
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Introduction to OpenMP Offload: Part I

September 29th , 2023

Swaroop Pophale (CSMD), Reuben Budiardja (NCCS), Wael Elwasif (CSMD)
Oak Ridge National Laboratory

2

OpenMP Programming Model

It is an Application Program Interface (API) to allow programmers to
develop threaded parallel codes on shared memory computational units.

• Directives are understood by OpenMP aware compilers (others are free
to ignore)

• Generates parallel threaded code
– Original thread becomes thread “0”
– Share resources of the original thread (or rank)
– Data-sharing attributes of variables can be
 specified based on usage patterns

Reference: Somewhere from the web

3

OpenMP Worksharing

#pragma omp parallel

#pragma omp parallel for

• Creates a team of OpenMP threads that execute the structured-block that
follows

• Number of threads property is generally specified by OMP_NUM_THREADS
env variable or num_threads clause (num_threads has precedence)

All threads will execute the
region

All threads will execute a part of the
iterations

4

Recap: OpenMP Worksharing

Serial

• 1 thread/process will execute
each iteration sequentially

• Total time =
time_for_single_iteration * N

Parallel

• Say, OMP_NUM_THREADS = 4

• 4 threads will execute each
iteration sequentially (overwriting
values of C)

• Total time =
time_for_single_iteration * N

Parallel Worksharing

• Say, OMP_NUM_THREADS = 4

• 4 threads will distribute iteration
space (roughly N/4 per thread)

• Total time =
time_for_single_iteration * N/4

for (int i = 0; i < N; ++i)
{
 C[i] = A[i] + B[i];
}

#pragma omp parallel
for (int i = 0; i < N; ++i)
{
 C[i] = A[i] + B[i];
}

#pragma omp parallel for
for (int i = 0; i < N; ++i)
{
 C[i] = A[i] + B[i];
}

5

Evolution of OpenMP: 1997 – 2022

Adapted from 2021 Exascale Computing Project Virtual Annual Meeting April 12 – 16, 2021

1997 1998 1999 2001 2002 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

In spring, 7
vendors and

the DOE agree
on the spelling
of parallel loops

and form the
OpenMP ARB.

By October,
version 1.0 of
the OpenMP

specification for
Fortran is
released.

1.0

Minor
modifications

1.1

cOMPunity, the
group of

OpenMP users,
is formed to

enable
researcher

participation.an
d organize
workshops

2.0
C/C++ v 1.0.
First hybrid
applications

with MPI* and
OpenMP
appear.

1.0

The merge of
Fortran

and C/C+
specifications

begins.

2.0

Unified Fortran
and C/C++:

Bigger than both
individual

specifications
combined.

2.5

Incorporates
task parallelism.

The OpenMP
memory model
is defined and

codified.

3.0

Support
min/max

reductions in
C/C++.

3.1

Supports offloading
execution to

accelerator and
coprocessor devices,
SIMD parallelism, and

more. Expands
OpenMP beyond

traditional boundaries.

4.0

OpenMP supports
taskloops, task

priorities, doacross
loops, and hints for
locks. Offloading

now supports
asynchronous
execution and

dependencies to
host execution.

4.5

2016 2017 2018

Supports:
Memory
Management
API, Reverse
Offload, Loop
construct,
Detached tasks,
Custom
Mappers,
Tools API

5.0

2019

5.0

2020

loop
transformation
(tiling, ...),
Improved `omp
loop`*, variant
overloading,
runtime variant
selection*,
compiler agnostic
"built-in assume"

5.1

2021

Clarifications
and
deprecations

5.2

2022

TR11 – Preview
of OpenMP 6.0

6

Introduction: OpenMP Offload

• OpenMP offload constructs are a set of directives for C, C++, and Fortran
that were introduced in OpenMP 4.0 and further enhanced in later
versions. Accelerators

Host Memory

………
ACCELERATORS

CPU

HOST

Interconnect

Data and Instructions

Data

7

OpenMP Offload Terminology

• Host device
– The device on which the OpenMP program begins execution.

• Target device
– A device with respect to which the current device performs an operation, as

specified by a device construct or an OpenMP device memory routine.

• Parent device
– For a given target region, the device on which the corresponding target

construct was encountered.
• A host device may not always be the parent.

8

OpenMP Offload: Steps

• Identification of compute kernels
– CPU initiates kernel for execution on the device

• Expressing parallelism within the kernel

• Manage data transfer between CPU and Device
– relevant data needs to be moved from host to device memory
– kernel executes using device memory
– relevant data needs to be moved from device to main memory

9

Step 1: Identification of Kernels to Offload

• Look for compute intensive code and that can benefit from parallel
execution
– Use performance analysis tools to find bottlenecks/computationally intensive kernels

• Track independent work units with well defined data accesses

• Keep an eye on platform specs
– GPU memory is a precious resource

• Confirm via Profiling
– Tools like rocprof and HPCToolkit

• More information regarding rocprof can be found at: https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#optimization-and-profiling

• More information on HPCToolkit can be found at: http://hpctoolkit.org

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

10

How to Offload using OpenMP ?

