
Omnitrace By Example

Bob Robey, Gina Sitaraman, Ian Bogle, Giacomo
Capodaglio, Asitav Mishra

AMD @ ORNL
29 May 2024

5/29/2024 AMD @ ORNL

2 |

[Public]

Acknowledgements

• Jonathan Madsen
• David Galiffi
• Nicholas Curtis
• and the rest of the DCGPU team

5/29/2024 AMD @ ORNL

3 |

[Public]

Agenda • Omnitrace for Application Profiling and Tracing

• A Simple Ghost Exchange MPI Example Suite

• Orig: CPU implementation

• Ver1: OpenMP® offload port with Managed Memory

• Ver2: Add roctx ranges

• Ver3: Allocate MPI buffers on device (Under construction)

• Ver4: Allocate all buffers once

• Ver5: Convert from 2D to 1D indexing

• Ver6: Add explicit data map directives

5/29/2024 AMD @ ORNL

4 |

[Public]

Omnitrace for Application Profiling and Tracing
• Get high level view of entire application run
• Holistic view of CPU, GPU, and system activity
• Sampling and binary instrumentation modes
• Visualize in Perfetto

5/29/2024 AMD @ ORNL

https://ui.perfetto.dev/

5 |

[Public]

MPI Ghost Exchange Example Suite

• Many applications need to exchange ghost cells with adjacent processes
• This example suite, developed by Bob Robey, implements the exchange for a regular cartesian grid
• We start with the examples in Chapter 8 of Parallel and High Performance Computing, Manning Publications

 git clone https://EssentialsOfParallelComputing/Chapter8

 cd GhostExchange
• These examples include various versions ranging from simple methods to those using MPI Datatypes and MPI Cartesian

topology capabilities
• For GPU-Aware MPI, the versions using MPI Datatypes have not been optimized in most MPI implementations
• We will use the simpler methods. We will pack the column data into to a buffer and send the buffer. We can send row

data directly. If corner data is needed, synchronization is required
• From CPU code, we port to GPU and optimize incrementally using Omnitrace to guide the process
• Uses OpenMP target offload mechanism for offloading compute to AMD GPUs
• Repo: https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign

5/29/2024 AMD @ ORNL

https://essentialsofparallelcomputing/Chapter8
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign
Sandoval, Michael
https://github.com/essentialsofparallelcomputing/Chapter8

Sandoval, Michael

6 |

[Public]

MPI Ghost Exchange Example – How does it work?
• A rectangular domain is partitioned into a 2D computational grid, distributed among MPI processes
• An initial solution in specified on a cell-wise basis, then advanced with a 5-point stencil averaging operator
• Halo cells are located along the boundary, and around MPI domains (ghost cells) when doing parallel runs
• Boundary conditions are of outflow type, enforced prior to ghost halo exchanges
• Example of 2-step halo exchange with 3x3 grid of processes, each owning a 4x4 subset of the mesh:

5/29/2024 AMD @ ORNL

7 |

[Public]

MPI Ghost Exchange Examples – How to run it?
• Parameters:
 -x nprocx -y nprocy -i imax -j jmax -h nhalo -t (0 or 1) -c (0 or 1) -I maxIter

 nprocx = number of processes in x dimension
 nprocy = number of processes in y dimension
 imax = number of mesh cells in x dimension
 jmax = number of mesh cells in y dimension
 nhalo = number of halo layers
 maxIter = maximum number of iterations
 -t = enable/disable sync before MPI calls to accurately time MPI overhead
 -c = include/exclude corner cell updates

• Example run on Frontier with 4 ranks:
srun –N1 –n4 –c7 ./GhostExchange -x 2 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 100

5/29/2024 AMD @ ORNL

8 |

[Public]

Getting Started with Omnitrace - Configuring Omnitrace Runtime

• First, create a default configuration file
 omnitrace-avail –G ~/.omnitrace.cfg
 export OMNITRACE_CONFIG_FILE=~/.omnitrace.cfg
• Contains settings to control Omnitrace runtime behavior, modify settings as desired

OMNITRACE_PROFILE = true
OMNITRACE_USE_ROCM_SMI = true
OMNITRACE_USE_MPIP = true
OMNITRACE_USE_ROCTRACER = true
OMNITRACE_USE_ROCPROFILER = true
OMNITRACE_USE_ROCTX = true

Function durations

GPU system sampling

MPI tracing

GPU activity

Refer to documentation for more omnitrace-avail capabilities: https://rocm.github.io/omnitrace/runtime.html

