
First experiences at the exascale with Parthenon –
a performance portable block-structured

adaptive mesh refinement framework

Philipp Grete
Hamburg Observatory

in collaboration with the Parthenon community (J. Dolence, F. Glines, J. Miller, P. Mullen, B. Prather,
B. Ryan, L. Roberts, J. Stone, and more) and J. Holmen (OLCF)

January 2024 OLCF User Conference Call

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 1 / 10

(Adaptive) Mesh Refinement (AMR)

Decompose domain into blocks
Blocks

are logically independent
have fixed size
communicate with their neighbor through ghost
cells/buffer zones

“Refine” (split block into more blocks) to
increase spatial resolution in region(s) of interest
save computational resources

Block size is important
ratio of active to passive zones
number of neighbors
thickness of transition regions

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 2 / 10

Parthenon – Performance portable AMR framework

Open collaboration (10+ active developers)
AMR framework heavily expanded from Athena++
Intermediate abstraction layer hiding Kokkos
Key performance design decisions

device first/resident
block packing
device-to-device communication via one-sided,
async. MPI

Advanced features (e.g., abstract data containers,
package system, task-based parallelism, sparse variables)
Multiple downstream codes

AthenaPK (MHD), Phoebus (GRMHD), KHARMA
(GRMHD), parthenon-hydro (miniapp)

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 3 / 10

Performance

Packing #1: Kernel fusing ↔ block packing [Grete+ IJHPCA 2023 – Parthenon collaboration]

Launch overhead
≈ 5µs launch, inherently serial
(launching in parallel does not help)
possibly > 100, 000 buffers per device

Small blocks ⇒ little work
163 = 4k cells ↔ >1k cores/device
even Riemann solve is < 5µs

⇒ Combine work into fewer kernels

Host

Dev.

Host

Buffer filling kernel

MPI_Start
BarrierKernel launch

time

Block 1
Buffer 1

Block 1
Buffer 2

Block 1
Buffer 3

Block 2
Buffer 1

Block N
Buffer M

Original

Host

Dev.

Host

Block 1
Buffer 1-M

Buffer packing

Block 1
Buffer M

Block 2
Buffer 1-M

Block N
Buffer 1-M

Host

Dev.

Host

Block 1-N
Buffer 1-M

Buffer and block packing

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 4 / 10

Performance

Packing #1: Kernel fusing ↔ block packing [Grete+ IJHPCA 2023 – Parthenon collaboration]

Launch overhead
≈ 5µs launch, inherently serial
(launching in parallel does not help)
possibly > 100, 000 buffers per device

Small blocks ⇒ little work
163 = 4k cells ↔ >1k cores/device
even Riemann solve is < 5µs

⇒ Combine work into fewer kernels 100 101 102 103

MeshBlocks

100

101

102

Ov
er

he
ad

 to
 o

ne
 b

lo
ck

GPU original

CPU original

GPU 2563 mesh with blocks 2563 to 163

CPU 1283 mesh with blocks 1283 to 83

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 4 / 10

Performance

Packing #1: Kernel fusing ↔ block packing [Grete+ IJHPCA 2023 – Parthenon collaboration]

Launch overhead
≈ 5µs launch, inherently serial
(launching in parallel does not help)
possibly > 100, 000 buffers per device

Small blocks ⇒ little work
163 = 4k cells ↔ >1k cores/device
even Riemann solve is < 5µs

⇒ Combine work into fewer kernels 100 101 102 103

MeshBlocks

100

101

102

Ov
er

he
ad

 to
 o

ne
 b

lo
ck

GPU original
GPU pack buffers

CPU original
CPU pack buffers

GPU 2563 mesh with blocks 2563 to 163

CPU 1283 mesh with blocks 1283 to 83

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 4 / 10

Performance

Packing #1: Kernel fusing ↔ block packing [Grete+ IJHPCA 2023 – Parthenon collaboration]

Launch overhead
≈ 5µs launch, inherently serial
(launching in parallel does not help)
possibly > 100, 000 buffers per device

Small blocks ⇒ little work
163 = 4k cells ↔ >1k cores/device
even Riemann solve is < 5µs

⇒ Combine work into fewer kernels 100 101 102 103

MeshBlocks

100

101

102

Ov
er

he
ad

 to
 o

ne
 b

lo
ck

GPU original
GPU pack buffers
GPU pack buffers & blocks

CPU original
CPU pack buffers
CPU pack buffers & blocks

GPU 2563 mesh with blocks 2563 to 163

CPU 1283 mesh with blocks 1283 to 83

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 4 / 10

Performance

Scaling on TOP500 #1 Frontier [Grete+ IJHPCA 2023 – Parthenon collaboration]

108

109

zo
ne

-c
yc

le
s/

s/
no

de

100 101 102 103 104

nodes

0.0

0.5

1.0

pa
ra

lle
l e

ff.

