Q QUANTINUUM

Helios and Next-

Generation Stack

ORNL Training
January 2026

© 2026 Quantinuum. All Rights Reserved.
Confidential & Proprietary

Zach Massa
Offering Management Lead

Irfan Khan
Sr. Applications Engineer

Image: Visual representation of .

Agenda

Introduction to Quantinuum

Hardware

Guppy
Job Submission on Helios

Next generation emulation with Selene

Wrap up and Summary

‘ ‘ QUANTINUUM © 2026 Quantinuum. All Rights Reserved.

Development Roadmap

Q

2020
,,,,,,,,,,,,,,,,,,,,,,,,,,, .-_-_-_._._.-_-----_._._
SYSTEMS
QUANTINUUM
H1
PHYSICAL
QUBITS 20
PHYSICAL
2-QUBIT 1x 103

GATE ERROR

LOGICAL
QUBITS

LOGICAL
ERROR RATES

QEC Decoding

NVIDIA GPU
INTEGRATION

2023 2025

@ - -ooooemooeeoooee @
Ql:JANTINUUM Q‘UA’NTINUUM

H2 HELIOS

56 98

1% 103 <5x10*
>12 50

1x10°3 <10*

~1PFLOP

~100 us latency

2027 2029
L ARRTCOETE T @ oo >

SOL

QEC Decoding

~10 PFLOP

~10 us latency

QUANTINUUM

APOLLO

1%x105 to
1x 107"

Control + QEC

Decoding
~100 PFLOP

~0.5 us latency

2030+

. . . .
e[ejos/efeelele e(ajoe[efeelele
0 O ®
. .
e[ejov(e[eeele e[e[ee|efeelele
.

: i S
IIHI_ -:.-:--:-
QUANTINUUM

LUMOS

1,000,000+
QUBITS

*analysis based on recent literature in new, novel error correcting codes predict that error could be as low as 1E-10 in Apollo (ref: arXiv:2403.16054, arXiv:2308.07915).

QUAI« .,

1N v

w cuco wuantinuum. All Rights Reserved.

Quantinuum is pioneering the
next step in quantum computing hardware as a service

Dynamic Transport to improve time to solution &
reduce the strength of memory errors.

Heralded Leakage Measurement Early Exit
Automated Qubit Resource Arbitrary control flow
Management .
QUANTINUUM Real-time Random Number
HELIOS All-to-all connectivity Generator
Mid-circuit measurement & reset Conditional Operations
Qubit Reuse Compiler Real-time QEC decoding
Emulation and debugging Parameterized 2-qubit
(Selene) operations

Application-level Leakage
Detection

*New features

‘ ‘ QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Legacy Technology Stack

SYSTEM MODEL

> I I
Qiskit, Cirg and 1

OpenQasm

T KET &#A QUANTINUUM SYSTEM MODEL
"N NEXUS g H Q

Application programming Job Submission, optimization,
management and monitoring

- Emulator
Industry Standard

OpenQASM & QIR

‘ ‘ QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Next-Generation Technology Stack

QUANTINUUM

"HELIOS

& QUANTINUUM SYSTEM MODEL
Guppy " »NI NEXUS "H9
Application Job Submission, optimization,
programming management and monitoring
)

i . SELENE
QIR e

Enables MSFT/
NVIDIA Software

‘ ‘ QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved

Quantinuum Helios
Quantum Charge Coupled

Device
* Qubits are Barium ions

Ring Storage o Quantum Logic

* Dedicated zones for
logic/initialization/measure

« High-fidelity ops via visible light laser
Processor pulses on short ion chains

« Sympathetic Cooling via Ytterbium ions

» All-to-all Connectivity by physical
transport

Helios
Input Runtime Output

» Scalability enabled by micro-fabricated
traps.

Quantum Control
System

‘ . QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Evolution of Trap Architecture

SYSTEM MODEL

H2

' 4
0
0]
Y [}
('S ' 4
[4

Logic and storage region

Q QUANTINUUM Public

QUANTINUUM

HELIOS

[4 S

storage region

Logic region

© 2026 Quantinuum. All Rights Reserved.