5/29/2024 AMD @ ORNL

9 |

[Public]

Running Omnitrace on Ghost Exchange Examples
• Set up your environment on Frontier

 module load cce/17.0.0
 module load rocm/5.7.0
 module load omnitrace/1.11.2
 module load craype-accel-amd-gfx90a
 module load cmake/3.23.2

• Build the code
 mkdir build; cd build; cmake ..; make -j8

• Instrument the binary
omnitrace-instrument -o ./GhostExchange.inst -- ./GhostExchange

• Profile the instrumented binary
srun -N1 -n4 -c7 --gpu-bind=closest -A <proj> -t 05:00 omnitrace-run --

./GhostExchange.inst -x 2 -y 2 -i 20000 -j 20000 -h 2 -t -c -I 100

5/29/2024 AMD @ ORNL

10 |

[Public]

Understanding output from omnitrace-instrument

5/29/2024 AMD @ ORNL

11 |

[Public]

Understanding output from omnitrace-run

5/29/2024 AMD @ ORNL

Omnitrace ASCII art is proof that Omnitrace is running, shows version used

12 |

[Public]

Visualizing Omnitrace .proto files

5/29/2024 AMD @ ORNL

Copy .proto file to local workstation or laptop, open in Perfetto: https://ui.perfetto.dev/

https://ui.perfetto.dev/

Orig
CPU implementation of Ghost Exchange

5/29/2024 AMD @ ORNL

14 |

[Public]

Orig: First look at Omnitrace profile for Rank 0

<snip>

5/29/2024 AMD @ ORNL

15 |

[Public]

Orig: First profile – zoom in

5/29/2024 AMD @ ORNL

16 |

[Public]

Orig: Keep profile short - sample one CPU core
• Update config file to sample only 1 CPU core:
 OMNITRACE_SAMPLING_CPUS = 0
• Just rerun, no need to instrument again

5/29/2024 AMD @ ORNL

17 |

[Public]

Orig: Generate CPU-side wall clock times in profile

• Enable tracking of function durations in config file
 OMNITRACE_PROFILE = true
• Omnitrace generates wall_clock files with durations of each instrumented function

• Look for durations of MPI calls here

5/29/2024 AMD @ ORNL

18 |

[Public]

Orig: Use flat profiles for finding hotspots

• To flatten the hierarchy in the wall clock profile, enable flat profile:
 OMNITRACE_FLAT_PROFILE = true
• Now each function appears once, all timings are consolidated for each function:

5/29/2024 AMD @ ORNL

Not much here other than MPI calls not being the bottleneck

Ver1
First GPU implementation of Ghost Exchange
OpenMP offload + Managed Memory Programming Model

5/29/2024 AMD @ ORNL

20 |

[Public]

Ver1: Code changes

• Pragma for unified memory added to each translation unit
 #pragma omp requires unified_shared_memory
• Target offload pragma added to all compute loops
 #pragma omp target teams distribute parallel for collapse(2)
• Data still resides in host memory, but accessed from compute kernels and MPI calls
• On Frontier nodes, this means data is moved across AMD Infinity Fabric™ link between CPU and GPU

• Needs environment variable to enable OS managed page migration
 export HSA_XNACK=1

5/29/2024 AMD @ ORNL

21 |

[Public]

Ver1: Profile shows offloaded compute regions

5/29/2024 AMD @ ORNL

22 |

[Public]

Ver1: Observe GPU characteristics from rocm-smi in profile

5/29/2024 AMD @ ORNL

23 |

[Public]

Ver1: Trim profile to GPU of interest

5/29/2024 AMD @ ORNL

• Indicate which GPU to sample in config file
 OMNITRACE_SAMPLING_GPUS = 0

Concise trace,
easier to analyze

24 |

[Public]

Ver1: Wall clock profile shows OMP offload kernels and HIP APIs

5/29/2024 AMD @ ORNL

Managed memory affects kernel performance – but profile does not show in what way, yet

25 |

[Public]

Ver1: Seeing HSA runtime activity

• To implement OpenMP offload capability,
• the AMD compiler uses the HSA layer
• the Cray compiler uses the HIP layer

• Set up config file to see HSA activity in profile:
 OMNITRACE_ROCTRACER_HSA_ACTIVITY = true
 OMNITRACE_ROCTRACER_HSA_API = true

