
© 2026 Quantinuum. All Rights Reserved.

Helios and Next-
Generation Stack
ORNL Training
January 2026

Confidential & Proprietary Image: Visual representation of Helios deployed at a customer site

Irfan Khan

Sr. Applications Engineer

Zach Massa

Offering Management Lead

© 2026 Quantinuum. All Rights Reserved.

• Introduction to Quantinuum

• Hardware

• Guppy

• Job Submission on Helios

• Next generation emulation with Selene

• Wrap up and Summary

Agenda

© 2026 Quantinuum. All Rights Reserved.

Development Roadmap

© 2026 Quantinuum. All Rights Reserved.

Quantinuum is pioneering the

next step in quantum computing hardware as a service

Dynamic Transport to improve time to solution &

reduce the strength of memory errors.

*New features

• Heralded Leakage Measurement

• Automated Qubit Resource

Management

• All-to-all connectivity

• Mid-circuit measurement & reset

• Qubit Reuse Compiler

• Emulation and debugging

(Selene)

• Application-level Leakage

Detection

• Early Exit

• Arbitrary control flow

• Real-time Random Number

Generator

• Conditional Operations

• Real-time QEC decoding

• Parameterized 2-qubit

operations

Public

© 2026 Quantinuum. All Rights Reserved.

Legacy Technology Stack

Public

Emulator

Application programming Job Submission, optimization,

management and monitoring

Industry Standard
OpenQASM & QIR

Qiskit, Cirq and

OpenQasm

© 2026 Quantinuum. All Rights Reserved.

Next-Generation Technology Stack

SELENE

Guppy
Application

programming
Job Submission, optimization,

management and monitoring

QIR
Enables MSFT/

NVIDIA Software

Public

© 2026 Quantinuum. All Rights Reserved.

Quantinuum Helios

Public

Quantum Control

System

Output
Helios

RuntimeInput

Quantum Charge Coupled

Device
• Qubits are Barium ions

• Dedicated zones for

logic/initialization/measure

• High-fidelity ops via visible light laser

pulses on short ion chains

• Sympathetic Cooling via Ytterbium ions

• All-to-all Connectivity by physical

transport

• Scalability enabled by micro-fabricated

traps.

© 2026 Quantinuum. All Rights Reserved.

Evolution of Trap Architecture

Public

Logic regionstorage regionLogic and storage region

© 2026 Quantinuum. All Rights Reserved.

Computational Space
Encoding in S-manifold

Public

Non-computational

states

Computational states

KEY

𝑆1/2

F=0

F=1

m
F
 = -1 m

F
 = +1m

F
 = 0

12.6 GHz

| ۧ0

| ۧ1| ۧ2 | ۧ2

Computational Subspace

Hyperfine Spectra 171-Yb+

𝑆1/2

F=1

F=2

m
F
 = -1 m

F
 = +1m

F
 = 0

8.04 GHz

| ۧ1| ۧ2 | ۧ2

Hyperfine Spectra 137-Ba+

| ۧ0

© 2026 Quantinuum. All Rights Reserved.

Universal Native Gateset

Public

Gate Expression Guppy

Parameterized 1-Qubit Gate

𝑅𝑥𝑦 𝜃, 𝜙 = 𝑒
−

𝑖𝜃
2 cos 𝜙 𝑋+sin 𝜙 ෠𝑌

phased_x

Parameterized 1-Qubit Software Gate

𝑅𝑧 𝜆 = 𝑒−
𝑖𝜆
2

෠𝑍 rz

Fully Entangling 2-Qubit Gate

𝑍𝑍() = 𝑒−
𝑖𝜋
4

෠𝑍⨂ ෠𝑍 zz_max

Parametrized 2-Qubit Gate

𝑅𝑍𝑍 𝜃 = 𝑒−
𝑖𝜃
2

෠𝑍⨂ ෠𝑍 zz_phase

© 2026 Quantinuum. All Rights Reserved.

What is a QCCD junction?
First commercial QCCD junction

Public

Linear ion trap geometry

Junctions merge short linear traps Swap sorting replaced by junction sorting

Swap sorting time grows out of control

© 2026 Quantinuum. All Rights Reserved.