Computational Space

Encoding in S-manifold

ﬂyperﬁne Spectra 171-Yb*

Non-computational
states

. Computational states

Q QUANTINUUM

F=1 12) 1) 2)
12.6 GHz
F=0 10)
m=4| m=0 +1
KEY

F=2 |2)

ﬂyperﬁne Spectra 137-Ba*

|1)
8.04 GHz
10)
m_= 0
. J

2)

© 2026 Quantinuum. All Rights Reserved.

Universal Native Gateset

Parameterized 1-Qubit Gate (—%)(cos(qb)X+sin(¢)17) phased X
ny 6,9) = e
Parameterized 1-Qubit Software Gate —EZ rz
R,(1) = e 2
Fully Entangling 2-Qubit Gate s 5 ZZ max

Parametrized 2-Qubit Gate ZzZ_p hase

10,_~
RZZ(0) = ¢ 27%®%

‘ ‘ QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

What is a QCCD junction?

First commercial QCCD junction

Linear ion trap geometry Swap sorting time grows out of control
Junctions merge short linear traps Swap sorting replaced by junction sorting

hat -

‘ ‘ QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Junctions speed up qubit routing

First commercial QCCD junction

Swap sorting for all N qubits
requires N operations per
qubits to achieve target
configuration

Junction sorting to access
N qubits requires 1
operation per N qubits to
sort

‘ ‘ QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved

Dynamic Transport

QUANTINUUM

H E I_ I O S On-the-fly transport

planning during execution

TKET Hardware

Machine

Runtime

Compiler Compiler

SYSTEM MODEL

I I Q Static transport planning

prior to execution

TKET

PEWETE 8 Machine
Compiler

‘ ‘ QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Compiler

Quantinuum Helios

Key improvements over System Model H1/2

On-the-fly native operations (transport planning and gating
operations).

Different qubit ion (Yb to Ba) to reduce gating errors and
introduce heralded leakage measurement.

New ion trap with junction transport to deliver “twice-as-good”
system.

SYSTEM MODEL

H2

' 4
0 Y
¢ |
Y []
('S o
L &

of physical qubits 56 98
Physical 2-qubit gate infidelity 83x107* 7.9 x 1074
of logical qubits 10+ ~50
Logical 2-qubit gate infidelity 1x1073 <1x107*

*See below for source

QUANTINUUM

HELIOS

’------------

‘------------

* https://docs.quantinuum.com/systems/user_guide/hardware_user_guide/performance_validation.html

Q QUANTINUUM

© 2026 Quantinuum. All Rights Reserved.

QCCD architecture

differentiating features

Long Coherence Times All-to-All Connectivity High-Fidelity Ops

D Nearest Neighbor All-to-All SR g el

O,
|0) o e o ©o e O & >
+ o—o o ® o0 Sympathetic Cooling
® O06—© ® O Y
Flexible and reconfigurable . o

MCMR and Arbitrary Control Flow lT I Parameterized Angle

............ . no SQ and TQ gates

O RZZ(6) =
5 : [W)— RG,9) — 1 0 0 0
b4 T = A
0 = 1/500 0 0 e 0
0 0 1

Q QUANTINUUM

© 2026 Quantinuum. All Rights Reserved.

Current-Generation Stack

Pytket

A

Application
Programming

Lowers to IR

IR = Intermediate Representation

Q QUANTINUUM

Compilation
and
optimisation

Public

Third-party
conversions

Nexus

Backend
Submission API

© 2026 Quantinuum. All Rights Reserved.

Next-Generation Stack

Guppy

Application
Programming

Q QUANTINUUM

HUGR

Intermediate
Representation
(IR)

TKET2

Compilation
and
optimisation

Public

pytket

Third-party
conversions to
Guppy

Nexus

Backend
Submission API

© 2026 Quantinuum. All Rights Reserved.