• More details about HIP and HSA runtime libraries

5/29/2024 AMD @ ORNL

https://rocm.docs.amd.com/projects/HIP/en/latest/index.html
https://rocm.docs.amd.com/projects/ROCR-Runtime/en/latest/index.html

Ver2
Manually instrument code with roctx ranges to study regions
of code

5/29/2024 AMD @ ORNL

27 |

[Public]

Ver2: Profile shows roctx ranges

5/29/2024 AMD @ ORNL

28 |

[Public]

Ver2: Wall clock files show timings of roctx regions

5/29/2024 AMD @ ORNL

Ver3
Allocate MPI buffers on device

5/29/2024 AMD @ ORNL

30 |

[Public]

Ver3: Enable GPU Aware MPI

• On Frontier nodes, there are 4 Network Interface Cards (NICs) directly attached to odd numbered GCDs
• Using device buffers in MPI calls is expected to improve communication performance
• Need environment variable to enable GPU Aware MPI:
 export MPICH_GPU_SUPPORT_ENABLED=1
• In this example, communication is not our bottleneck, so we don’t expect a big difference in MPI overhead

• Our attempt to achieve this is not working with ROCm 5.7.0 today on Frontier
• Known issue that is being actively investigated

5/29/2024 AMD @ ORNL

Ver4
Allocate all host buffers just once

5/29/2024 AMD @ ORNL

32 |

[Public]

Ver4: Profile shows only 1 allocation

5/29/2024 AMD @ ORNL

Ver5
Convert indexing from 2D to 1D – a step towards allocating
buffers directly on device

5/29/2024 AMD @ ORNL

34 |

[Public]

Ver5: Changing indexing to 1D does not change performance

5/29/2024 AMD @ ORNL

Ver6
Use explicit data management directives to allocate buffers
on device and keep them on device for entire run

5/29/2024 AMD @ ORNL

36 |

[Public]

Ver6: Adding explicit OpenMP map directives

• Allocate buffers once on device at the beginning:
#pragma omp target enter data map(alloc: xbuf_left_send[0:bufcount], xbuf_rght_send[0:bufcount])
#pragma omp target enter data map(alloc: xbuf_rght_recv[0:bufcount], xbuf_left_recv[0:bufcount])
#pragma omp target enter data map(alloc: x[0:totcells], xnew[0:totcells])

• Release buffers at the end:
#pragma omp target exit data map(release: x, xnew)
#pragma omp target exit data map(release: xbuf_left_send, xbuf_rght_send)
#pragma omp target exit data map(release: xbuf_rght_recv, xbuf_left_recv)

• Keeping data on HBM improves performance of memory bound kernels on MI250X GPUs
• Managed memory support no longer needed:
#pragma omp requires unified_shared_memory

unset HSA_XNACK

5/29/2024 AMD @ ORNL

37 |

[Public]

Ver6: Profile shows significantly faster kernels

5/29/2024 AMD @ ORNL

38 |

[Public]

Ver6: Allocation of MPI buffers on device is our new bottleneck

5/29/2024 AMD @ ORNL

39 |

[Public]

Ver6: Wall clock shows shorter durations of kernels

5/29/2024 AMD @ ORNL

Omnitrace Tips and Status

5/29/2024 AMD @ ORNL

41 |

[Public]

Tips: Reduce generated output for profiling at scale

• Turn off all options in config file except OMNITRACE_PROFILE to reduce generated output

 OMNITRACE_TRACE = false
 OMNITRACE_PROFILE = true
 OMNITRACE_FLAT_PROFILE = true
 OMNITRACE_USE_ROCTRACER = false
 OMNITRACE_USE_ROCM_SMI = false
 OMNITRACE_USE_MPIP = true
 OMNITRACE_USE_PID = true
 OMNITRACE_USE_ROCPROFILER = false
 OMNITRACE_USE_ROCTX = false

5/29/2024 AMD @ ORNL

42 |

[Public]

Tips: If Omnitrace does nothing, check app or environment

• If Omnitrace starts, but does not generate any output files, something prevented the app from running
• To check, unload Omnitrace module, build and run app. Fix errors, then profile with Omnitrace

• If app fails only when being profiled with Omnitrace, try profiling interactively using srun instead of sbatch
• Conflict due to mismatch in loaded libraries at runtime

• If you use omnitrace-run and it complains saying "Use omnitrace-run", then try running your job
interactively using srun instead of using sbatch
• Conflict due to mismatch in loaded libraries at runtime