– A device data environment is created for the structured block
– The code region is mapped to the device and executed.

C/C++ Fortran Description

#pragma omp target [clause[
[,] clause] ...] new-line
structured-block

!$omp target [clause[[,] clause] ...]
loosely/tightly-structured-block
!$omp end target

The target construct offloads the
enclosed code to the accelerator.

11

OpenMP Offload: Example using omp target

/*C code to offload Matrix Addition Code to Device*/

 …
 int A[N][N], B[N][N], C[N][N];
 /*
 initialize arrays
 */
#pragma omp target
 {
 for (int i = 0; i < N; ++i) {
 for (int j = 0; j < N; ++j) {
 C[i][j] = A[i][j] + B[i][j];
 }
 }
 } // end target

The target construct is a task generating construct

Compute C

Transfer A, B, C

Target Device

Transfer A, B, C

Kernel

12

Clauses on target directive

• Clauses allowed on the target directive:
– device([device-modifier :] integer-expression)

– if([target :] scalar-expression)
– thread_limit(integer-expression)
– private(list)
– firstprivate(list)

– in_reduction(reduction-identifier : list)
– map([[map-type-modifier[,] [map-type-modifier[,] ...]] map-type:] locator-list)
– is_device_ptr(list)

– has_device_addr(list)
– defaultmap(implicit-behavior[:variable-category])
– nowait
– depend([depend-modifier,] dependence-type : locator-list)

– allocate([allocator :] list)
– uses_allocators(allocator[(allocator-traits-array)] [,allocator[(allocator-traits-array)] ...])

13

/*C code depicting use of device clause */

#pragma omp target device(device_num:5) //same as device(5)
 {

 for (int i = 0; i < N; ++i) {
 for (int j = 0; j < N; ++j) {
 C[i][j] = A[i][j] + B[i][j];

 }

 }

 } // end target

device clause on target directive

• Use
– Specify which device should execute the kernel

• takes device_num or ancestor modifiers

Must be a valid device number

14

device clause to target multiple devices
/*C code to offload Matrix Addition Code to Multiple Devices*/

 …
int num_dev = omp_get_num_devices();
/*
Calculate start array index for each device and elements per device
*/

for (int dev = 0; dev < num_dev; ++dev)
{
#pragma omp target map(tofrom: C[lb:len:1]) device(dev)
{
 for (int i = lb; i < lb+len; ++i) {
 C[i] += A[i] + B[i] ;
 }
} // end of omp target

}//end-for

15

device clause on target directive (cont.)

– Using the ancestor modifier

/*C code depicting use of device clause with ancestor modifier */

#pragma omp requires reverse_offload //at filescope
…
…

#pragma omp target
{

 #pragma omp target device(ancestor: 1)

 /*some useful work on parent device*/

 /* Continue with device execution*/

}//end target-1
…

16

if clause on target directive

• Use
– Conditional execution on target device

/*C code demonstrating conditional offloading */

#pragma omp target if (N > 1024)

{
 for (int i = 0; i < N; ++i) {
 for (int j = 0; j < N; ++j) {

 C[i][j] = A[i][j] + B[i][j];

 }
 }

} // end target

17

nowait clause on target directive

• Use
– target task may be deferred

/*C code with nowait on target */
/*Use-case: Free host thread*/

…
#pragma omp parallel
{
 #pragma omp masked
 #pragma omp target nowait
 {

/*independent work unit*/
 } // end target
 #pragma omp for
 for (int i = 0; i < N; ++i) {
 C[i] = A[i] + B [i]
 }
 } // end parallel

18

Step 2: Expressing Parallelism

/*C code to offload Matrix Addition Code to Device*/

 …
 int A[N][N], B[N][N], C[N][N];
 /*
 initialize arrays
 */
#pragma omp target
 {
 for (int i = 0; i < N; ++i) {
 for (int j = 0; j < N; ++j) {
 C[i][j] = A[i][j] + B[i][j];
 }
 }
 } // end target

Compute C
Transfer A, B, C

Target Device

Transfer A, B, C

Idle threads

19

Expressing Parallelism: using combined constructs

• Combined construct
– A construct that is a shortcut for specifying one construct immediately nested inside

another construct. A combined construct is semantically identical to that of explicitly
specifying the first construct containing one instance of the second construct and no
other statements.