Why Guppy?

peat until success() ->

Expressive

Write code that reads like the problem you're solving.
Guppy’s syntax is clear, concise, and flexible enough to
capture complex quantum and classical logic without

unnecessary boilerplate. a, b = h(qubit()), h(qubit())

qubit()

O
]

for i in range(5):

toffoli(a, b, Qq)
Safe s(q)

Guppy’s type system catches costly mistakes before they .
happen — including quantum-specific hazards. toffoli (a, b, q)

ra = measure(h(a

rb = measure(h(b)):
Pythonic . if (ra | rb):
If you can read Python, you can read Guppy. Its design
is inspired by Python’s readability and simplicity, making result("rus_attempts"”, i)

it easy to learn. Guppy also lives inside Python, allowing

seamless inter-op. result ("q", measure(q))

Q QUANTINUUM

Guppy Features

4 Arbitrary Control Flow A 4 Strongly Typed) 4 Qubit Safety)
Full guantum measurement-dependent The guppylang compiler uses a Qubits have a linear type, following an
control flow: write if-else conditions, for powerful but unobtrusive type system intuitive ownership model that prevents

_ and while loops, all in Python style.) _ to provide helpful error messages.. Y, _ no-cloning errors and memory leaks)

4 .) 4 .) 4)

Metaprogramming Classical Compute Data Structures
Generate and transform Guppy code at Perform classical calculations and data Work with arrays, tuples, and user-
compile time to automate patterns, manipulation alongside quantum defined types in both classical and

\optimise circuits, and reduce repetition.j _ operations seamlessly.) _ guantum contexts.)

. .) 4
First-class Functions Legacy Support
Define functions to write structured Easily integrate with existing quantum
quantum software and pass them just toolchains like pytket — bridging the
_ like any other value.) _ gap with legacy circuit-building tools.)

‘ . QUANTINUUM © 2026 Quantinuum. All Rights Reserved.

Guppy Program

Application programming
@guppy decorator required to define functions.

All functions annotated with input types and return
types.

main() is the program entry point.

result: tag measurement outcomes to results
stream

Local Compilation to hugr

Execution with selene-sim

Q QUANTINUUM

’--------------------------------~

4

from guppylang.decorator import guppy
from guppylang.std.quantum import qubit, cx, h

@guppy
bell() -> tuple[qubit, qubit]:
g9, gl = qubit(), qubit()
h(qe)
cx(qe, q1)
return g0, ql

~--------------------------------‘

’—----‘\
e ——_

—-------------------------------~
4 from guppylang.std.quantum import measure
from guppylang.std.builtins import result

@guppy
main() -> :
g9, gl = bell()
v@ = measure(go)
vl = measure(ql)
result("ge", ve)
result("ql", vi1)

----’

1
1
1
1
1
1
1
1
1
\

4
\

AN BN NN S EEE BN BN EEE BN BEN BEE S BN BN S BN BEE EEE BN BN BN BN B BN BN B BN B S B e

r-----------------------------------

I hugr = main.compile() |

—----------------------------------’

LB B B B B & §B & B &8 &N §N &N &N B N B &N N &N §B B N B N N &N N _§N &N N N _§N N /
1 from selene_sim import Quest }
i

1

I main.emulator(n_qubits=2).with_simulator(Quest()).run()

\----------------------------------'

Technology Stack

A new language for application programming

Guppy HUGR

Application Intermediate
programming representation

& QUANTINUUM
> N NEXUS
Includes TKET2
compilation

» SELENE-SIM

Q QUANTINUUM

Local instance

_—
QUANTINUUM

HELIOS

SELENE

Cloud instance
\

© 2026 Quantinuum. All Rights Reserved.

Qubit Safety

Linearly Typed Qubit

No-cloning Theorem Linear Typing

Qubits cannot be copied. Qubits can only be used once.
Qubits cannot be copied

Qubits cannot be implicitly discarded

No-deleting Theorem

Qubits cannot be deleted arbitrarily.

‘ ' QUANTINUUM © 2026 Quantinuum. All Rights Reserved.

Safety & Ownership

Enforcing linearity as a constraint at compile time

Qubits cannot be used after they are deallocated.
A multi-qubit gate cannot use qubits more then once.

Qubits cannot be discarded or leaked implicitly.

h(alice) # invalid operation

from guppylang import guppy | AnAAN Variable “alice” with non-copyable type
from guppylang.std.builtins import owned “qubit® cannot be
from guppylang.std.quantum import qubit, h, cx, measure I borrowed ...
13 | alice_c: bool = measure(alice)
@guppy 1 since it was already
owned_qubits(consumed here

alice: qubit @ owned,
bob: qubit
) -> bool:
h(alice)
cx(alice, bob)
alice_c: bool = measure(alice)

h(alice) # invalid operation

return alice_c

‘ ' QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Safety & Ownership

Enforcing linearity as a constraint at compile time

Qubits cannot be used after they are deallocated.