5/29/2024 AMD @ ORNL

43 |

[Public]

Tips: To visualize very large proto files, load into memory first

Linux®

• curl -LO https://get.perfetto.dev/trace_processor
• chmod +x ./trace_processor

• ./trace_processor –httpd <path to trace file>
• Open up Chrome browser and go to https://ui.perfetto.dev
• When prompted, click on "Yes, use loaded trace"

Windows®

• Open up https://get.perfetto.dev/trace_processor in a browser to download the Python™ script
• py trace_processor --httpd <trace file>
• You may need to download and install Python on your windows system

• Open up Chrome browser and go to https://ui.perfetto.dev
• When prompted, click on "Yes, use loaded trace"

5/29/2024 AMD @ ORNL

https://ui.perfetto.dev/
https://get.perfetto.dev/trace_processor
https://ui.perfetto.dev/

44 |

[Public]

Research version of Omnitrace is brittle

• Viewing traces of multiple ranks together was possible using simple concatenation of proto files:
 cat perfetto-trace-0.proto perfetto-trace-1.proto > merged.proto

• Merging broken now due to change in expected data format in Perfetto

• Building Omnitrace with Dyninst from source requires GCC, may interfere with CCE
• On Frontier, omnitrace/1.11.2 is set up to work with CCE and show OpenMP offload and HIP activity

• If you load ROCm, reload Omnitrace as the right build has to be made available

• Python version in your environment matters

• Production version of Omnitrace will be more robust

5/29/2024 AMD @ ORNL

45 |

[Public]

Homework

• See HIP equivalent of Ver1 here:
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign_HIP/Ver1

• Use Omnitrace to obtain traces for a 4-rank run
• Progressively port the changes in Ver2 – Ver6 in the HIP version using HIP APIs for memory copies, etc.
• Look for memory copy activity and HIP API calls in Omnitrace traces
• Submit a PR with your code or add an issue with any concerns

5/29/2024 AMD @ ORNL

https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign_HIP/Ver1
https://github.com/amd/HPCTrainingExamples/pulls
https://github.com/amd/HPCTrainingExamples/issues

46 |

[Public]

References

• Omnitrace documentation website: https://rocm.github.io/omnitrace/index.html
• Previous talk describing various Omnitrace options: 15: GPU Profiling - Performance Timelines
• Ghost Exchange OpenMP offload Example suite on github
• ROCm docs: https://rocm.docs.amd.com/en/latest/
• ROCm Blog post: Introduction to profiling tools for AMD hardware

5/29/2024 AMD @ ORNL

https://rocm.github.io/omnitrace/index.html
https://fs.hlrs.de/projects/par/events/2024/GPU-AMD/
https://github.com/amd/HPCTrainingExamples/tree/main/MPI-examples/GhostExchange/GhostExchange_ArrayAssign
https://rocm.docs.amd.com/en/latest/
https://rocm.blogs.amd.com/software-tools-optimization/profilers/README.html

47 |

[Public]

Disclaimer

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions, and typographical errors. The information
contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component and motherboard
version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any
computer system has risks of security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update or otherwise correct or revise this
information. However, AMD reserves the right to revise this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person
of such revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO
RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON
FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,
EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Third-party content is licensed to you directly by the third party that owns the content and is not licensed to you by AMD. ALL LINKED THIRD-PARTY CONTENT IS PROVIDED
“AS IS” WITHOUT A WARRANTY OF ANY KIND. USE OF SUCH THIRD-PARTY CONTENT IS DONE AT YOUR SOLE DISCRETION AND UNDER NO CIRCUMSTANCES
WILL AMD BE LIABLE TO YOU FOR ANY THIRD-PARTY CONTENT. YOU ASSUME ALL RISK AND ARE SOLELY RESPONSIBLE FOR ANY DAMAGES THAT MAY ARISE
FROM YOUR USE OF THIRD-PARTY CONTENT.

© 2024 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, ROCm, Infinity Fabric, and combinations thereof are trademarks of Advanced Micro Devices,
Inc. in the United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

Windows is a registered trademark of Microsoft Corporation in the US and/or other countries.

Git and the Git logo are either registered trademarks or trademarks of Software Freedom Conservancy, Inc., corporate home of the Git Project, in the United States and/or other
countries

PCIe® is a registered trademark of PCI-SIG Corporation.

The OpenMP name and the OpenMP logo are registered trademarks of the OpenMP Architecture Review Board

5/29/2024 AMD @ ORNL