Junctions speed up qubit routing
First commercial QCCD junction

Public

Junction sorting to access

N qubits requires 1

operation per N qubits to

sort

Swap sorting for all N qubits

requires N operations per

qubits to achieve target

configuration

© 2026 Quantinuum. All Rights Reserved.

Dynamic Transport

Public

TKET

Compiler

Hardware

Compiler
Machine

Static transport planning

prior to execution

TKET

Compiler

Hardware

Compiler
MachineRuntime

On-the-fly transport

planning during execution

© 2026 Quantinuum. All Rights Reserved.

Quantinuum Helios

Key improvements over System Model H1/2

1. On-the-fly native operations (transport planning and gating

operations).

2. Different qubit ion (Yb to Ba) to reduce gating errors and

introduce heralded leakage measurement.

3. New ion trap with junction transport to deliver “twice-as-good”

system.

H2 Helios

of physical qubits 56 98

Physical 2-qubit gate infidelity 8.3 × 10−4 7.9 × 10−4

of logical qubits 10+ ~50

Logical 2-qubit gate infidelity 1 × 10−3 < 1 × 10−4

* https://docs.quantinuum.com/systems/user_guide/hardware_user_guide/performance_validation.html

*See below for source

© 2026 Quantinuum. All Rights Reserved.

QCCD architecture
differentiating features

All-to-All Connectivity

Nearest Neighbor

High-Fidelity Ops

All-to-All

Parameterized Angle

SQ and TQ gates

Isolated Ops Zones

Sympathetic Cooling

Long Coherence Times

Flexible and reconfigurable

1

0

+

+ +

+ +

MCMR and Arbitrary Control Flow

© 2026 Quantinuum. All Rights Reserved.

Current-Generation Stack

Public

Lowers to IR

Application

Programming

Compilation

and

optimisation

Backend

Submission API

Third-party

conversions

Pytket

Nexus

IR = Intermediate Representation

© 2026 Quantinuum. All Rights Reserved.

Next-Generation Stack

Public

Intermediate

Representation

(IR)

Application

Programming

Compilation

and

optimisation

Backend

Submission API

pytket Nexus

Third-party

conversions to

Guppy

TKET2HUGRGuppy

© 2026 Quantinuum. All Rights Reserved.

Why Guppy?
@guppy
def repeat_until_success() -> None:

 q = qubit()

 for i in range(5):

 a, b = h(qubit()), h(qubit())

 toffoli(a, b, q)

 s(q)

 toffoli(a, b, q)

 ra = measure(h(a))
 rb = measure(h(b)):

 if not (ra | rb):

 result("rus_attempts", i)

 result("q", measure(q))

Safe
Guppy’s type system catches costly mistakes before they

happen — including quantum-specific hazards.

Pythonic
If you can read Python, you can read Guppy. Its design

is inspired by Python’s readability and simplicity, making

it easy to learn. Guppy also lives inside Python, allowing

seamless inter-op.

Expressive
Write code that reads like the problem you’re solving.

Guppy’s syntax is clear, concise, and flexible enough to

capture complex quantum and classical logic without

unnecessary boilerplate.

© 2026 Quantinuum. All Rights Reserved.

Guppy Features

Arbitrary Control Flow

Full quantum measurement-dependent

control flow: write if-else conditions, for

and while loops, all in Python style.

Strongly Typed

The guppylang compiler uses a

powerful but unobtrusive type system

to provide helpful error messages..

Qubit Safety

Qubits have a linear type, following an

intuitive ownership model that prevents

no-cloning errors and memory leaks

Metaprogramming

Generate and transform Guppy code at

compile time to automate patterns,

optimise circuits, and reduce repetition.

Classical Compute

Perform classical calculations and data

manipulation alongside quantum

operations seamlessly.

Data Structures

Work with arrays, tuples, and user-

defined types in both classical and

quantum contexts.

First-class Functions

Define functions to write structured

quantum software and pass them just

like any other value.

Legacy Support

Easily integrate with existing quantum

toolchains like pytket — bridging the

gap with legacy circuit-building tools.

© 2026 Quantinuum. All Rights Reserved.