A multi-qubit gate cannot use qubits more then once.

Qubits cannot be discarded or leaked implicitly.

from guppylang import guppy
from guppylang.std.builtins import owned
from guppylang.std.quantum import qubit, h, cx, measure

@guppy
borrow_qubits(

alice: qubit,
bob: qubit
) -> None:

x(alice)
h(alice)
cx(alice, bob)

cx(alice, alice) # invalid operation

Q QUANTINUUM

25 | cx(alice, alice) # invalid operation

| AAAAN Variable “alice” with non-copyable
type “qubit® cannot be

| borrowed ...

I
25 | cx(alice, alice) # invalid operation
since it was already borrowed here

Public © 2026 Quantinuum. All Rights Reserved.

Safety & Ownership

Enforcing linearity as a constraint at compile time

Qubits cannot be used after they are deallocated.
A multi-qubit gate cannot use qubits more then once.

Qubits cannot be discarded or leaked implicitly.

Error: Drop violation|

38 | @guppy
39 | def main() -> None:
40 | alice = qubit()

from guppylang.std.quantum import qubit, h

| AAAAA Variable “alice” with non-droppable type “qubit® is leaked

@guppy Help: Make sure that “alice™ is consumed or returned to avoid the leak
invalid(
alice: qubit,
bob: qubit
-> tuple[qubit

h(alice)
cx(alice, bob)

‘ ' QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Safety & Ownership

Enforcing linearity as a constraint

Ownership required:
Destructive operations on qubits

Looping directly on qubits

<:= QUANTINUUM

Owned

from guppylang import guppy
from guppylang.std.builtins import owned
from guppylang.std.quantum import qubit, h, cx, measure

@guppy
owned gubits(

alice: qubit @ owned,]
bob: qubit
) -> bool:
h(alice)
cx(alice, bob)

alice c: bool = measure(alice)]
return alice_c

Borrowed

from guppylang import guppy
from guppylang.std.quantum import qubit, h, cx

@guppy
borrow gubits(

alice: qubit,]

bob: qubit
) -> 2
x(alice)
h(alice)

cx(alice, bob)]

Qubits & Collections of Qubits

Guppy

from guppylang.std.quantum import qubit, h, cx, measure

from pytket.circuit import Circuit

from guppylang.std.builtins import array get_teleportation_circ() -> Circuit:

@guppy
get qubits() -> tuple[qubit, qubit]:
g9, gl = qubit(), qubit()
h(q@)
cx(go, qil)
return (g0, qil)

circ = Circuit()

src = circ.add_g_register("src", 1)
alice = circ.add_qg_register("Alice", 1)

src_c = circ.add _c_register("src_c", 1)

@guppy
get_qubit_array() -> array[qubit, 6]:
qubit_array = array(qubit() for _ in range(6))
return qubit_array

@guppy.struct
qubit_struct:

data_qubits: array[qubit, 16]
ancilla: array[qubit, 4]

‘ ' QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Gate Operations

Guppy

from guppylang.std.quantum import h, cx, measure, x, qubit

trom pytket.circuit import Circuit

get teleportation_circ() -> Circuit:
@guppy
q_opse() -»>
alice, bob = gubit(), qubit()
h(alice)
cx(alice, bob)

circ = Circuit()
bob = circ.add_qg_register("bob", 1)
alice = circ.add _q_register("Alice", 1)
alice ¢ = circ.add_c_register("Alice c", 1)
alice c: bool = measure(alice)
if alice_c:

x(bob)

circ.H(alice[©@])
circ.CX(alice[@], bob[@])
circ.Measure(alice[0], alice c[9])

circ.X(
bob[@],
condition bits=[alice c[0]],

from guppylang.std.quantum_functional import h, cx

@guppy
q_opse() ->
alice, bob = qubit(), qubit()

alice, bob = cx(h(alice), bob)

condition_value=1

)

return circ

‘ ' QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Conditional Branching

Guppy

from guppylang.std.quantum import h, cx, measure, x, qubit

trom pytket.circuit import Circuit

get teleportation_circ() -> Circuit:

