl_down_sync – hint: use 

__shfl_down instead)

• Hipifying can’t handle inline PTX assembly

• Can either use inline GCN ISA, or convert it to HIP

• Hipify-perl and hipify-clang can both convert library calls

• None of the tools convert your build system script such as CMAKE or whatever else you use. The user is 

responsible to find the appropriate flags and paths to build the new converted HIP code.

August 28th, 2023 HIP Lecture Series



15 |

[Public]

What to look for when porting:

• Inline PTX assembly

• CUDA Intrinsics

• Hardcoded dependencies on warp size, or shared memory size

• Grep for "32" just in case

• Do not hardcode the warpsize! Rely on warpSize device definition, #define WARPSIZE size, or props.warpSize from 

host

• Code geared toward limiting size of register file on NVIDIA hardware

• Unsupported functions

August 28th, 2023 HIP Lecture Series



16 |

[Public]

Portable HIP Build 

System

1. Portable Makefiles

2. Portable Cmake

3. Library Equivalents

4. Specifying HIP Target

5. Identifying Compiler

6. Compiling for Host or Device

7. Compiler Defines



17 |

[Public]

Exploiting the Power of HIP: Portable Build Systems

• One of the attractive features of HIP is that it can run on both AMD and Nvidia GPUs

• The HIP language has been developed with this in mind

• Select ROCm and it will run on AMD GPUs

• Select CUDA and it will run on Nvidia GPUs

• But it can be difficult to support this without a portable build system that switches between these two

• We’ll demonstrate two of the most common build systems that can support portable builds

• make

• cmake

• There have been changes with each ROCm version which may require some adjustments

Aug 28, 2023 HIP Lecture Series



18 |

[Public]

Portable Build Systems -- Makefile
EXECUTABLE = ./vectoradd

all: $(EXECUTABLE) test

.PHONY: test

OBJECTS = vectoradd.o

CXXFLAGS = -g -O2 –DNDEBUG -fPIC

HIPCC_FLAGS = -O2 -g –DNDEBUG

HIP_PLATFORM ?= amd

HIP_PATH ?= $(shell hipconfig --path)

ifeq ($(HIP_PLATFORM), nvidia)

   HIPCC_FLAGS += -x cu -I${HIP_PATH}/include/

   LDFLAGS = -lcudadevrt -lcudart_static -lrt -lpthread –ldl

endif

ifeq ($(HIP_PLATFORM), amd)

   HIPCC_FLAGS += -x hip -munsafe-fp-atomics

   LDFLAGS = -L${ROCM_PATH}/hip/lib -lamdhip64

endif

%.o: %.hip

 hipcc $(HIPCC_FLAGS) -c $^ -o $@

$(EXECUTABLE): $(OBJECTS)

 hipcc $< $(LDFLAGS) -o $@

test: $(EXECUTABLE)

 $(EXECUTABLE)

clean:

 rm -f $(EXECUTABLE)  $(OBJECTS) build

Setting default device compiler

Pattern rule for HIP source

Setting compile flags for different GPUs

Aug 28, 2023 HIP Lecture Series



19 |

[Public]

Using a portable Makefile

• For ROCm
module load rocm

module load cmake

export CXX=${ROCM_PATH}/llvm/bin/clang++

• To build and run
make vectoradd

./srun

• For CUDA
module load rocm

module load cuda

module load cmake

• To build and run
HIP_PLATFORM=nvidia make vectoradd

./srun

Overriding default to compile with Nvidia

We still need HIP for the portability layer

Aug 28, 2023 HIP Lecture Series



20 |

[Public]

For Frontier

• For AMD programming environment
module load PrgEnv-amd

module load amd

module load cmake

export CXX=${ROCM_PATH}/llvm/bin/clang++

• To build and run
make vectoradd

srun ./vectoradd

• For Cray programming environment
• module load PrgEnv-cray

• module load amd-mixed

• module load cmake

• To build and run
• CXX=CC CRAY_CPU_TARGET=x86-64 make vectoradd

• srun ./vectoradd

Aug 28, 2023 HIP Lecture Series



21 |

[Public]