• Example:
– omp parallel{omp for } == omp parallel for

20

target + parallel construct

/*C code using target parallel*/

 …
 int A[N], B[N], C[N];
 /*
 initialize arrays
 */
#pragma omp target parallel for
for (int i = 0; i < N; ++i) {
 C[i] = A[i] + B[i];
} Compute C

Transfer A, B, C

Traget Device

Transfer A, B, C

21

OpenMP teams

• When a teams construct is encountered, a league of teams is created.

• Each team is an initial team, and the initial thread “0” in each team
executes the teams region.
– Initial team numbers are consecutive whole numbers (zero to one less than the

number of initial teams)

• The number of teams created is determined by the num_teams clause.
Once the teams are created, the
– these remain constant for the duration of the teams region.

• The teams region must be strictly nested within:
– the implicit parallel region that surrounds the whole OpenMP program or
– a target region.

22

distribute construct

• It is a loop associated construct that binds to the set of initial threads
executing an enclosing teams region
– distribute construct must be strictly nested inside a teams region

• The iterations are distributed across the initial threads of all initial teams
that execute the teams region to which the distribute region binds

• Clauses permitted on distribute construct are allocate, collapse,
dist_schedule, firstprivate, lastprivate, order, and private

23

target target teams target teams distribute

#pragma omp target
for (int i = 0; i < 12; ++i)
{
 C[i] = A[i] + B[i];

}

#pragma omp target teams
num_teams(3)
for (int i = 0; i < 12; ++i)
{
 C[i] = A[i] + B[i];

}

#pragma omp target teams
distribute num_teams(3)
for (int i = 0; i < 12; ++i)
{
 C[i] = A[i] + B[i];

}

target teams distribute
parallel

#pragma omp target teams
distribute parallel
for[simd] num_teams(3)
for (int i = 0; i < 12; ++i)
{
 C[i] = A[i] + B[i];

}

Compute C

Target Device

Compute C

i =
 0

 to
 3

i =
 4

 to
 7

i =
 8

 to
 1

1

team 0 team 1 team 2

i =
 0

 to
 1

1

Compute C

team 0 team 1 team 2

i =
 0

 to
 1

1

i =
 0

 to
 1

1

i =
 0

 to
 1

1
Compute Ci =

 1

i =
 2

i =
 3

i =
 1

0

i =
 0

i =
 1

1

team 0 team 2

…

Expressing Parallelism: Increasing device utilization

Target Device Target Device Target Device

24

loop construct

•Properties:
– logical iterations of the associated loops may execute

concurrently
– bind clause determines the binding region
• orphaned loop needs explicit binding

– can be nested inside another loop construct
– all iterations are guaranteed to complete at the end of loop
• except when bound to teams construct

25

Offloading using target teams + loop

/*C code with loop enclosed by teams region */
…
#pragma omp target teams
{
 #pragma omp loop //implicit bind(team)

for (int i = 0; i < N; ++i) {
 C[i] = A[i] + B [i]
 }
} // end target teams

/*C code with orphaned loop */
…
void fun1(){
#pragma omp loop bind(teams)
for (int i = 0; i < N; ++i) {
 C[i] = A[i] + B [i]
}
#pragma omp target teams
{
 fun1();

} // end target teams

26

Summary: Device Execution Directives
C/C++ Fortran Description

#pragma omp target [clause[[,]
clause] ...] new-line
structured-block

!$omp target [clause[[,] clause] ...]
loosely/tightly-structured-block
!$omp end target

The target construct offloads the enclosed
code to the accelerator.

#pragma omp target teams [clause[[,]
clause] ...] new-line
structured-block

!$omp target teams [clause[[,] clause] ...]
loosely/tightly-structured-block
!$omp end target teams

The target construct offloads the enclosed
code to the accelerator.
The teams construct creates a league of
teams. The initial thread of each team
executes the code region.

#pragma omp target teams distribute
[clause[[,] clause] ...] new-line
loop-nest

!$omp target teams distribute [clause[[,] clause]
...]
loop-nest
[!$omp end target teams distribute]

The target construct offloads the enclosed
code to the accelerator.
A league of thread teams is created, and loop
iterations are distributed and executed by the
initial teams.

#pragma omp target teams distribute
parallel for [clause[[,] clause] ...] new-
line
loop-nest

!$omp target teams distribute parallel do
[clause[[,] clause] ...]
 loop-nest
[!$omp end target teams distribute parallel do]

The target construct offloads the enclosed
code to the accelerator.
A league of thread teams are created, and
loop iterations are distributed and executed
in parallel by all threads of the teams.

27

Summary: Device Execution Directives
C/C++ Fortran Description

#pragma omp target parallel
[clause[[,] clause] ...] new-line
structured-block

!$omp target parallel [clause[[,]
clause] ...]
loosely-structured-block
!$omp end target parallel

The target construct offloads the enclosed code to the
accelerator.
The parallel construct creates a team of OpenMP threads that
execute the region.

