OAK RIDGE

National Laboratory

Infroduction to OpenMP Offload: P

0101 O1q e

1 “ - 1 2 ‘
1010 mmnm«_mm&i}w?§‘$ el

September 29t , 2023

Swaroop Pophale (CSMD), Reuben Budiardja (NCCS), Wael Elwasif (CSMD)
Oak Ridge National Laboratory

ORNL is managed by UT-Bafttelle LLC for the US Department of Energy Py US- DEPARTMENT OF

9

LTS s

OpenMP Programming Model

It is an Application Program Interface (API) to allow programmers to
develop threaded parallel codes on shared memory computational units.

e Directives are understood by OpenMP aware compilers (others are free

to ignore)
e Generates parallel threaded code l } initial thread
— Original thread becomes thread “0” { FORK]
— Share resc?urces c?f the orlglna.I thread (or rank) l l l l l } R
— Data-sharing attributes of variables can be
specified based on usage patterns { JONN]
l }- Initial thread

OAK RIDGE | & iece,

2 %Naﬁonal Laboratory | COMPUTING FACILITY Reference: Somewhere from the web

OpenMP Worksharing

#pragma Omp pa rallel > fé”gfg;eads will execute the
All threads will execute a part of the
#pragma omp parallel for > iterations

e Creates a team of OpenMP threads that execute the structured-block that
follows

e Number of threads property is generally specified by OMP_NUM_THREADS
env variable or num_threads clause (num_threads has precedence)

%OAK RIDGE | 9% fioge

3 National Laboratory | COMPUTING FACILITY

4

Recap: OpenMP Worksharing

Serial

for (int 1 = 0; i < N; ++1)

{
}

Cl[i] = A[i]l + BIil;

® 1 thread/process will execute
each iteration sequentially

® Total time =
time_for_single_iteration * N

%OAK RIDGE | %8Rst

National Laboratory | COMPUTING FACILITY

Parallel

#pragma omp parallel
for (int 1 = 0; i < N; ++1)

{
¥

C[i] = A[i]l + BI[il;

® Say, OMP_NUM_THREADS = 4

® 4 threads will execute each

iteration sequentially (overwriting
values of C)

® Total time =
time_for_single_iteration * N

Parallel Worksharing

#pragma omp parallel for
for (int 1 = 0; i < N; ++1i)

{
}

Cl[i] = A[i]l + BIil;

® Say, OMP_NUM_THREADS =4

® 4 threads will distribute iteration
space (roughly N/4 per thread)

® Total time =
time_for_single_iteration * N/4

5

%OAK RIDGE

Evolution of OpenMP: 1997 — 2022

In spring, 7
vendors and
the DOE agree
on the spelling
of parallel loops
and form the
OpenMP ARB.
By October,
version 1.0 of
the OpenMP
specification for
Fortran is
released.

National Laboratory

Minor

modifications

OAK RIDGE
LEADERSHIP

-

1997 | 1998 | 1999 § 2001 § 2002 § 2005 § 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 § 2021 | 2022

11

cOMPunity, the
group of
OpenMP users,
is formed to
enable
researcher
participation.an
d organize
workshops

2.0

COMPUTING FACILITY

=
v

Adapted from 2021 Exascale Computing Project Virtual Annual Meeting April 12 — 16, 2021

-
w

Introduction: OpenMP Offload

e OpenMP offload constructs are a set of directives for C, C++, and Fortran
that were introduced in OpenMP 4.0 and further enhanced in later

versions. Accelerators
ACCELERATORS
Data and Instructions > Z == ==

C

|
.

|

Data

%OAK RIDGE | %80k,

6 National Laboratory | COMPUTING FACILITY

OpenMP Offload Terminology

 Host device
— The device on which the OpenMP program begins execution.

« Target device
— A device with respect to which the current device performs an operation, as
specified by a device construct or an OpenMP device memory routine.
 Parent device

— For a given target region, the device on which the corresponding target
construct was encountered.

* A host device may not always be the parent.