Guppy Program

Public

from guppylang.decorator import guppy

from guppylang.std.quantum import qubit, cx, h

@guppy

def bell() -> tuple[qubit, qubit]:​

 q0, q1 = qubit(), qubit()​

 h(q0)​

 cx(q0, q1)​

 return q0, q1

from guppylang.std.quantum import measure

from guppylang.std.builtins import result

@guppy

def main() -> None:

 q0, q1 = bell()

 v0 = measure(q0)

 v1 = measure(q1)

 result("q0", v0)

 result("q1", v1)

hugr = main.compile()

from selene_sim import Quest

main.emulator(n_qubits=2).with_simulator(Quest()).run()

• Application programming

• @guppy decorator required to define functions.

• All functions annotated with input types and return

types.

• main() is the program entry point.

• result: tag measurement outcomes to results

stream

• Local Compilation to hugr

• Execution with selene-sim

pip install guppylang

© 2026 Quantinuum. All Rights Reserved.

Technology Stack
A new language for application programming

Cloud instance

SELENE

HUGR
Intermediate

representation

Includes TKET2

compilation

Guppy
Application

programming

SELENE-SIM
Local instance

Public

© 2026 Quantinuum. All Rights Reserved.

Linear Typing

• Qubits can only be used once.

• Qubits cannot be copied

• Qubits cannot be implicitly discarded

Qubit Safety
Linearly Typed Qubit

No-cloning Theorem

Qubits cannot be copied.

No-deleting Theorem

Qubits cannot be deleted arbitrarily.

© 2026 Quantinuum. All Rights Reserved.

1. Qubits cannot be used after they are deallocated.

2. A multi-qubit gate cannot use qubits more then once.

3. Qubits cannot be discarded or leaked implicitly.

Safety & Ownership
Enforcing linearity as a constraint at compile time

Public

from guppylang import guppy

from guppylang.std.builtins import owned

from guppylang.std.quantum import qubit, h, cx, measure

@guppy

def owned_qubits(

 alice: qubit @ owned,

 bob: qubit

) -> bool:

 h(alice)

 cx(alice, bob)

 alice_c: bool = measure(alice)

 h(alice) # invalid operation

 return alice_c

h(alice) # invalid operation
 | ^^^^^ Variable `alice` with non-copyable type
`qubit` cannot be
 | borrowed ...
 |
13 | alice_c: bool = measure(alice)
 | ----- since it was already
consumed here

© 2026 Quantinuum. All Rights Reserved.

1. Qubits cannot be used after they are deallocated.

2. A multi-qubit gate cannot use qubits more then once.

3. Qubits cannot be discarded or leaked implicitly.

Safety & Ownership
Enforcing linearity as a constraint at compile time

Public

from guppylang import guppy

from guppylang.std.builtins import owned

from guppylang.std.quantum import qubit, h, cx, measure

@guppy

def borrow_qubits(

 alice: qubit,

 bob: qubit

) -> None:

 x(alice)

 h(alice)

 cx(alice, bob)

 cx(alice, alice) # invalid operation

25 | cx(alice, alice) # invalid operation
 | ^^^^^ Variable `alice` with non-copyable
type `qubit` cannot be
 | borrowed ...
 |
25 | cx(alice, alice) # invalid operation
 | ----- since it was already borrowed here

© 2026 Quantinuum. All Rights Reserved.

1. Qubits cannot be used after they are deallocated.

2. A multi-qubit gate cannot use qubits more then once.

3. Qubits cannot be discarded or leaked implicitly.

Safety & Ownership
Enforcing linearity as a constraint at compile time

Public

from guppylang.std.quantum import qubit, h

@guppy

def invalid(

 alice: qubit,

 bob: qubit

) -> tuple[qubit, qubit]:

 h(alice)

 cx(alice, bob)

Error: Drop violation|
38 | @guppy
39 | def main() -> None:
40 | alice = qubit()
 | ^^^^^ Variable `alice` with non-droppable type `qubit` is leaked

Help: Make sure that `alice` is consumed or returned to avoid the leak

© 2026 Quantinuum. All Rights Reserved.

Ownership required:

• Destructive operations on qubits

• Looping directly on qubits

Safety & Ownership
Enforcing linearity as a constraint

Public

from guppylang import guppy

from guppylang.std.builtins import owned

from guppylang.std.quantum import qubit, h, cx, measure

@guppy

def owned_qubits(

 alice: qubit @ owned,

 bob: qubit

) -> bool:

 h(alice)

 cx(alice, bob)

 alice_c: bool = measure(alice)

 return alice_c

from guppylang import guppy

from guppylang.std.quantum import qubit, h, cx

@guppy

def borrow_qubits(

 alice: qubit,

 bob: qubit

) -> None:

 x(alice)

 h(alice)

 cx(alice, bob)

Owned

Borrowed

© 2026 Quantinuum. All Rights Reserved.