@guppy
q_opse() ->
alice, bob = qubit(), qubit()

circ = Circuit()
bob = circ.add_qg_register("bob", 1)
h(alice) alice = circ.add_qg_register("Alice", 1)

cx(alice, bob)

alice ¢ = circ.add_c_register("Alice c", 1)

alice c: bool = measure(alice)
if alice _c:
x(bob)

circ.H(alice[©@])
circ.CX(alice[@], bob[@])
circ.Measure(alice[0], alice c[9])

circ.X(
bob[0],
condition bits=[alice c[0]],
condition_value=1

return circ

‘ ' QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Dynamic Qubit Allocation

Automatic management of hardware qubit resources

Q QUANTINUUM

Helios Runtime dynamically determines

If are , or are
reused upon program request for qubits.

from guppylang import guppy
from guppylang.std.quantum import h, cx, measure, qubit, x, reset, discard

@guppy
q_opse() -»>
alice, bob = qubit(), qubit()
h(alice)
cx(alice, bob)
alice_c: bool = measure(alice)
if alice_c:
x(bob)
alicel= qubit() # can reuse the same ion

Public © 2026 Quantinuum. All Rights Reserved.

Automated Qubit Management

Logical Qubit
A “protected” qubit built from many “virtual
qubits”, or logical qubits.

Users specify and control how logical qubits equate
to virtual qubits at the library level.

Virtual Qubit

Guppy qubit that can be programmed by Users can request qubits on-the-fly with Guppy
the user.

Physical Qubit System is responsible for ion allocation.

lon transport and operations

© 2026 Quantinuum. All Rights Reserved.

Q QUANTINUUM Public

Classical Computation

Compile Time o _
Compile time computation

Local HUGR Compilation @guppy

compute_arctan() -> float:

return comptime(

math.atan(2.0)/math.pi
)

comptime .
Computation Why?
Local classical computation during HUGR
compilation
HUGR Third-party library usage

Inject Python values

Q QUANTINUUM Public

© 2026 Quantinuum. All Rights Reserve

Classical Computation

Runtime Computation

Arbitrary control flow Runtime Computation

Arbitrary classical Compute

| @ pre-ops @ nextbatch (fop) © next batch (bottom) © ops batch @ post-ops @guppy

decode result

T T T T T T T Toom TOooi] ool ool [Jol \[\[\l\l\l\t\\l\lll\l\l\l:
quantum I6gic —= 90000000 leg storage ——— syndromes: array[bool, 2] @ owned

T] .
L e o e e e e e e e e e e e e |)—> Int:

ring storage 98¢ {—— cache

result

for s in syndromes:
result += 2**int(s)

if
QEC Decoding
- Classical Control Multiple Custom (Wasm) if result == 2:
NVIDIA Grace Hooper Unit - QEC Decoding return 2
- if result == 3:
Gate Streaming - ARM Cortex Intel Kabylake O
Intel Xeon

‘ ' QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

gsystem submodule

. . . from guppylang.std.qsystem import phased_x, zz_phase,
Native Quantinuum operations measure
from guppylang.std.qgsystem.random import RNG
from guppylang.std.builtins import array
from guppylang.std.quantum import qubit, angle

Current
_ . @guppy
Native Quantum Operations brickwork (
zzphase qubits: array[qubit, 8],
rng: RNG
Zzmax
) > 3
phasedx for i in range(len(qubits)):

rz argd = rng.random_float()

measure argl = rng.random_float()

reset
for i in range(len(qubits) - 1):

RNG: on-chip classical pseudo-random number generator A2 = e el st
zz_phase(qubits[i], qubits[i + 1], angle(arg2))

get shot number: request index of current shot
@guppy
measure and reset: measure and reset the same ion main() ->
qubits = array(qubit() for _ in range(8))
rng = RNG(O)
brickwork(qubits, rng)
for g in qubits:
measure(q)

rng.discard()

guppy.compile module()

‘ ' QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Heralded Leakage Measurement