OOOOOOOO
%OAK RIDGE | oAk rioge
7 National Laboratory | COMPUTING FACILITY

OpenMP Offload: Steps

 Identification of compute kernels
— CPU initiates kernel for execution on the device

e Expressing parallelism within the kernel

 Manage data transfer between CPU and Device
— relevant data needs to be moved from host to device memory
— kernel executes using device memory
— relevant data needs to be moved from device to main memory

%OAK RIDGE EEEEEEEEEE
MPUTING FACILITY

8 al Labor

Step 1: Identification of Kernels to Offload

e Look for compute intensive code and that can benefit from parallel
execution

— Use performance analysis tools to find bottlenecks/computationally intensive kernels
e Track independent work units with well defined data accesses

* Keep an eye on platform specs
— GPU memory is a precious resource

e Confirm via Profiling
— Tools like rocprof and HPCToolkit

More information regarding rocprof can be found at: https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#foptimization-and-profiling

More information on HPCToolkit can be found at: http://hpctoolkit.org

%RAK RIDGE | %80k,

ional Laboratory | COMPUTING FACILITY

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

How to Offload using OpenMP ?

#pragma omp target [clause['$omp target [clause[[,] clause] ...] The target construct offloads the
[,] clause] ...] new-line loosely/tightly-structured-block enclosed code to the accelerator.
structured-block ISomp end target

— A device data environment is created for the structured block
— The code region is mapped to the device and executed.

OAK RIDGE
%OAK RIDGE | ofcaeee,
10 National Laboratory | COMPUTING FACILITY

OpenMP Offload: Example using omp target

/*C code to offload Matrix Addition Code to Device*/

int A[NIINI, BINIINI, CINIINI;
/*k

o Target Device
initialize arrays

*/ ‘\\
#p{ragma omp target Transfer A, B, C
for (int 1 = 0; 1 < N; ++1i) {
for (int j = 0; j < N; ++j) { Compute C
Kernel Clil [j] = A[il[j] + BIil[j];
}
}
} // end target Transfer A, B, C /

The target construct is a task generating construct

y %OAK RIDGE | 9% fioge

National Laboratory | COMPUTING FACILITY

Clauses on target directive

e Clauses allowed on the target directive:
— device([device-modifier :] integer-expression)
— if([target :] scalar-expression)
— thread_limit(integer-expression)
— private(list)
— firstprivate(list)
— in_reduction(reduction-identifier : list)
— map([[map-type-modifier[,] [map-type-modifier|[,] ...]] map-type:] locator-list)
— is_device_ptr(list)
— has_device_addr(list)
— defaultmap(implicit-behavior[:variable-category])
— nowait
— depend([depend-modifier,] dependence-type : locator-list)
— allocate([allocator :] list)

— uses_allocators(allocator[(allocator-traits-array)] [,allocator[(allocator-traits-array)] ...])

OAK RIDGE
LEADERSHIP
COMPUTING FACILITY

%OAK RIDGE

National Laboratory

12

device clause on target directive

e Use
— Specify which device should execute the kernel

e takes device_num or ancestor modifiers

/*C code depicting use of device clause */

#pragma omp target device(device_nu as device(5)
{
Must be a valid device number

for (int 1 = @; i < N; ++i) {
for (int j = 0; j < N; ++j) {

Clil [31 = ATil[j] + BIil[jl;

}
} // end target

OAK RIDGE
LEADERSHIP
COMPUTING FACILITY

%OAK RIDGE

National Laboratory

13

device clause to target multiple devices

/*C code to offload Matrix Addition Code to Multiple Devicesx/

int num_dev = omp_get_num_devices();

/*

Calculate start array index for each device and elements per device
*/

for (int dev = 0; dev < num_dev; ++dev)

{

#pragma omp target map(tofrom: C[lb:len:1]) device(dev)

for (int i = lb; i < lb+len; ++i) {
Cl[i] += A[i] + B[i] ;
}
} // end of omp target
}//end-for

OAK RIDGE
%OAK RIDGE | 02K fioge |
National Laboratory | COMPUTING FACILITY

14

device clause on target directive (cont.)