Qubits & Collections of Qubits

from guppylang.std.quantum import qubit, h, cx, measure

from guppylang.std.builtins import array

@guppy

def get_qubits() -> tuple[qubit, qubit]:

 q0, q1 = qubit(), qubit()

 h(q0)

 cx(q0, q1)

 return (q0, q1)

@guppy

def get_qubit_array() -> array[qubit, 6]:

 qubit_array = array(qubit() for _ in range(6))

 return qubit_array

@guppy.struct

class qubit_struct:

 data_qubits: array[qubit, 16]

 ancilla: array[qubit, 4]

from pytket.circuit import Circuit

def get_teleportation_circ() -> Circuit:

 # Set up quantum and classical registers

 circ = Circuit()

 src = circ.add_q_register("src", 1)

 alice = circ.add_q_register("Alice", 1)

 src_c = circ.add_c_register("src_c", 1)

Guppy

Public

© 2026 Quantinuum. All Rights Reserved.

Gate Operations

from guppylang.std.quantum import h, cx, measure, x, qubit

@guppy

def q_ops0() -> None:

 alice, bob = qubit(), qubit()

 h(alice)

 cx(alice, bob)

 alice_c: bool = measure(alice)

 if alice_c:

 x(bob)

from pytket.circuit import Circuit

def get_teleportation_circ() -> Circuit:

 # Set up quantum and classical registers

 circ = Circuit()

 bob = circ.add_q_register("bob", 1)

 alice = circ.add_q_register("Alice", 1)

 alice_c = circ.add_c_register("Alice_c", 1)

 # Alice and Bob share a Bell state

 circ.H(alice[0])

 circ.CX(alice[0], bob[0])

 circ.Measure(alice[0], alice_c[0])

 circ.X(

 bob[0],

 condition_bits=[alice_c[0]],

 condition_value=1

)

 return circ

from guppylang.std.quantum_functional import h, cx

@guppy

def q_ops0() -> None:

 alice, bob = qubit(), qubit()

 alice, bob = cx(h(alice), bob)

Guppy

Public

© 2026 Quantinuum. All Rights Reserved.

from pytket.circuit import Circuit

def get_teleportation_circ() -> Circuit:

 # Set up quantum and classical registers

 circ = Circuit()

 bob = circ.add_q_register("bob", 1)

 alice = circ.add_q_register("Alice", 1)

 alice_c = circ.add_c_register("Alice_c", 1)

 # Alice and Bob share a Bell state

 circ.H(alice[0])

 circ.CX(alice[0], bob[0])

 circ.Measure(alice[0], alice_c[0])

 circ.X(

 bob[0],

 condition_bits=[alice_c[0]],

 condition_value=1

)

 return circ

Conditional Branching

from guppylang.std.quantum import h, cx, measure, x, qubit

@guppy

def q_ops0() -> None:

 alice, bob = qubit(), qubit()

 h(alice)

 cx(alice, bob)

 alice_c: bool = measure(alice)

 if alice_c:

 x(bob)

Guppy

Public

© 2026 Quantinuum. All Rights Reserved.

Dynamic Qubit Allocation
Automatic management of hardware qubit resources

Public

from guppylang import guppy

from guppylang.std.quantum import h, cx, measure, qubit, x, reset, discard

@guppy

def q_ops0() -> None:

 alice, bob = qubit(), qubit()

 h(alice)

 cx(alice, bob)

 alice_c: bool = measure(alice)

 if alice_c:

 x(bob)

 alice1= qubit() # can reuse the same ion

Helios Runtime dynamically determines

if new qubits are initialized, or existing qubits are

reused upon program request for qubits.

© 2026 Quantinuum. All Rights Reserved.

Automated Qubit Management

Public

Virtual Qubit
Guppy qubit that can be programmed by

the user.

Physical Qubit
Ion transport and operations

Logical Qubit
A “protected” qubit built from many “virtual

qubits”, or logical qubits.

System is responsible for ion allocation.