For Perlmutter

• For Perlmutter

module load PrgEnv-gnu/8.3.3

Module load hip/5.4.3

module load PrgEnv-nvidia/8.3.3

module load cmake

• To build and run

HIP_PLATFORM=nvidia make vectoradd

srun ./vectoradd

Overriding default to compile with Nvidia

We still need HIP for the portability layer

Aug 28, 2023 HIP Lecture Series



22 |

[Public]

Portable Build Systems – CMakeLists.text
cmake_minimum_required(VERSION 3.21 FATAL_ERROR)
project(Vectoradd LANGUAGES CXX)

set (CMAKE_CXX_STANDARD 14)
if (NOT CMAKE_BUILD_TYPE)
   set(CMAKE_BUILD_TYPE RelWithDebInfo)
endif(NOT CMAKE_BUILD_TYPE)

string(REPLACE -O2 -O3 CMAKE_CXX_FLAGS_RELWITHDEBINFO ${CMAKE_CXX_FLAGS_RELWITHDEBINFO})

if (NOT CMAKE_GPU_RUNTIME)
   set(GPU_RUNTIME "ROCM" CACHE STRING "Switches between ROCM and CUDA")
else (NOT CMAKE_GPU_RUNTIME)
   set(GPU_RUNTIME "${CMAKE_GPU_RUNTIME}" CACHE STRING "Switches between ROCM and CUDA")
endif (NOT CMAKE_GPU_RUNTIME)
# Really should only be ROCM or CUDA, but allowing HIP because it is the currently built-in option
set(GPU_RUNTIMES "ROCM" "CUDA" "HIP")
if(NOT "${GPU_RUNTIME}" IN_LIST GPU_RUNTIMES)
    set(ERROR_MESSAGE "GPU_RUNTIME is set to \"${GPU_RUNTIME}\".\nGPU_RUNTIME must be either HIP, ROCM, or CUDA.")
    message(FATAL_ERROR ${ERROR_MESSAGE})endif()# GPU_RUNTIME for AMD GPUs should really be ROCM, if selecting AMD 
GPUs
# so manually resetting to HIP if ROCM is selected
if (${GPU_RUNTIME} MATCHES "ROCM")
   set(GPU_RUNTIME "HIP")
endif (${GPU_RUNTIME} MATCHES "ROCM")
set_property(CACHE GPU_RUNTIME PROPERTY STRINGS ${GPU_RUNTIMES})

Setting GPU_RUNTIME

Defining GPU_RUNTIME will select 

ROCM or CUDA

(e.g. -DGPU_RUNTIME=ROCM)



23 |

[Public]

Portable Build Systems – CMakeLists.text
enable_language(${GPU_RUNTIME})

set(CMAKE_${GPU_RUNTIME}_EXTENSIONS OFF)

set(CMAKE_${GPU_RUNTIME}_STANDARD_REQUIRED ON)

set(VECTORADD_CXX_SRCS "")

set(VECTORADD_HIP_SRCS vectoradd.hip)

add_executable(vectoradd ${VECTORADD_CXX_SRCS} ${VECTORADD_HIP_SRCS} )

set(ROCMCC_FLAGS "${ROCMCC_FLAGS} -munsafe-fp-atomics")

set(CUDACC_FLAGS "${CUDACC_FLAGS} ")

if (${GPU_RUNTIME} MATCHES "HIP")

   set(HIPCC_FLAGS "${ROCMCC_FLAGS}")

else-if (${GPU_RUNTIME} MATCHES “CUDA")

   set(HIPCC_FLAGS "${CUDACC_FLAGS}")

else (throw and error)

endif

set_source_files_properties(${VECTORADD_HIP_SRCS} PROPERTIES LANGUAGE ${GPU_RUNTIME})

set_source_files_properties(vectoradd.hip PROPERTIES COMPILE_FLAGS ${HIPCC_FLAGS})

install(TARGETS vectoradd)

