
ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Introduction to OpenMP Device Offload
Swaroop Pophale
Computer Scientist, CSMD

2

Outline

• Introduction to OpenMP

• History of OpenMP

• Recap of OpenMP Worksharing

• Introduction to OpenMP Offload

• Offload Steps

• Expressing parallelism

• Useful Runtime Routines

• Hands On

3

Introduction to OpenMP
It is a An Application Program Interface (API) to allow programmers to

develop threaded parallel codes on shared memory computational units.

• Directives are understood by OpenMP aware

compilers (others are free to ignore)

• Generates parallel threaded code
– Original thread becomes thread “0”
– Share resources of the original thread (or rank)
– Data-sharing attributes of variables can be

specified based on usage patterns

Reference: Somewhere from the web

4

History of OpenMP: 1997 - 2021

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

In spring, 7
vendors and

the DOE agree
on the spelling

of parallel
loops and form
the OpenMP

ARB. By
October,

version 1.0 of
the OpenMP
specification
for Fortran is

released.

1.0

Minor
modifications

1.1

cOMPunity, the
group of
OpenMP
users, is
formed to

enable
researcher

participation.an
d organize
workshops

2.0

C/C++ v 1.0.
First hybrid
applications

with MPI* and
OpenMP
appear.

1.0

The merge of
Fortran

and C/C+
specifications

begins.

2.0

Unified Fortran
and C/C++:

Bigger than both
individual

specifications
combined.

2.5

Incorporates
task

parallelism.
The OpenMP

memory model
is defined and

codified.

3.0

Support
min/max

reductions in
C/C++.

3.1

Supports
offloading

execution to
accelerator

and
coprocessor

devices, SIMD
parallelism,
and more.
Expands
OpenMP
beyond

traditional
boundaries.

4.0

OpenMP supports
taskloops, task

priorities, doacross
loops, and hints for
locks. Offloading

now supports
asynchronous
execution and

dependencies to
host execution.

4.5

2016 2017 2018

Supports:
Memory
Management
API, Reverse
Offload, Loop
construct,
Detached
tasks, Custom
Mappers,
Tools API

5.0

2019 2020

loop
transformation
(tiling, ...),
Improved `omp
loop`*, variant
overloading,
runtime variant
selection*,
compiler
agnostic "built-
in assume"

5.05.1

Permanent ARB Auxiliary ARB

2021

Specification
clarifications

5.2

Reference: 2021 Exascale Computing Project Virtual Annual Meeting April 12 – 16, 2021

5

Recap: OpenMP Worksharing

#pragma omp parallel

#pragma omp parallel for

• Creates a team of OpenMP threads that execute the structured-block that
follows

• Number of threads property is generally specified by OMP_NUM_THREADS
env variable or num_threads clause (num_threads has precedence)

All threads will execute
the region

All threads will execute a part
of the iterations

6

Recap: OpenMP Worksharing

Serial

• 1 thread/process will execute
each iteration sequentially

• Total time =
time_for_single_iteration * N

Parallel

• Say, OMP_NUM_THREADS = 4

• 4 threads will execute each
iteration sequentially (overwriting
values of C)

• Total time =
time_for_single_iteration * N

Parallel Worksharing

• Say, OMP_NUM_THREADS = 4

• 4 threads will distribute iteration
space (roughly N/4 per thread)

• Total time =
time_for_single_iteration * N/4

for (int i = 0; i < N; ++i)
{

C[i] = A[i] + B[i];
}

#pragma omp parallel
for (int i = 0; i < N; ++i)
{

C[i] = A[i] + B[i];
}

#pragma omp parallel for
for (int i = 0; i < N; ++i)
{

C[i] = A[i] + B[i];
}

7

Introduction: OpenMP Offload

• OpenMP offload constructs are a set of directives for C++ and Fortran that
were introduced in OpenMP 4.0 and further enhanced in later versions.

Host Memory

………
DEVICES

CPU

HOST

Device 1 Memory

Device N Memory

Interconnect

Data and Instructions

Data

8

Summit vs. Frontier

Summit Node Frontier Node

9

OpenMP Offload: Steps

• Identification of compute kernels
– CPU initiates kernel for execution on the device

• Expressing parallelism within the kernel

• Manage data transfer between CPU and Device
– relevant data needs to be moved from host to device memory
– kernel executes using device memory
– relevant data needs to be moved from device to main memory

10

Step 1: Identification of Kernels to Offload

• Look for compute intensive code and that can benefit from parallel
execution
– Use performance analysis tools to find bottlenecks

• Track independent work units with well defined data accesses

• Keep an eye on platform specs
– GPU memory is a precious resource

• Confirm via Profiling
– Tools like rocprof and HPCToolkit

• More information regarding rocprof can be found at: https://docs.olcf.ornl.gov/systems/frontier_user_guide.html#optimization-and-profiling

• More information on HPCToolkit can be found at: http://hpctoolkit.org

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

11

How to Offload ?