— Using the ancestor modifier

/*C code depicting use of device clause with ancestor modifier */

#pragma omp requires reverse_offload //at filescope

#pragma omp target
{

#pragma omp target device(ancestor: 1)
/*some useful work on parent devicex/
/* Continue with device executionx/

}//end target-1

OAK RIDGE
%OAK RIDGE | 02K fioge |
National Laboratory | COMPUTING FACILITY

15

16

1f clause on target directive

e Use
— Conditional execution on target device

%

OAK RIDGE | & iece,

National Laboratory | COMPUTING FACILITY

/*C code demonstrating conditional offloading */

#pragma omp target if (N > 1024)
{

for (int 1 = @; i < N; ++1i) {
for (int j = 0; j < N; ++j) {

Clil[3]1 = Alil[j]1 + BIil[jl;

¥
by

} // end target

nowalt clause on target directive

e Use
— target task may be deferred

/*C code with nowait on target */
[*Use-case: Free host thread*/

#pragma omp parallel

#pragma omp masked
#pragma omp target nowait
{
/*independent work unitx/
} // end target
#pragma omp for
for (int 1 = 0; i < N; ++1i) {
, C[i] = A[i] + B [1il

} // end parallel

. %OAK RIDGE | 9% fioge

National Laboratory | COMPUTING FACILITY

Step 2: Expressing Parallelism

/*C code to offload Matrix Addition Code to Device*/

int A[NIINI, BINIINI, CINIINI;

/% Target Device
initialize arrays

*/ \
#pragma omp target Transfer A, B, C Cdmpute C
{
for (int 1 = 0; i < N; ++1i) {
for (int j = 0; j < N; ++j) { =ttt Idlelthreads
Clil[j] = Alil[j] + BIil[jl;
I3
I3
} // end taFQEt Transfer A, B, C Yy YyYVY VY w)

. %OAK RIDGE | 9% fioge

National Laboratory | COMPUTING FACILITY

Expressing Parallelism: using combined constructs

e Combined construct

— A construct that is a shortcut for specifying one construct immediately nested inside
another construct. A combined construct is semantically identical to that of explicitly

specifying the first construct containing one instance of the second construct and no
other statements.

e Example:
— omp parallel{omp for } == omp parallel for

OOOOOOOO
%OAK RIDGE EEEEEEEEEE
MPUTING FACILITY

19 al Labor:

20

target + parallel construct

[*C code using target parallel*/

int AINI, BINI, CINI;

/*k

initialize arrays

*/

#pragma omp target parallel for Transfer A. B. C

for (int i
Cl[i] =

}

%OAK RIDGE | %80k,

National Laboratory | COMPUTING FACILITY

=0; i< N; ++1) {

Ali] + BI[i];

Transfer A, B, C

mpuie €

A

y Vv vV V

21

OpenMP teams

 When a teams construct is encountered, a league of teams is created.

e Each team is an initial team, and the initial thread “0” in each team
executes the teams region.

— Initial team numbers are consecutive whole numbers (zero to one less than the
number of initial teams)

 The number of teams created is determined by the num_teams clause.
Once the teams are created, the

— these remain constant for the duration of the teams region.

e The teams region must be strictly nested within:
— the implicit parallel region that surrounds the whole OpenMP program or
— a target region.

EEEEEEEEEE

nal Labor:

distribute construct

* It is a loop associated construct that binds to the set of initial threads
executing an enclosing teams region

— distribute construct must be strictly nested inside a teams region

e The iterations are distributed across the initial threads of all initial teams
that execute the teams region to which the distribute region binds

e Clauses permitted on distribute construct are allocate, collapse,
dist_schedule, firstprivate, lastprivate, order, and private

%RAK RIDGE | %80k,

22 ional Laboratory | COMPUTING FACILITY

Expressing Parallelism: Increasing device utilization

- target teams distribute

target target teams target teams distribute
parallel

for (int i = @; i < 12; ++i) num_teams (3) distribute num_teams(3) distribute parallel

{ for (int i = 0; i < 12; ++1i) for (int 1 = 0; i < 12; ++1i) for[simd] num_teams(3)

Cl[i] = A[i] + BI[il; { { for (int i = 0; 1 < 12; ++1i)
} Cli] = A[i] + BIil; Clil = A[il + BI[il; {
3 } Cl[il = A[il + BIil;
}
Target Device

Target Device Target Device

Target Device

QTN S AT R AT X
glCa'rthalC g C<§FL"E§ % Ca‘fptﬂ&%
\Iwww wwwww) G 1 I‘W‘J G I"‘NI j j
‘:a'n:’ ‘te_a'n:’ :'m_zl ‘:a'm_o’ ‘t:a'n:’ ‘;'m_zl team 0 te!mZ