Enabling either CUDA or HIP(ROCM)

Setting different flags for each GPU type

Setting language type for HIP source files

Setting device compile flags



24 |

[Public]

Using a portable CMakeLists.txt

• For ROCm
module load rocm
module load cmake
export CXX=${ROCM_PATH}/llvm/bin/clang++

• To Build
mkdir build && cd build
cmake ..
make VERBOSE=1
./vectoradd

• For CUDA
module load rocm
module load cuda
module load cmake

• To Build
mkdir build && cd build
cmake –DCMAKE_GPU_RUNTIME=CUDA ..
make VERBOSE=1
./vectoradd

Overrides default GPU runtime to specify CUDA

Aug 28, 2023 HIP Lecture Series



25 |

[Public]

Frontier and Perlmutter

• For Frontier
module load rocm
module load cmake
export CXX=${ROCM_PATH}/llvm/bin/clang++

• To build and run
mkdir build && cd build
cmake ..
make VERBOSE=1
./vectoradd

• For Perlmutter
module load PrgEnv-gnu/8.3.3
Module load hip/5.4.3
module load PrgEnv-nvidia/8.3.3
module load cmake

• To build and run
mkdir build && cd build
cmake –DCMAKE_GPU_RUNTIME=CUDA ..
make VERBOSE=1
./vectoradd

Aug 28, 2023 HIP Lecture Series



26 |

[Public]

HIP build tools

• hipconfig

• hip-clang-cxxflags :  -isystem "/opt/rocm-5.6.0/include" -O3

• hip-clang-ldflags  :  -O3 --hip-link --rtlib=compiler-rt -unwindlib=libgcc

• We can use the output from this command to set compiler options in the regular makefile system

• --hip-link is only for clang++, so we use the more portable -L${ROCM_PATH}/hip/lib -lamdhip64 that will work 

with other compilers

• clang++ -x hip is roughly equivalent to using hipcc

We can also get these variables and use them directly in a Makefile

• CXXFLAGS += $(shell $(HIP_PATH)/bin/hipconfig --cxx_config)

• CPPFLAGS += $(shell $(HIP_PATH)/bin/hipconfig --cpp_config)

• For both make and cmake, the .cu extension can be used as a quick workaround to renaming to .hip

August 28th, 2023 HIP Lecture Series



27 |

[Public]

Important CMake variables

• CMAKE_HIP_ARCHITECTURES

• CMAKE_HIP_ARCHITECTURES=“gfx90a;gfx908”

• GPU_TARGETS=“gfx90a;gfx908”

• CMAKE_CXX_COMPILER:PATH=/opt/rocm/bin/amdclang++

• CMAKE_HIP_COMPILER_ROCM_ROOT:PATH=/opt/rocm-5.6.0 – to help cmake find the cmake config files

• CMAKE_PREFIX_PATH=/opt/rocm-5.6.0

• Specifying HIP language – two possible ways

• project(MyProj LANGUAGES HIP)

• set_source_files_properties(MyLib.cu PROPERTIES LANGUAGE HIP)

• ??? Enable_language(HIP) Available in Cmake 3.21 and newer

• Finding HIP packages and use results

• find_package(rocprim)

• target_link_libraries(MyLib PUBLIC roc::rocprim)

• Using host and device from find_package(hip)

• target_link_libraries(MyLib PRIVATE hip::device)

• target_link_libraries(MyApp PRIVATE hip::host)

August 28th, 2023 HIP Lecture Series



28 |

[Public]