Users specify and control how logical qubits equate

to virtual qubits at the library level.

Users can request qubits on-the-fly with Guppy

© 2026 Quantinuum. All Rights Reserved.

Classical Computation
Compile Time

Public

Compile time computation

@guppy

def compute_arctan() -> float:

 return comptime(

 math.atan(2.0)/math.pi

)

Local HUGR Compilation

Guppy

HUGR

comptime

Computation
Why?

Local classical computation during HUGR

compilation

Third-party library usage

Inject Python values

© 2026 Quantinuum. All Rights Reserved.

• Arbitrary control flow

• Arbitrary classical Compute

Classical Computation
Runtime Computation

Public

Runtime Computation

@guppy

def decode_result(

 syndromes: array[bool, 2] @ owned

) -> Int:

 result = 0

 for s in syndromes:

 result += 2**int(s)

 if result == 1:

 return 0

 if result == 2:

 return 2

 if result == 3:

 return 1

© 2026 Quantinuum. All Rights Reserved.

Current

• Native Quantum Operations

• zzphase

• zzmax

• phasedx

• rz

• measure

• reset

• RNG: on-chip classical pseudo-random number generator

• get_shot_number: request index of current shot

• measure_and_reset: measure and reset the same ion

qsystem submodule
Native Quantinuum operations

Public

from guppylang import guppy

from guppylang.std.qsystem import phased_x, zz_phase,

measure

from guppylang.std.qsystem.random import RNG

from guppylang.std.builtins import array

from guppylang.std.quantum import qubit, angle

@guppy

def brickwork(

 qubits: array[qubit, 8],

 rng: RNG

) -> None:

 for i in range(len(qubits)):

 arg0 = rng.random_float()

 arg1 = rng.random_float()

 phased_x(qubits[i], angle(arg0), angle(arg1))

 for i in range(len(qubits) - 1):

 arg2 = rng.random_float()

 zz_phase(qubits[i], qubits[i + 1], angle(arg2))

@guppy

def main() -> None:

 qubits = array(qubit() for _ in range(8))

 rng = RNG(0)

 brickwork(qubits, rng)

 for q in qubits:

 measure(q)

 rng.discard()

guppy.compile_module()

© 2026 Quantinuum. All Rights Reserved.

Heralded Leakage Measurement

from guppylang import guppy

from guppylang.std.builtins import result

from guppylang.std.angles import angle

from guppylang.std.quantum import qubit

from guppylang.std.qsystem import measure_leaked, zz_phase, measure

@guppy

def main() -> None:

 q0 = qubit()

 q1 = qubit()

 zz_phase(q0, q1, angle(-0.125))

 maybe_leaked = measure_leaked(q1)

 if maybe_leaked.is_leaked():

 q2 = qubit()

 zz_phase(q0, q2, angle(-0.125))

 b1 = measure(q2)

 maybe_leaked.discard()

 else:

 b1 = maybe_leaked.to_result().unwrap()

 result("q0", measure(q0))

 result("q1", b1)

1st Detection

Laser

2nd Detection

Laser

State

Determination

fluorescence fluorescence L

fluorescence no fluorescence L

no fluorescence fluorescence 1

no fluorescence no fluorescence 0

© 2026 Quantinuum. All Rights Reserved.

Hardware-Tier Execute Jobs

Nexus-Tier Execute Jobs

Job Submission

Fair Queue Execution

ExecutionFair Queue

Quantinuum Queues for Execute Job

Nexus QueuesQuantinuum

Systems Queues

Nexus-hosted emulation targets

Hardware Quantinuum-hosted

emulators

Fair queue selection based on

number of concurrent jobs per user

Fair queue selection based on

overall HQC accumulation per org

© 2026 Quantinuum. All Rights Reserved.

“Dynamic” Programs

@guppy

def repeat_until_success() -> None:

 """

 Repeat-until-success circuit for

Rz(acos(3/5))

 from Nielsen and Chuang, Fig. 4.17.

 """

 q = qubit()

 for i in range(5):

 a, b = h(qubit()), h(qubit())

 toffoli(a, b, q)

 s(q)

 toffoli(a, b, q)

 if not (measure(h(a)) | measure(h(b))):

 result("rus_attempts", i)

 result("q", measure(q))

E X I T

R E P E AT

S TA R T

Q u a n t u m

O p e r a t i o n s

Scenario 1:

• All loops complete successfully

• Condition is never satisfied

• Cost for first shot

Scenario 2:

• loops breaks after 2 iterations

• Condition is satisfied

• Cost for second shot

© 2026 Quantinuum. All Rights Reserved.