– A device data environment is created for the structured block
– The code region is mapped to the device and executed.

C/C++ Fortran Description

#pragma omp target
[clause[[,] clause] ...] new-
line
structured-block

!$omp target [clause[[,] clause] ...]
loosely/tightly-structured-block
!$omp end target

The target construct offloads the
enclosed code to the
accelerator.

12

OpenMP Offload: Target Directive

• Clauses allowed on the target directive:
– if([target :] scalar-expression)

– device([device-modifier :] integer-expression)
– thread_limit(integer-expression)
– private(list)
– firstprivate(list)

– in_reduction(reduction-identifier : list)
– map([[map-type-modifier[,] [map-type-modifier[,] ...]] map-type:] locator-list)
– is_device_ptr(list)

– has_device_addr(list)
– defaultmap(implicit-behavior[:variable-category])
– nowait
– depend([depend-modifier,] dependence-type : locator-list)

– allocate([allocator :] list)
– uses_allocators(allocator[(allocator-traits-array)] [,allocator[(allocator-traits-array)] ...])

13

OpenMP Offload: Example using omp target

/*C code to offload Matrix Addition Code to Device*/

…
int A[N][N], B[N][N], C[N][N];
/*
initialize arrays

*/
#pragma omp target
{
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
C[i][j] = A[i][j] + B[i][j];

}
}

} // end target

The target construct is a task generating construct

Compute C

Transfer A, B, C

Device

Transfer A, B, C

Kernel

14

Step 2: Expressing Parallelism

/*C code to offload Matrix Addition Code to Device*/

…
int A[N][N], B[N][N], C[N][N];
/*
initialize arrays

*/
#pragma omp target
{
for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {
C[i][j] = A[i][j] + B[i][j];

}
}

} // end target

Compute C

Transfer A, B, C

Device

Transfer A, B, C

Idle threads

15

target target teams target teams distribute

#pragma omp target
for (int i = 0; i < 12; ++i)
{

C[i] = A[i] + B[i];
}

#pragma omp target teams
num_teams(3)
for (int i = 0; i < 12; ++i)
{

C[i] = A[i] + B[i];
}

#pragma omp target teams
distribute num_teams(3)
for (int i = 0; i < 12; ++i)
{

C[i] = A[i] + B[i];
}

target teams distribute
parallel

#pragma omp target teams
distribute parallel for
num_teams(3)
for (int i = 0; i < 12; ++i)
{

C[i] = A[i] + B[i];
}

Compute C

Device

Compute C

Device

i=
 0

 to
 3

i=
 4

 to
 7

i=
 8

 to
 1

1

team 0 team 1 team 2

i=
 0

 to
 1

1

Compute C

Device

team 0 team 1 team 2

i=
 0

 to
 1

1

i=
 0

 to
 1

1

i=
 0

 to
 1

1
Compute Ci=

 1

i=
 2

i=
 3

i=
 1

0

i=
 0

i=
 1

1

team 0 team 2

…

Device

Expressing Parallelism: Increasing device utilization

16

Expressing Parallelism: Device Execution Directives
C/C++ Fortran Description

#pragma omp target [clause[[,]
clause] ...] new-line
structured-block

!$omp target [clause[[,] clause] ...]
loosely/tightly-structured-block
!$omp end target

The target construct offloads the enclosed
code to the accelerator.

#pragma omp target teams [clause[
[,] clause] ...] new-line
structured-block

!$omp target teams [clause[[,] clause] ...]
loosely/tightly-structured-block
!$omp end target teams

The target construct offloads the enclosed
code to the accelerator.
The teams construct creates a league of
teams. The initial thread of each team
executes the code region.

#pragma omp target teams
distribute [clause[[,] clause] ...]
new-line
loop-nest

!$omp target teams distribute [clause[[,]
clause] ...]
loop-nest
[!$omp end target teams distribute]

The target construct offloads the enclosed
code to the accelerator.
A league of thread teams is created, and
loop iterations are distributed and
executed by the initial teams.

#pragma omp target teams
distribute parallel for [clause[[,]
clause] ...] new-line
loop-nest

!$omp target teams distribute parallel do
[clause[[,] clause] ...]
loop-nest
[!$omp end target teams distribute parallel do]

*need simd to map to threads

The target construct offloads the enclosed
code to the accelerator.
A league of thread teams are created,
and loop iterations are distributed and
executed in parallel by all threads of the
teams.

17

Expressing Parallelism: Other combinations
C/C++ Fortran Description

#pragma omp target parallel
[clause[[,] clause] ...] new-line
structured-block

!$omp target parallel [clause[[,]
clause] ...]
loosely-structured-block
!$omp end target parallel

The target construct offloads the enclosed code to the
accelerator.
The parallel construct creates a team of OpenMP threads
that execute the region.