Library Equivalents

August 28th, 2023 HIP Lecture Series

CUDA Library ROCm Library Comment

cuBLAS rocBLAS Basic Linear Algebra Subroutines

cuFFT rocFFT Fast Fourier Transfer Library

cuSPARSE rocSPARSE Sparse BLAS + SPMV

cuSolver rocSOLVER Lapack library

AMG-X rocALUTION
Sparse iterative solvers and preconditioners with 

Geometric and Algebraic MultiGrid

Thrust rocThrust C++ parallel algorithms library

CUB rocPRIM Low Level Optimized Parallel Primitives

cuDNN MIOpen Deep learning Solver Library

cuRAND rocRAND Random Number Generator Library

EIGEN EIGEN – HIP port
C++ template library for linear algebra: matrices, 

vectors, numerical solvers,

NCCL RCCL
Communications Primitives Library based on the 

MPI equivalents



29 |

[Public]

ROCm CMake Packages

August 28th, 2023 HIP Lecture Series

Component Package Targets

HIP hip hip::host, hip::device

rocPRIM rocprim roc::rocprim

rocThrust rocthrust roc::rocthrust

hipCUB hipcub hip::hipcub

rocRAND rocrand roc::rocrand

rocBLAS rocblas roc::rocblas

rocSOLVER rocsolver roc::rocsolver

hipBLAS hipblas roc::hipblas

rocFFT rocfft roc::rocfft

hipFFT hipfft hip::hipfft

rocSPARSE rocsparse roc::rocsparse

hipSPARSE hipsparse roc::hipsparse

rocALUTION rocalution roc::rocalution

RCCL rccl rccl

MIOpen miopen MIOpen

MIGraphX migraphx migraphx::migraphx, migraphx::migraphx_​c, migraphx::migraphx_​cpu, migraphx::migraphx_​gpu, migra

phx::migraphx_​onnx, migraphx::migraphx_​tf



30 |

[Public]

Identifying HIP Target Platform

• All HIP projects target either AMD or NVIDIA platform. The platform affects which headers are included 

and which libraries are used for linking.

• HIP_PLATFORM_AMD is defined if the HIP platform targets AMD. Note, HIP_PLATFORM_HCC was 

previously defined if the HIP platform targeted AMD, it is deprecated.

• HIP_PLATFORM_NVDIA is defined if the HIP platform targets NVIDIA. Note, HIP_PLATFORM_NVCC was 

previously defined if the HIP platform targeted NVIDIA, it is deprecated.

August 28th, 2023 HIP Lecture Series



31 |

[Public]

Identifying the Compiler: hip-clang or nvcc

• Often, it's useful to know whether the underlying compiler is HIP-Clang or nvcc. This knowledge can guard 
platform-specific code or aid in platform-specific performance tuning.

#ifdef __HIP_PLATFORM_AMD__

// Compiled with HIP-Clang

#endif

#ifdef __HIP_PLATFORM_NVIDIA__

// Compiled with nvcc

//  Could be compiling either CUDA file or a host compile

#ifdef __CUDACC__

// Compiled with nvcc (CUDA language extensions enabled)

Compiler directly generates the host code (using the Clang x86 target) and passes the 
code to another host compiler. Thus, they have no equivalent of the __CUDA_ACC define.

August 28th, 2023 HIP Lecture Series



32 |

[Public]

Identifying Current Compilation Pass: Host or Device

• nvcc makes two passes over the code: one for host code and one for device code. HIP-Clang will have 

multiple passes over the code: one for the host code, and one for each architecture on the device code. 

__HIP_DEVICE_COMPILE__ is set to a nonzero value when the compiler (HIP-Clang or nvcc) is compiling 

code for a device inside a __global__ kernel or for a device function. __HIP_DEVICE_COMPILE__ can 

replace #ifdef checks on the __CUDA_ARCH__ define.

// #ifdef __CUDA_ARCH__

#if __HIP_DEVICE_COMPILE__

• Unlike __CUDA_ARCH__, the __HIP_DEVICE_COMPILE__ value is 1 or undefined, and it doesn't 

represent the feature capability of the target device.