HQC = Hardware Quantum Credit

▪ Required specifiction before

job submission

Max Cost Estimate via Hardware Quantum Credits

▪ Enables management of

organization’s access𝐻𝑄𝐶 = 5 +
𝑁1𝑞 + 10𝑁2𝑞 + 5𝑁𝑚

5000
𝐶

▪ 𝑁1𝑞: number of single-qubit gates

▪ 𝑁2𝑞: number of two-qubit gates

▪ 𝑁𝑚: number of SPAM operations

▪ 𝐶: number of shots

▪ All operations are costed on

an inputted circuits including

conditional blocks

© 2026 Quantinuum. All Rights Reserved.

Max Cost Estimation

hugr_binary = repeat_until_success.compile()

ref_hugr = qnx.hugr.upload(

 hugr_binary,

 name=f"repeat-until-success-{unique_suffix}"

)

prediction = qnx.hugr.cost(

 programs=[ref_hugr],

 n_shots=[10]

)

Compile

Upload

Estimate

Cost

@guppy

def repeat_until_success() -> None:

 q = qubit()

 for i in range(5):

 a, b = h(qubit()), h(qubit())

 toffoli(a, b, q)

 s(q)

 toffoli(a, b, q)

 if not (measure(h(a)) | measure(h(b))):

 result("rus_attempts", i)

 result("q", measure(q))

• Program upload

• Input: Program

• Input: User Friendly Name

• Returns: Program Reference

• Max Cost Estimation

• Input: Program Reference

• Input: Number of shots

• Returns: Max Cost Estimate

© 2026 Quantinuum. All Rights Reserved.

Job Submission

• Device Specification

• Machine Name

• Max Cost for program

• Max Number of Qubits

• Argument

• User Friendly Name

• Backend Configuration

• Number of shots

• User Program

• Returns

• Job Result

n_shots = 100

ref_execute_job = qnx.start_execute_job(

 programs=[ref_hugr],

 backend_config=config,

 n_shots=[10],

 name=f"execute-job-{name_suffix}"

)

qnx.jobs.wait_for(ref_execute_job)

ref_result = qnx.jobs.results(ref_execute_job)[0]

result = ref_result.download_result()

config = qnx.models.HeliosConfig(

 system_name="Helios-1E",

 max_cost=prediction,

 emulator_config=qnx.models.HeliosEmulatorConfig(

 n_qubits=3,

 simulator=qnx.models.StatevectorSimulator()

)

)

© 2026 Quantinuum. All Rights Reserved.

Compilation Lifecycle

Cloud

submission

Client-side

Server-side

Guppy
Source

Language

HUGR
Compact

representation

Local compilation

Client-side

HUGR
Compact

representation

Runtime
QIS
Machine

representation

Hardware

Compiler Native

Ops
Transport, gating

Server-side

HUGR
Compact

representation

© 2026 Quantinuum. All Rights Reserved.

Job Lifecycle

User

User Nexus

Nexus Systems

Systems

Submit Job
Submit Job

Check StatusStatus (Complete)
Loop

Get Result

© 2026 Quantinuum. All Rights Reserved.

Access

• Availability:

• Client-side package selene_sim (current)

• Nexus-hosted Selene instance (upcoming)

• Available plugins to optionally specify and consume

alternate features.

• Users can develop custom plugins upon extensibility

API release.

Selene

Public

Machine Emulation with customized noise

model and advanced hardware features.

Resource Estimation to estimate program

metrics across all conditional branches.

Program Debugging to test successful traversal

of conditional branches.

pip install selene-sim

Emulation framework

© 2026 Quantinuum. All Rights Reserved.

Simulation

• Statevector

• Stabilizer

• Matrix Product States

• Coinflip

• Classical Replay

• Quantum Replay

Runtime

• Helios Runtime

• Simple Runtime

Error Model

• No error model

• Simple Error Model

• Machine-specific Error Model

Selene
Digital twin for Helios

Public

Includes emulation, resource estimation and program debugging

capabilities.