OAK RIDGE
%OAK RIDGE | 2fieee,
23 National Laboratory | COMPUTING FACILITY

loop construct

* Properties:

— logical iterations of the associated loops may execute
concurrently

— bind clause determines the binding region
e orphaned loop needs explicit binding
— canh be nested inside another 1loop construct

— all iterations are guaranteed to complete at the end of 1oop
e except when bound to teams construct

OOOOOOOO
%OAK RIDGE | 02K 80st,
24 National Laboratory | COMPUTING FACILITY

25

Offloading using target teams + loop

/*C code with loop enclosed by teams region */

#pragma omp target teams

#pragma omp loop //implicit bind(team)
for (int 1 = 0; 1 < N; ++1i) {

Cli] = A[li]l + B [i]
s

} // end target teams

%RAK RIDGE | %80k,

ional Laboratory | COMPUTING FACILITY

[*C code with orphaned loop */

void funl(){

#pragma omp loop bind(teams)

for (int 1 =0; i < N; ++i) {
C[i] = A[i] + B [i]

s

#pragma omp target teams

funl();

} // end target teams

26

Summary: Device Execution Directives

#pragma omp target [clause[[,]
clause] ... | new-line
structured-block

#pragma omp target teams [clause[[,]
clause] ... | new-line
structured-block

#pragma omp target teams distribute
[clause[[|] clause] ... | new-line
loop-nest

#pragma omp target teams distribute
parallel for [clause[[] clause] ... | new-
line

loop-nest

%OAK RIDGE | 9% fioge

National Laboratory | COMPUTING FACILITY

1I$Somp target [clause[[,] clause] ... |
loosely/tightly-structured-block
1ISomp end target

1I$Somp target teams [clause[[,] clause] ... |
loosely/tightly-structured-block
I$omp end target teams

1I$Somp target teams distribute [clause[[,] clause]
o]

loop-nest

'$omp end target teams distribute]

1ISomp target teams distribute parallel do
[clause] [,] clause] ...]

loop-nest

'$omp end target teams distribute parallel do]

The target construct offloads the enclosed
code to the accelerator.

The target construct offloads the enclosed
code to the accelerator.

The teams construct creates a league of
teams. The initial thread of each team
executes the code region.

The target construct offloads the enclosed
code to the accelerator.

A league of thread teams is created, and loop
iterations are distributed and executed by the
initial teams.

The target construct offloads the enclosed
code to the accelerator.

A league of thread teams are created, and
loop iterations are distributed and executed
in parallel by all threads of the teams.

27

Summary: Device Execution Directives

#pragma omp target parallel
[clause[[|] clause] ... | new-line
structured-block

#pragma omp target parallel for
[clause[[|] clause] ... | new-line
loop-nest

#pragma omp target parallel loop
[clause[[|] clause] ... | new-line
loop-nest

#pragma omp target teams loop
[clause[[|] clause] ... | new-line
loop-nest

%OAK RIDGE | 9% fioge

National Laboratory | COMPUTING FACILITY

I$omp target parallel [clause[[]

clausej ... |
loosely-structured-block

1$omp end target parallel

I$omp target parallel do [clause[[]
clause] ... |

loop-nest

['$omp end target parallel do]

1Somp target parallel loop [clause[[,]

clausej ... |

loop-nest
'$omp end target parallel loop]

1$omp target teams loop [clause[[]

clausej ... |

loop-nest
'$omp end target teams loop/

The target construct offloads the enclosed code to the
accelerator.

The parallel construct creates a team of OpenMP threads that
execute the region.

The target construct offloads the enclosed code to the
accelerator.

The parallel for/do combined construct creates a thread team
and distributes the inner loop iterations over threads.

The target construct offloads the enclosed code to the
accelerator.

The parallel construct creates a team of OpenMP threads that
execute the region.

The loop construct allows concurrent execution of the
associated loops.

The target construct offloads the enclosed code to the
accelerator.

The teams construct creates a league of teams.

The loop construct allows concurrent execution of the
associated loops.