August 28th, 2023 HIP Lecture Series



33 |

[Public]

Compiler Defines Define HIP-Clang nvcc
Other (GCC, ICC, Clang, 

etc.)

HIP-related defines:

__HIP_PLATFORM_AMD__ Defined Undefined

Defined if targeting AMD 

platform; undefined 

otherwise

__HIP_PLATFORM_NVIDIA

__
Undefined Defined

Defined if targeting NVIDIA 

platform; undefined 

otherwise

__HIP_DEVICE_COMPILE_

_

1 if compiling for device; 

undefined if compiling for 

host

1 if compiling for device; 

undefined if compiling for 

host

Undefined

__HIPCC__ Defined Defined Undefined

__HIP_ARCH_*
0 or 1 depending on feature 

support (see rocm docs)

0 or 1 depending on feature 

support (see rocm docs)
0

nvcc-related defines:

__CUDACC__

Defined if source code is 

compiled by nvcc; undefined 

otherwise

Undefined

__NVCC__ Undefined Defined Undefined

__CUDA_ARCH__ Undefined

Unsigned representing 

compute capability (e.g., 

"130") if in device code; 0 if 

in host code

Undefined

hip-clang-related defines:

__HIP__ Defined Undefined Undefined

HIP-Clang common defines:

__clang__ Defined Defined Undefined

August 28th, 2023 HIP Lecture Series



Other porting paths

August 28th, 2023 HIP Lecture Series



35 |

[Public]

Fortran

• First Scenario: Fortran + CUDA C/C++

oAssuming there is no CUDA code in the Fortran files.

oHipify CUDA

oCompile and link with hipcc

• Second Scenario: CUDA Fortran

oThere is no hipify equivalent but there is another approach…

oHIP functions are callable from C, using `extern C`

oSee hipfort

HIP Lecture SeriesAugust 28th, 2023



36 |

[Public]

CUDA Fortran -> Fortran + HIP C/C++ 

• There is no HIP equivalent to CUDA Fortran

• But HIP functions are callable from C, using `extern C`, so they can be called directly from Fortran

• The strategy here is:

• Manually port CUDA Fortran code to HIP kernels in C-like syntax

• Wrap the kernel launch in a C function

• Call the C function from Fortran through Fortran’s  ISO_C_binding. It requires Fortran 2008 because of 

the pointers utilization.

• This strategy should be usable by Fortran users since it is standard conforming Fortran

• ROCm has an interface layer, hipFort, which provides the wrapped bindings for use in Fortran

• https://github.com/ROCmSoftwarePlatform/hipfort 

August 28th, 2023 HIP Lecture Series

https://github.com/ROCmSoftwarePlatform/hipfort


37 |

[Public]

Alternatives to HIP

• Can also target AMD GPUs through OpenMP® 5.0 target offload

• ROCm provides OpenMP® support

• AMD OpenMP® compiler (AOMP) could integrate updated improvements regarding OpenMP® offloading performance, 

sometimes experimental stuff to validate before ROCm integration ( https://github.com/ROCm-Developer-Tools/aomp )

• GCC provides OpenMP® offload support.

• GCC will provide OpenACC

• Clacc from ORNL: https://github.com/llvm-doe-org/llvm-project/tree/clacc/main OpenACC from LLVM™ only 

for C (Fortran and C++ in the future)

• Translate OpenACC to OpenMP® Offloading

August 28th, 2023 HIP Lecture Series

https://github.com/ROCm-Developer-Tools/aomp


38 |

[Public]

OpenMP® Offload GPU Support

• ROCm and AOMP
• ROCm supports both HIP and OpenMP®

• AOMP: the AMD OpenMP® research compiler, it is used to prototype the new OpenMP® features for ROCm

• HPE Compilers
• Provides offloading support to AMD GPUs, through OpenMP, HIP, and OpenACC (only for Fortran)