Nexus-only

Upcoming

© 2026 Quantinuum. All Rights Reserved.

Selene Operation

Public

• Runtime: Route quantum (and transport) operations from program to simulator.

• Error Model: modify routed quantum operations to introduce noise mechanisms.

• Simulation: Different modalities available as user-specifiable plugins.

User customizable

component

Runtime

Classical function execution

User Program Report Result

Classical Utilities

Error Model Simulation

© 2026 Quantinuum. All Rights Reserved.

Emulation
Statevector emulation

Public

from selene_sim import build
from selene_sim import Quest
from hugr.qsystem.result import QsysResult

simulator = Quest()

runner = build(hugr)

qsys_result = QsysResult(runner.run_shots(
 simulator,
 n_qubits=4,

))

qsys_result.collated_counts()

• QsysResult(results=[QsysShot(
entries=[('result', 1),
('result', 1), ('result', 1),
('result', 1)]),
QsysShot(entries=[('result',
0), ('result', 0), ('result',
0), ('result', 0)]),
QsysShot(entries=[('result',
1), ('result', 1), ('result',
1), ('result', 1)]), …])

Counter({(('result', '1111'),): 54, (('result', '0000'),): 46})

© 2026 Quantinuum. All Rights Reserved.

from selene_sim import DepolarizingErrorModel

p_1q = 1e-4
p_2q = 2e-3
p_meas = 1e-6
p_init = 1e-6

error_model = DepolarizingErrorModel(
 p_1q=p_1q,
 p_2q=p_2q,
 p_meas=p_meas,
 p_init=p_init

)

runner = build(hugr)
shots = list(runner.run_shots(
 simulator,
 n_qubits=4,
 error_model=error_model
))

Emulation
Error Model Specification

Public

• Depolarazing error model allows the following values

to be assigned:

• p_1q

• p_2q

• p_meas

• p_init

• Added to SeleneInstance.run_shots using

error_model kwarg.

© 2026 Quantinuum. All Rights Reserved.

• All measurements return pseudo-random

Booleans

• No quantum operations

• Coinflip bias can be defined to replicate “syntax

checker” results.

• bias=0 returns a False (0) for all measurements

Debugging
Coinflip

Public

from selene_sim import build, CoinFlip

bias: float = 0.0

simulator = CoinFlip(bias=bias)

runner = build(hugr)

shots = list(runner.run_shots(
 simulator,
 n_qubits=4,
))

© 2026 Quantinuum. All Rights Reserved.

• Classical replay allows branches in users

program to be traversed

• Does not perform quantum operations

• Requires input measurements.

Debugging
Classical Replay

Public

from selene_sim import ClassicalReplay

measurements = [
 [False],
 [True, False]
]

simulator = ClassicalReplay(measurements=measurements)

@guppy
def main() -> None:
 q0: qubit = qubit()
 h(q0)
 c0 = measure(q0)
 result(“c0”, c0)
 if c0:
 q1: qubit = qubit()
 h(q1)
 c1 = measure(q1)
 result(“c1”, c1)

© 2026 Quantinuum. All Rights Reserved.

Debugging
Classical Replay and Circuit Extraction

Public

from hugr.qsystem.result import QsysResult
from selene_sim import build
from selene_sim.event_hooks import CircuitExtractor

event_hook = CircuitExtractor()

runner = build(hugr)
shots = QsysResult(runner.run_shots(
 simulator,
 n_qubits=2,
 n_shots=2,
 event_hook=event_hook
))

QsysResult(results=[
 QsysShot(entries=[('c0', 0)])
 QsysShot(entries=[('c0', 1), ('c1', 0)])
])

event_hook.shots[0].get_user_circuit()

print(shots)

• Classical replay allows branches in users program to be

traversed.

• Event hooks used to extract circuits.

• Circuit returned for first block prior to conditional branch

© 2026 Quantinuum. All Rights Reserved.