Summary: Device Execution Directives (SIMD)

#pragma omp target simd [clause[[|] 1$omp target simd [clause[[,] clause] Semantics are identical to explicitly specifying a
clause] ... | new-line o] target directive immediately followed by SIMD
loop-nest loop-nest directive.

1$omp end target simd]
#pragma omp target parallel for simd \ 1$omp target parallel do simd [clause[Semantics are identical to explicitly specifying a
clausell,] clause] ... | new-line [.] clause] ... | target directive immediately followed by a parallel
loop-nest loop-nest worksharing-loop SIMD directive.

$omp end target parallel do simd]
#pragma omp target teams distribute simd !$omp target teams distribute simd Semantics are identical to explicitly specifying a
\ [clause[[|] clause] ...] target directive immediately followed by a teams
[clause[[|] clause] ... | new-line loop-nest distribute simd directive
loop-nest '$omp end target teams distribute

simd]
#pragma omp target teams distribute 1$omp target teams distribute parallel Semantics are identical to explicitly specifying a
parallel for simd \ do simd [clause[[,] clause] ...] target directive immediately followed by a teams
[clause[[|] clause] ... | new-line loop-nest distribute parallel worksharing-loop SIMD directive.
loop-nest $omp end target teams distribute

parallel do simd]

OAK RIDGE
%OAK RIDGE | oAk rioge
National Laboratory | COMPUTING FACILITY

28

Summary: Useful runtime routines for device environment

Where to call ?

C/C++ Fortran Description

Target

A reglon

int omp_get_num_procs(void); integer function omp_get_num_procs() J « returns the number of processors available to the
device
void omp_set_default_device(int subroutine sets the value of the default-device-var ICV of the
device_num); omp_set_default_device(device_num) / x current task to device_num
integer device_num

int omp_get_default_device(void); integer function omp_get_default_device() J x returns the default target device

int omp_get_num_devices(void); integer function omp_get_num_devices() returns the number of non-host devices available
/ for offloading code or data.

int omp_get_device_num(void); integer function omp_get_device_num() returns the device number of the device on which

/ (the calling thread is executing

int omp_is_initial_device(void); logical function omp_is_initial_device() returns true if the current task is executing on the

i J host otherwise, it returns false.

int omp_get_initial_device(void); integer function omp_get_initial_device() / x return the device number of the host device

OAK RIDGE
%OAK RIDGE | ofcaeee,
National Laboratory | COMPUTING FACILITY

29

Summary: Useful runtime routines for teams region

Where to call ?

C/C++ Target Description

Host :
region

int omp_get_num_teams(void); integer function omp_get_num_teams() returns the number of initial teams in the
current teams region.

int omp_get_team_num(void); integer function omp_get_team_num() returns the initial team number of the
calling thread

void omp_set _num_teams(int subroutine the number of threads to be used for

num_teams); omp_set_num_teams(num_teams) subsequent teams regions that do not

integer num_teams specify a num_teams clause

1« S « K«
1 S « K«

int omp_get_max_teams(void); integer function omp_get_max_teams() returns an upper bound on the number of
teams that could be created by a teams
construct

void subroutine defines the maximum number of OpenMP

omp_set_teams_thread_limit(int omp_set _teams_thread_limit(thread_limit threads per team

thread_limit);)

integer thread_limit

OAK RIDGE
LEADERSHIP
COMPUTING FACILITY

%OAK RIDGE

National Laboratory

30

References

Examples were adapted from:

— https://github.com/SOLLVE/sollve vv
— OpenMP Examples Document 5.2.1

OpenMP Specification (5.x)

— https://www.openmp.org/specifications/

https://www.nas.nasa.gov/hecc/assets/pdf/training/OpenMP4.5 3-20-19.pdf

OpenMP Disussion @ 2021 Exascale Computing Project Virtual Annual Meeting (April 12 — 16, 2021)

%OAK RIDGE | %80k,

National Laboratory | COMPUTING FACILITY

31

https://github.com/SOLLVE/sollve_vv
https://www.nas.nasa.gov/hecc/assets/pdf/training/OpenMP4.5_3-20-19.pdf

Thank You

OAK RIDGE | oA rinse

32 ¥National Laboratory | COMPUTING FACILITY