#pragma omp target parallel for
[clause[[,] clause] ...] new-line
loop-nest

!$omp target parallel do [clause[[,]
clause] ...]
loop-nest
[!$omp end target parallel do]

The target construct offloads the enclosed code to the
accelerator.
The parallel for/do combined construct creates a thread
team and distributes the inner loop iterations over threads.

#pragma omp target parallel
loop [clause[[,] clause] ...] new-
line
loop-nest

!$omp target parallel loop [clause[
[,] clause] ...]
loop-nest
[!$omp end target parallel loop]

The target construct offloads the enclosed code to the
accelerator.
The parallel construct creates a team of OpenMP threads
that execute the region.
The loop construct allows concurrent execution of the
associated loops.

#pragma omp target teams loop
[clause[[,] clause] ...] new-line
loop-nest

!$omp target teams loop [clause[[,]
clause] ...]
loop-nest
[!$omp end target teams loop]

The target construct offloads the enclosed code to the
accelerator.
The teams construct creates a league of teams.
The loop construct allows concurrent execution of the
associated loops.

18

Expressing Parallelism : SIMD
C/C++ Fortran Description

#pragma omp target simd [clause[[,]
clause] ...] new-line
loop-nest

!$omp target simd [clause[[,]
clause] ...]
loop-nest
[!$omp end target simd]

Semantics are identical to explicitly specifying
a target directive immediately followed by
SIMD directive.

#pragma omp target parallel for simd \
clause[[,] clause] ...] new-line
loop-nest

!$omp target parallel do simd
[clause[[,] clause] ...]
loop-nest
[!$omp end target parallel do simd]

Semantics are identical to explicitly specifying
a target directive immediately followed by a
parallel worksharing-loop SIMD directive.

#pragma omp target teams distribute
simd \
[clause[[,] clause] ...] new-line
loop-nest

!$omp target teams distribute simd
[clause[[,] clause] ...]
loop-nest
[!$omp end target teams distribute
simd]

Semantics are identical to explicitly specifying
a target directive immediately followed by a
teams distribute simd directive

#pragma omp target teams distribute
parallel for simd \
[clause[[,] clause] ...] new-line
loop-nest

!$omp target teams distribute
parallel do simd [clause[[,] clause]
...]
loop-nest
[!$omp end target teams distribute
parallel do simd]

Semantics are identical to explicitly specifying
a target directive immediately followed by a
teams distribute parallel worksharing-loop SIMD
directive.

* We will revisit this when we discuss Frontier specifics *

20

Useful RT Routines: Device Environment

C/C++ Fortran
Where to call ?

Description
Host Target

region
int omp_get_num_procs(void); integer function omp_get_num_procs() returns the number of processors available to

the device

void omp_set_default_device(int
device_num);

subroutine
omp_set_default_device(device_num)
integer device_num

sets the value of the default-device-var ICV
of the current task to device_num

int omp_get_default_device(void); integer function
omp_get_default_device()

returns the default target device

int omp_get_num_devices(void); integer function
omp_get_num_devices()

returns the number of non-host devices
available for offloading code or data.

int omp_get_device_num(void); integer function
omp_get_device_num()

returns the device number of the device on
which the calling thread is executing

int omp_is_initial_device(void); logical function omp_is_initial_device() returns true if the current task is executing on
the host otherwise, it returns false.

int omp_get_initial_device(void); integer function
omp_get_initial_device()

return the device number of the host device

21

Teams Region: Useful RT Routines

C/C++ Fortran
Where to call ?

Description
Host Target

region
int
omp_get_num_teams(void);

integer function
omp_get_num_teams()

returns the number of initial teams in
the current teams region.

int
omp_get_team_num(void);

integer function
omp_get_team_num()

returns the initial team number of the
calling thread

void omp_set_num_teams(int
num_teams);

subroutine
omp_set_num_teams(num_teams)
integer num_teams

the number of threads to be used for
subsequent teams regions that do not
specify a num_teams clause

int
omp_get_max_teams(void);

integer function
omp_get_max_teams()

returns an upper bound on the
number of teams that could be
created by a teams construct

void
omp_set_teams_thread_limit(i
nt thread_limit);

subroutine
omp_set_teams_thread_limit(thread_li
mit)
integer thread_limit

defines the maximum number of
OpenMP threads per team

22

References
• Examples were adapted from: https://github.com/SOLLVE/sollve_vv

• OpenMP Specification (5.x)
– https://www.openmp.org/specifications/

• https://www.nas.nasa.gov/hecc/assets/pdf/training/OpenMP4.5_3-20-19.pdf

• OpenMP Disussion @ 2021 Exascale Computing Project Virtual Annual Meeting (April 12 – 16, 2021)

https://github.com/SOLLVE/sollve_vv
https://www.nas.nasa.gov/hecc/assets/pdf/training/OpenMP4.5_3-20-19.pdf