[{'user_program': {'qalloc_count': 1, 'qfree_count': 1, 'reset_count': 1,
'measure_request_count': 1, 'measure_read_count': 2, 'rxy_count': 1, 'rzz_count': 0,
'rz_count': 1, 'max_allocated': 1, 'currently_allocated': 0}, …]

Resource Estimation
Reporting Metrics

Public

shots = QsysResult(runner.run_shots(
 simulator,
 n_qubits=2,
 n_shots=2,
 event_hook=event_hook,
))
print(event_hook.event_hooks[1].shots)

from selene_sim.event_hooks import (
 CircuitExtractor,
 MultiEventHook,
 MetricStore

)

event_hook = MultiEventHook(
event_hooks=[

CircuitExtractor(),
MetricStore()

])

© 2026 Quantinuum. All Rights Reserved.

• Introducing

• Guppy, a python-like quantum-classical programming language.

• Selene, a digital little sister for Helios

• Helios, a new QCCD ion trap machine with real time capabilities, including dynamic transport.

• Nexus support for Guppy and HUGR

• Availability of cloud Selene instances

• Legacy Tools

• Pytket will be supported for a time

• Pytket-quantinuum will provide local compilation capability, but submission API is deprecated

Summary

Public

© 2026 Quantinuum. All Rights Reserved.

Opensource Repositories

github.com/CQCL/selene github.com/CQCL/guppylang

https://github.com/CQCL/selene
https://github.com/CQCL/selene
https://github.com/CQCL/guppylang
https://github.com/CQCL/guppylang

© 2026 Quantinuum. All Rights Reserved.

Resources

Documentation Support

docs.quantinuum.com QCsupport@quantinuum.com

docs.quantinuum.com
mailto:QCsupport@quantinuum.com

© 2026 Quantinuum. All Rights Reserved.

• What is it? Your hub for quantum collaboration, innovation, and support.

• What is the goal of Q-Net?

• Enhance Quantinuum user satisfaction through peer support and shared
knowledge.

• Drive adoption and retention by showcasing results and use cases.

• Gather actionable feedback to inform product development.

• Build brand loyalty by recognizing and empowering users.

• Create a thriving ecosystem of advocates, contributors, and learners.

• Who can join? New users, power users, community leaders, partners,
developers.

• How can people join? Visit interest page.

• Receive the latest news, important announcements, info about the annual meeting,
and upcoming webinars.

Join us!

	Introduction
	Slide 1: Helios and Next-Generation Stack ORNL Training January 2026
	Slide 2: Agenda
	Slide 3: Development Roadmap
	Slide 4
	Slide 5: Legacy Technology Stack
	Slide 6: Next-Generation Technology Stack

	Hardware
	Slide 7: Quantinuum Helios
	Slide 8: Evolution of Trap Architecture
	Slide 9: Computational Space
	Slide 10: Universal Native Gateset
	Slide 11: What is a QCCD junction?
	Slide 12: Junctions speed up qubit routing
	Slide 13: Dynamic Transport
	Slide 14: Quantinuum Helios
	Slide 15: QCCD architecture

	Guppy
	Slide 16: Current-Generation Stack
	Slide 17: Next-Generation Stack
	Slide 18: Why Guppy?
	Slide 19: Guppy Features
	Slide 20: Guppy Program
	Slide 21: Technology Stack
	Slide 22: Qubit Safety
	Slide 23: Safety & Ownership
	Slide 24: Safety & Ownership
	Slide 25: Safety & Ownership
	Slide 26: Safety & Ownership
	Slide 27: Qubits & Collections of Qubits
	Slide 28: Gate Operations
	Slide 29: Conditional Branching
	Slide 30: Dynamic Qubit Allocation
	Slide 31: Automated Qubit Management
	Slide 32: Classical Computation
	Slide 33: Classical Computation
	Slide 34: qsystem submodule
	Slide 35: Heralded Leakage Measurement

	Job Submission
	Slide 36
	Slide 37: “Dynamic” Programs
	Slide 38: Max Cost Estimate via Hardware Quantum Credits
	Slide 39: Max Cost Estimation
	Slide 40: Job Submission
	Slide 41: Compilation Lifecycle
	Slide 42: Job Lifecycle

	Selene
	Slide 43: Selene
	Slide 44: Selene
	Slide 45: Selene Operation
	Slide 46: Emulation
	Slide 47: Emulation
	Slide 48: Debugging
	Slide 49: Debugging
	Slide 50: Debugging
	Slide 51: Resource Estimation

	Summary
	Slide 52: Summary
	Slide 53: Opensource Repositories
	Slide 54: Resources
	Slide 55
	Slide 56

