
Linaro Forge
Debugging and Optimization Tools for HPC

HPC Development Solutions from Linaro
Best in class commercially supported tools for HPC

Debug
Linaro DDT

Profile
Linaro MAP

Analyse
Linaro

Performance Reports

Linaro Forge

Performance Engineering for any architecture, at any scale

Linaro Forge

The de-facto standard for HPC development
● Most widely-used debugging and profiling suite in HPC
● Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging and profiling capabilities
● Powerful and in-depth error detection mechanisms (including memory debugging)
● Sampling-based profiler to identify and understand bottlenecks
● Available at any scale (from serial to exascale applications)

Easy to use by everyone
● Unique capabilities to simplify remote interactive sessions
● Innovative approach to present quintessential information to users

An interoperable toolkit for debugging and profiling

Linaro DDT Debugger Highlights

The scalable print alternative Stop on variable change Static analysis warnings on
code errors

Detect read/write beyond
array bounds

Detect stale memory
allocations

Bugs
Correct application

Analyze before you optimize
Measure all performance aspects.
You can’t fix what you can’t see.
Prefer real workloads over artificial tests.

I/O
Discover lines of code
spending a long time in I/O.
Trace and debug slow
access patterns.

Workloads
Detect issues with balance.
Slow communication calls
and processes.
Dive into partitioning code.

Communication
Track communication
performance.
Discover which communication
calls are slow and why.

Memory
Reveal lines of code bottlenecked
by memory access times.

Trace allocation and use of hot data
structure

Cores
Discover synchronization
overhead and core utilization

Synchronization-heavy code
and implicit barriers are
revealed

Vectorization
Understand numerical intensity
and vectorization level.

Hot loops, unvectorized code and
GPU performance reveleaed

Verification
Validate corrections and
optimal performance

The Performance
Roadmap
Optimizing high performance applications
Improving the efficiency of your parallel
software holds the key to solving more
complex research problems faster.

This pragmatic, 9 Step best practice
guide, will help you identify and focus on
application readiness, bottlenecks and
optimizations one step at a time.

Key : Linaro Forge
Linaro Performance Reports

Linaro Performance Reports

Gather a rich set of data
● Analyses metric around CPU, memory, IO, hardware counters, etc.
● Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
● Analyses data and reports the information that matters to users
● Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
● Define application behaviour and performance expectations
● Integrate outputs to various systems for validation (eg. continuous integration)
● Can be automated completely (no user intervention)

Characterize and understand the performance of HPC application runs

Relevant advice
to avoid pitfalls

Accurate and
Astute insight

Commercially
supported by Linaro

Linaro MAP Source Code Profiler Highlights

Find the peak memory use Fix an MPI imbalance Remove I?O bottleneck

Improve memory access Restructure for vectorizationMake sure OpenMP regions
make sense

MAP Capabilities

MAP is a sampling based scalable profiler
● Built on same framework as DDT
● Parallel support for MPI, OpenMP, CUDA
● Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis
● Stack traces
● Augmented with performance metrics

Adaptive sampling rate
● Throws data away - 1,000 samples per process
● Low overhead, scalable and small file size

Python Profiling

19.0 adds support for Python
● Call stacks
● Time in interpreter

Works with MPI4PY
● Usual MAP metrics

Source code view
● Mixed language support

map --profile jsrun -n 2 python3 ./diffusion-fv-2d.py

Note: Green as operation is on numpy
array, so backed by C routine, not
Python (which would be pink)

Debugging and Performance Engineering for
Nvidia and AMD GPUs

~

Thank you
Go to www.linaroforge.com
Beau.Paisley@linaro.org

http://www.linaro.org
mailto:Beau.Paisley@linaro.org