SummitGPU
SummitCPU
BoosterGPU
BoosterCPU

Ookami
Frontera
FrontierGPU

Uniform mesh (weak)

108

109

zo
ne

-c
yc

le
s/

s/
no

de
100 101 102 103

nodes

0.0

0.5

1.0

pa
ra

lle
l e

ff.

SummitGPU
SummitCPU
BoosterGPU
BoosterCPU

Frontera
FrontierGPU (small)
FrontierGPU (large)

Uniform mesh (strong)

108

zo
ne

-c
yc

le
s/

s/
no

de

100 101 102

nodes

0.0

0.5

1.0

pa
ra

lle
l e

ff.

SummitGPU
SummitCPU

FrontierGPU

Multilevel mesh (strong)
(24k 323 blocks)

⇒ 92% weak scaling efficiency on 73,728 GPUs and
⇒ ≳ 50% strong scaling efficiency for 100x increase in resources

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 5 / 10

Performance

Packing #2: Messages in a bottle(neck) [Holmen, Grete & Melesse Vergara CUG23]

1024 nodes

16384x81922 mesh

Vary block sizes and pack sizes

⇒ Messaging matters
⇒ Room for more optimizations

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 6 / 10

Performance

IO #1: 1x9000 vs 9000x1 –
What could possibly go wrong? [Holmen, Grete & Melesse Vergara CUG23]

parthenon-hydro part of OLCF test harness
(used for system testing)
“All nodes” versus “every node” tests
Goal: Isolate “bad” nodes
Observed strong variability

0.00

5.00

10.00

15.00

20.00

25.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00

Cy
cl

e-
St

ep
 T

im
e

(s
)

Run Time (s)

Output to a Single Directory

performance over time of a random node
in “every node” test case

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 7 / 10

Performance

IO #1: 1x9000 vs 9000x1 –
What could possibly go wrong? [Holmen, Grete & Melesse Vergara CUG23]

parthenon-hydro part of OLCF test harness
(used for system testing)
“All nodes” versus “every node” tests
Goal: Isolate “bad” nodes
Observed strong variability

⇒ stat on parallel file systems does not scale
Potentially relevant to parameter sweeps

0.00

5.00

10.00

15.00

20.00

25.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00 700.00 800.00 900.00

Cy
cl

e-
St

ep
 T

im
e

(s
)

Run Time (s)

Output to a Single Directory

performance over time of a random node
in “every node” test case

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 7 / 10

Performance

IO #2: Writing (a) “large” file(s)

Parallel HDF5 (with MPI IO)
Single file per output
No issues on Alpine (GPFS)

writing 6TB files in <15 s
using collective buffering (one
rank per node with 16MB
buffer size)

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 8 / 10

Performance

IO #2: Writing (a) “large” file(s)

Parallel HDF5 (with MPI IO)
Single file per output
No issues on Alpine (GPFS)

writing 6TB files in <15 s
using collective buffering (one
rank per node with 16MB
buffer size)

On Orion (Lustre) for INCITE runs (2.7TB)
284 s: defaults
25 s: explicit striping*
16 s: explicit striping, no collective buffering

BUT Lots of (silent) “I/O Errors”

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 8 / 10

Performance

IO #2: Writing (a) “large” file(s)

Parallel HDF5 (with MPI IO)
Single file per output
No issues on Alpine (GPFS)

writing 6TB files in <15 s
using collective buffering (one
rank per node with 16MB
buffer size)

On Orion (Lustre) for INCITE runs (2.7TB)
284 s: defaults
25 s: explicit striping*
16 s: explicit striping, no collective buffering

BUT Lots of (silent) “I/O Errors”

⇒ Monitoring script for silent failures
Single file per output does not scale (for us on Lustre)

⇒ HDF5 subfiling (I did not get it working)
⇒ OpenPMD/ADIOS2 (tests successfully wrote 4.5TB file in <1 s)

* use “capacity” tier not “performance”

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 8 / 10

Performance

Large scale visualization

Paraview on Andes
Establishing connection takes a long time
(⇒ increase timeout)
Preselect data (⇒ reduce memory
footprint)
Be patient!

Next: In-situ with Ascent
Still fighting performance degradation

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 9 / 10

Conclusions – Take home message(s) [Grete+ IJHPCA 2023 – Parthenon collaboration]

Fuse kernels
Remain flexible wrt. communication
Do not write to a single large file
Introduce safety checks (e.g., for timeouts)
BENCHMARK!

We are an open, welcoming community. Meet us at/on

https://github.com/parthenon-hpc-lab

Matrix chat: #parthenon-general:matrix.org

Philipp Grete Parthenon – AMR at the exascale 31 Jan 2024 10 / 10

https://github.com/parthenon-hpc-lab
#parthenon-general:matrix.org