No Detection

Trigger Shelving
in Dy, Manifold

of 15! state
2nd Detection
Laser

Detection

Trigger Shelving 1st Detection
in D, Manifold Laser

1sl
manifold

1st Detection

Laser

fluorescence
fluorescence
no fluorescence

no fluorescence

Q QUANTINUUM

Detection of
15t State

No Detection

2w State
manifold Determination

—_—

Determine 2nd
Qubit State

_

Determine 15t
Qubit State
~—

Y

Determine
Leakage State

| —

2nd Detection State
Laser Determination

fluorescence
no fluorescence
fluorescence

no fluorescence

from guppylang import guppy

from guppylang.std.builtins import result
from guppylang.std.angles import angle
from guppylang.std.quantum import qubit

from guppylang.std.qsystem import measure_leaked, zz_phase, measure

@guppy
main() ->
goe = qubit()
gl = qubit()
zz_phase(g@, ql, angle(-0.125))

maybe leaked = measure_leaked(ql)

if maybe leaked.is leaked():
g2 = qubit()
zz_phase(q@, g2, angle(-0.125))
bl = measure(q2)
maybe leaked.discard()
se:
bl = maybe leaked.to result().unwrap()

result("ge", measure(qg9))
result("ql", bl)

© 2026 Quantinuum. All Rights Reserved.

Quantinuum Queues for Execute Job

Quantinuum Nexus Queues
Systems Queues

Nexus-Tier Execute Jobs

Execution

. Fair Queue

- Fair queue selection based on Nexus-hosted emulation targets
number of concurrent jobs per user

Job Submission

Hardware-Tier Execute Jobs

Fair Queue Execution
Fair queue selection based on Hardware Quantinuum-hosted
overall HQC accumulation per org emulators

‘ ‘ QUANTINUUM © 2026 Quantinuum. All Rights Reserved.

“Dynamic” Programs

START —

@guppy
repeat_until success() ->

EXIT

Repeat-until-success circuit for
Rz(acos(3/5))
from Nielsen and Chuang, Fig. 4.17.

q = qubit()

a, b = h(qubit()), h(qubit())

toffoli(a, b, q) Scenario 1: Scenario 2:
C)) » All loops complete successfully » loops breaks after 2 iterations
toffoli(a, b, q) * Condition is never satisfied * Condition is satisfied

_ Cost for first shot Cost for second shot
if (measure(h(a)) | measure(h(b))):

result("rus_attempts"”, i)

result("q", measure(q))

‘ ' QUANTINUUM © 2026 Quantinuum. All Rights Reserved.

Max Cost Estimate via Hardware Quantum Credits

HQC = Hardware Quantum Credit

HQC =5 +

Ny + 10N, + 5Ny,

5000

N, 4: number of single-qubit gates
N4: number of two-qubit gates

N,,,: number of SPAM operations
C: number of shots

C

Required specifiction before
job submission

Enables management of
organization’s access

All operations are costed on
an inputted circuits including
conditional blocks

Max Cost Estimation

. Program upload

Compile _
Input: Program

Input: User Friendly Name

Returns: Program Reference

Upload

Max Cost Estimation
Estimate Input: Program Reference
Cost Input: Number of shots
Returns: Max Cost Estimate

Q QUANTINUUM

’-------------------------------~

’ S
/4 \
[@guppy 1
| repeat_until success() -> |
| q = qubit() |
I for i in range(5): |
I a, b = h(qubit()), h(qubit()) I
: toffoli(a, b, q) :
I s(q) I
| toffoli(a, b, q) |
| if (measure(h(a)) | measure(h(b))): |
1 result("rus_attempts", i) 1
!\ result("q", measure(q)) l’

\ /’

.-------------------------------'

r-----------------------------------

1
1 hugr_binary = repeat_until success.compile() |
J

¢ Il BN NN EEN BN BN EEN BN SN SN N SN SN S SN SN S S S B S S B B B B B B B B B .y
ref _hugr = gnx.hugr.upload(
hugr_binary,
name=f"repeat-until-success-{unique_suffix}"

-y,
——_

)