• GNU compilers:
• Provide OpenMP® and OpenACC offloading support for AMD GPUs

• GCC 11: Supports AMD GCN gfx908

• GCC 13: Supports AMD GCN gfx90a 

August 28th, 2023 HIP Lecture Series



39 |

[Public]

Understanding the hardware options

• rocminfo

• 110 CUs

• Wavefront of size 64

• 4 SIMDs per CU 

#pragma omp target teams distribute parallel for simd
Options for pragma omp teams target:

• num_teams(220): Multiple number of workgroups with regards the 

compute units

• thread_limit(256): Threads per workgroup

• Thread limit is multiple of 64 

• Teams*thread_limit should be multiple or a divisor of the trip count of a 

loop

August 28th, 2023 HIP Lecture Series



Hipify example

Pennant mini-app

August 28th, 2023 HIP Lecture Series



41 |

[Public]

What about a real example of converting a CUDA code to HIP

Pennant is a mini-app for unstructured Lagrangian hydrodynamics

Download the Pennant implementation for CUDA

• https://asc.llnl.gov/sites/asc/files/2020-09/pennant-singlenode-cude.tgz 

• tar -xzvf pennant-singlenode-cude.tgz

• cd PENNANT

Use the hipify command for converting a whole directory tree

• ./hipconvertinplace-perl.sh .

• mv src/HydroGPU.cu src/HydroGPU.hip

Additional source modifications 

• most are related to the double2 type (HIP_vector_type <double,2)

• HIP has support for operations on the HIP_vector_type

Changes to the Makefile

• All compiles use the hipcc compiler (not split between device and host)

August 28th, 2023 HIP Lecture Series



42 |

[Public]

Additional source modifications

• Change all occurrences of __CUDACC__ to __HIPCC__ in src/Vec2.hh (double2 definition)

• Comment out all HIP_vector_type operations with an #ifdef __CUDACC__ in src/Vec2.hh

• Comment out atomicMin operation with #ifdef __CUDACC__ in src/HydroGPU.hip

• Move #include <hip/hip_runtime.h> (2 occurrences) in src/HydroGPU.hip into a #ifdef __HIPCC__ block in 

src/Vec2.hh

August 28th, 2023 HIP Lecture Series



43 |

[Public]

Changes to Vec2.hh – double2 type and hip include file

August 28th, 2023 HIP Lecture Series



44 |

[Public]

Additional changes to HydroGPU.hip

August 28th, 2023 HIP Lecture Series



45 |

[Public]

Makefile changes

• Change all CUDAC occurrences to CXX

• Comment out first CXX definition block so second one takes effect

• Comment out the CXXFLAGS := $(CXXFLAGS_OPT) $(CPPFLAGS) line so next line takes effect

• Change nvcc to hipcc

• Change CXXFLAGS to add -std=c++14 --offload-arch=gfx90a

• Change LDFLAGS to –offload-arch=gfx90a instead of CUDA libraries

• Comment out all build rules for .cu files

• We’ll do a more thorough code conversion in the exercises with a portable build system.

August 28th, 2023 HIP Lecture Series



46 |

[Public]

Makefile diffs

August 28th, 2023 HIP Lecture Series



47 |

[Public]

AMD GPU programming resources

• ROCm platform: https://github.com/RadeonOpenCompute/ROCm/

• With instructions for installing from Debian/CentOS/RHEL binary repositories

• Has links to source repositories for all components, including HIP

• HIP porting guide: https://github.com/ROCm-Developer-

Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md

• ROCm/HIP libraries: https://github.com/ROCmSoftwarePlatform

• ROC-profiler: https://github.com/ROCm-Developer-Tools/rocprofiler

• Collects application traces and performance counters

• Trace timeline can be visualized with https://ui.perfetto.dev/ 

• AMD GPU ISA docs and more: https://developer.amd.com/resources/developer-guides-manuals/

Aug 28, 2023 HIP Lecture Series

https://github.com/RadeonOpenCompute/ROCm/
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md
https://github.com/ROCm-Developer-Tools/HIP/blob/master/docs/markdown/hip_porting_guide.md
https://github.com/ROCmSoftwarePlatform
https://github.com/ROCm-Developer-Tools/rocprofiler
https://ui.perfetto.dev/
https://developer.amd.com/resources/developer-guides-manuals/


48 |

[Public]

Summary

• HIP has an extensive API similar to CUDA to enable portability

• Most of the changes are automatic

• The more specialized use of vector types on the GPU required some manual work

• Watch out for #ifdefs. They usually haven’t considered all the cases.