#pragma omp target parallel for
[clause[[,] clause] ...] new-line
loop-nest

!$omp target parallel do [clause[[,]
clause] ...]
loop-nest
[!$omp end target parallel do]

The target construct offloads the enclosed code to the
accelerator.
The parallel for/do combined construct creates a thread team
and distributes the inner loop iterations over threads.

#pragma omp target parallel loop
[clause[[,] clause] ...] new-line
loop-nest

!$omp target parallel loop [clause[[,]
clause] ...]
loop-nest
[!$omp end target parallel loop]

The target construct offloads the enclosed code to the
accelerator.
The parallel construct creates a team of OpenMP threads that
execute the region.
The loop construct allows concurrent execution of the
associated loops.

#pragma omp target teams loop
[clause[[,] clause] ...] new-line
loop-nest

!$omp target teams loop [clause[[,]
clause] ...]
loop-nest
[!$omp end target teams loop]

The target construct offloads the enclosed code to the
accelerator.
The teams construct creates a league of teams.
The loop construct allows concurrent execution of the
associated loops.

28

Summary: Device Execution Directives (SIMD)
C/C++ Fortran Description

#pragma omp target simd [clause[[,]
clause] ...] new-line
 loop-nest

!$omp target simd [clause[[,] clause]
...]
loop-nest
[!$omp end target simd]

Semantics are identical to explicitly specifying a
target directive immediately followed by SIMD
directive.

#pragma omp target parallel for simd \
clause[[,] clause] ...] new-line
loop-nest

!$omp target parallel do simd [clause[
[,] clause] ...]
loop-nest
[!$omp end target parallel do simd]

Semantics are identical to explicitly specifying a
target directive immediately followed by a parallel
worksharing-loop SIMD directive.

#pragma omp target teams distribute simd
\
[clause[[,] clause] ...] new-line
loop-nest

!$omp target teams distribute simd
[clause[[,] clause] ...]
loop-nest
 [!$omp end target teams distribute
simd]

Semantics are identical to explicitly specifying a
target directive immediately followed by a teams
distribute simd directive

#pragma omp target teams distribute
parallel for simd \
[clause[[,] clause] ...] new-line
loop-nest

!$omp target teams distribute parallel
do simd [clause[[,] clause] ...]
loop-nest
[!$omp end target teams distribute
parallel do simd]

Semantics are identical to explicitly specifying a
target directive immediately followed by a teams
distribute parallel worksharing-loop SIMD directive.

29

Summary: Useful runtime routines for device environment
C/C++ Fortran

Where to call ?
Description

Host Target
region

int omp_get_num_procs(void); integer function omp_get_num_procs() returns the number of processors available to the
device

void omp_set_default_device(int
device_num);

subroutine
omp_set_default_device(device_num)
integer device_num

sets the value of the default-device-var ICV of the
current task to device_num

int omp_get_default_device(void); integer function omp_get_default_device() returns the default target device

int omp_get_num_devices(void); integer function omp_get_num_devices() returns the number of non-host devices available
for offloading code or data.

int omp_get_device_num(void); integer function omp_get_device_num() returns the device number of the device on which
the calling thread is executing

int omp_is_initial_device(void); logical function omp_is_initial_device() returns true if the current task is executing on the
host otherwise, it returns false.

int omp_get_initial_device(void); integer function omp_get_initial_device() return the device number of the host device

30

Summary: Useful runtime routines for teams region

C/C++ Fortran
Where to call ?

Description
Host Target

region
int omp_get_num_teams(void); integer function omp_get_num_teams() returns the number of initial teams in the

current teams region.

int omp_get_team_num(void); integer function omp_get_team_num() returns the initial team number of the
calling thread

void omp_set_num_teams(int
num_teams);

subroutine
omp_set_num_teams(num_teams)
integer num_teams

the number of threads to be used for
subsequent teams regions that do not
specify a num_teams clause

int omp_get_max_teams(void); integer function omp_get_max_teams() returns an upper bound on the number of
teams that could be created by a teams
construct

void
omp_set_teams_thread_limit(int
thread_limit);

subroutine
omp_set_teams_thread_limit(thread_limit
)
integer thread_limit

defines the maximum number of OpenMP
threads per team

31

References

• Examples were adapted from:
– https://github.com/SOLLVE/sollve_vv
– OpenMP Examples Document 5.2.1

• OpenMP Specification (5.x)
– https://www.openmp.org/specifications/

• https://www.nas.nasa.gov/hecc/assets/pdf/training/OpenMP4.5_3-20-19.pdf

• OpenMP Disussion @ 2021 Exascale Computing Project Virtual Annual Meeting (April 12 – 16, 2021)

https://github.com/SOLLVE/sollve_vv
https://www.nas.nasa.gov/hecc/assets/pdf/training/OpenMP4.5_3-20-19.pdf

32

Thank You