_---------------------------------,

¢ EIl BN NN EEE BN BN EEN SN BN SN N S S S N SN S S S B S S S B B B B B S B B .y

prediction = gnx.hugr.cost(
programs=[ref_hugr],
n_shots=[10]

-y,
——_

)

_---------------------------------,

Job Submission

Device Specification
Machine Name
Max Cost for program
Max Number of Qubits

Argument
User Friendly Name
Backend Configuration
Number of shots
User Program

Returns
Job Result

Q QUANTINUUM

‘--------------------------------~

V4

config = gnx.models.HeliosConfig(
system name="Helios-1E",
max_cost=prediction,
emulator_config=gqnx.models.HeliosEmulatorConfig(
n_qubits=3,
simulator=gnx.models.StatevectorSimulator()

\—----'

---------------------------------’

VN EENN NN BN DN DN DN BN BN NN BN BN BN BN BN BN NN BENN DN BEEN DN BEEN BN BN BN B B B B B S . .y

n_shots = 100

ref_execute_job = gnx.start_execute_job(
programs=[ref_hugr],
backend_config=config,
n_shots=[10],
name=f"execute-job-{name_suffix}"

_______/

i
\)

~--------------------------------_

\

’----------------------------------

gnx.jobs.wait for(ref_execute job)
ref _result = gnx.jobs.results(ref_execute job)[0]

\----------------------------------l

,-----------------------------------

|
1
1
J

: result = ref_result.download result()
\

Compilation Lifecycle

Q QUANTINUUM

Client-side

/ Local compilation \ Client-side
Guppy » HUGR
Source Compact _
Language representation Server-side
- Y,
|
| Cloud
| submission
|
Server-side l
4 Hardware S _ N\
HUGR _Comier QIS _R™m™ Native
. >
Compact Machmel ; OES .
representation representation ransport, gating
~ Y

© 2026 Quantinuum. All Rights Reserved.

Job Lifecycle

Q QUANTINUUM

Submit Job
" Loop
. _ _ _Status(Complete) _ _
- — e e e e e /2

© 2026 Quantinuum. All Rights Reserved.

Selene

Emulation framework

Access
ANNREN
5 = Machine Emulation with customized noise - Availability:
= = model and advanced hardware features. .

Client-side package selene_sim (current)
* Nexus-hosted Selene instance (upcoming)

------------------------------‘

| pip install selene-sim }
Respurce Estlmathp to estimate program - Available plugins to optionally specify and consume
metrics across all conditional branches. alternate features.

- Users can develop custom plugins upon extensibility
APl release.

Program Debugging to test successful traversal
of conditional branches.

© 2026 Quantinuum. All Rights Reserved.

Selene

Digital twin for Helios

Includes emulation, resource estimation and program debugging
capabilities.

Simulation Runtime Error Model
Statevector No error model
Stabilizer Simple Runtime Simple Error Model
Coinflip

Classical Replay

Quantum Replay

Nexus-only

Upcoming

‘ ‘ QUANTINUUM Public © 2026 Quantinuum. All Rights Reserve

Selene Operation

User Program mmmem > Report Result

Classical function execution

User customizable
Classical Utilities component

Runtime: Route quantum (and transport) operations from program to simulator.
Error Model: modify routed quantum operations to introduce noise mechanisms.

Simulation: Different modalities available as user-specifiable plugins.

‘ . QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Emulation

Statevector emulation

from selene_sim import build stsBesult(results=[stsShot(
from selene_sim import Quest entr1es=[('result’] 1)]

from hugr.qsystem.result import QsysResult (Iresu'l_tl , 1) , ('I‘esu'l_t' , 1) ,
('result', 1)1),
QsysShot(entries=[('result’,
runner = build(hugr) 0) f ('result’ f 0) | ('result’ !
gsys_result = QsysResult(runner.run_shots(@) I ('‘result’ I @)]) I

simulator, stsShot(entries= [('result’ p
n_qubits=4,

) 1), ('result', 1), ('result’,
1), ('result', 1)1), ..1)

simulator = Quest()

gsys_result.collated counts()

Counter({(('result', '1111'),): 54, (('result', '0000'),): uU6})