• The makefile required more changes than the source

• This is a simple makefile. More complex build systems may require more work.

August 28th, 2023 HIP Lecture Series



49 |

[Public]

Disclaimer
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, 
and typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, 
including but not limited to product and roadmap changes, component and motherboard version changes, new model and/or product 
releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any 
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated.  AMD assumes no obligation to 
update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes from 
time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE 
CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY 
APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, 
MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR 
ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY 
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

© 2023 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Radeon, CDNA, Instinct, and combinations 
thereof are trademarks of Advanced Micro Devices, Inc. Other product names used in this publication are for identification purposes only and 
may be trademarks of their respective companies.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board.

HPE is a registered trademark of Hewlett Packard Enterprise Company and/or its affiliates.

LLVM is a trademark of LLVM Foundation

Perl is a trademark of Perl Foundation.

August 28th, 2023 HIP Lecture Series



50 |

[Public]

Questions?

August 28th, 2023 HIP Lecture Series




	Default Section
	Slide 1: Porting Applications to HIP
	Slide 2: Acknowledgements

	Code Conversion Tools
	Slide 3: Agenda
	Slide 4: Porting applications to the HIP API
	Slide 5
	Slide 6: What is HIP?
	Slide 7: Code Conversion Tools
	Slide 8: Code Conversion Tools  extend your Application Platform support by Converting CUDA® code   Single source  Maintain portability  Maintain performance
	Slide 9: Hipify tools
	Slide 10: Hipify-perl
	Slide 11: Hipify-clang
	Slide 12: Recursive directory-based tools
	Slide 13
	Slide 14: Gotchas
	Slide 15: What to look for when porting:
	Slide 16: Portable HIP Build System
	Slide 17: Exploiting the Power of HIP: Portable Build Systems
	Slide 18: Portable Build Systems -- Makefile
	Slide 19: Using a portable Makefile
	Slide 20: For Frontier
	Slide 21: For Perlmutter
	Slide 22: Portable Build Systems – CMakeLists.text
	Slide 23: Portable Build Systems – CMakeLists.text
	Slide 24: Using a portable CMakeLists.txt
	Slide 25: Frontier and Perlmutter
	Slide 26: HIP build tools
	Slide 27: Important CMake variables
	Slide 28: Library Equivalents
	Slide 29: ROCm CMake Packages 
	Slide 30: Identifying HIP Target Platform
	Slide 31: Identifying the Compiler: hip-clang or nvcc
	Slide 32: Identifying Current Compilation Pass: Host or Device
	Slide 33: Compiler Defines
	Slide 34: Other porting paths
	Slide 35: Fortran
	Slide 36: CUDA Fortran -> Fortran + HIP C/C++ 
	Slide 37: Alternatives to HIP
	Slide 38: OpenMP® Offload GPU Support
	Slide 39: Understanding the hardware options
	Slide 40: Hipify example Pennant mini-app
	Slide 41: What about a real example of converting a CUDA code to HIP
	Slide 42: Additional source modifications
	Slide 43: Changes to Vec2.hh – double2 type and hip include file
	Slide 44: Additional changes to HydroGPU.hip
	Slide 45: Makefile changes
	Slide 46: Makefile diffs
	Slide 47: AMD GPU programming resources
	Slide 48: Summary
	Slide 49: Disclaimer
	Slide 50: Questions?
	Slide 51