Q QUANTINUUM Public

© 2026 Quantinuum. All Rights Reserve

Emulation

Error Model Specification

Depolarazing error model allows the following values
to be assigned:

p_1q = p_1q
pP_2q = p_2q

p_meas
p_init = le- p_meas

selene_sim import DepolarizingErrorModel

error_model = DepolarizingErrorModel(p_init
p_19=p_1q,
p_29=p_2q,
p_meas=p_meas,
p_init=p_init Added to SeleneInstance.run_shots using

) error_model kwarg.

runner = build(hugr)

shots = list(runner.run_shots(
simulator,
n_qubits=4,
error_model=error_model

))

‘ ' QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Debugging

Coinflip

All measurements return pseudo-random
Booleans

from selene_sim import build, CoinFlip

bias: float = 0.0 No quantum operations

simulator = CoinFlip(bias=bias)

runner = build(hugr)

Coinflip bias can be defined to replicate “syntax
checker” results.

bias=0 returns a False (0) for all measurements

shots = list(runner.run_shots(
simulator,
n_qubits=4,

))

Q QUANTINUUM Public

© 2026 Quantinuum. All Rights Reserved.

Debugging
Classical Replay

@guppy Classical replay allows branches in users

main() -> : program to be traversed
go: qubit = qubit()
h(qe)
c® = measure(go)
result(“ce”, co) ;
o Does not perform quantum operations
gl: qubit = qubit()
h(ql)
cl = measure(ql)

result(“c1”, cl) Requires input measurements.

from selene_sim import ClassicalReplay

measurements

[1,
[)
]

simulator = ClassicalReplay(measurements=measurements)

Q QUANTINUUM Public

© 2026 Quantinuum. All Rights Reserved.

Debugging

Classical Replay and Circuit Extraction

from hugr.gsystem.result import QsysResult Classical replay allows branches in users program to be
from selene_sim import build traversed.
from selene_sim.event_hooks import CircuitExtractor

event_hook = CircuitExtractor()

Event hooks used to extract circuits.

runner = build(hugr)

shots = QsysResult(runner.run_shots(
simulator,]] . . .
n_qubits=2, Circuit returned for first block prior to conditional branch
n_shots=2,
event_hook=event_hook

)

QsysResult(results=[

_ QsysShot(entries=[('c0', 0)])
Gysshottantries-{C'co'] D3, Cetr, oD

1)

q[e] —{ Reset [— PhasedX(0.5, —0.5) — Rrz(1) | — q[e]

event_hook.shots[@].get_user_circuit()

c[..1] C[..1]

Q QUANTINUUM Public

© 2026 Quantinuum. All Rights Reserved.

Resource Estimation

H H hue
Reportlng Metrlcs BN user_program
B post_runtime
500 4 B emulator
B simulator
from selene_sim.event _hooks import (
CircuitExtractor, 700 |
MultiEventHook,
MetricStore
600
event_hook = MultiEventHook(
event_hooks=[7
CircuitExtractor(), g
MetricStore() ¢
) 400
300 4
shots = QsysResult(runner.run_shots(
o 200 4
simulator,
n_qubits=2,
n_shots=2, 100 |
event_hook=event_hook,
print(event_hook.event hooks[1].shots) ol ‘ R
= H € € 5 € 5 € € T T H € € € € £ € € € € 2 T B
2 2 3 3 § § 2 3 3 £ £ 3 32 § & 2 3§38 2 2 § § ¢ ¢ 8
:\ z\ :| :| b 2 :\ N :I § E 2 :|] :| b :\ Y :\ b :| -,% S gl
R LI - O - - - -
| =1 = L = c [c c c k<
£ 3 g IR - T T~
o ‘2 E
Noneu

‘ . QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Summary

 Introducing
« Guppy, a python-like quantum-classical programming language.
- Selene, a digital little sister for Helios
* Helios, a new QCCD ion trap machine with real time capabilities, including dynamic transport.
* Nexus support for Guppy and HUGR
 Availability of cloud Selene instances

- Legacy Tools
« Pytket will be supported for a time
» Pytket-quantinuum will provide local compilation capability, but submission APl is deprecated

‘ ‘ QUANTINUUM Public © 2026 Quantinuum. All Rights Reserved.

Opensource Repositories

qithub.com/CQCL/quppylang

Q QUANTINUUM

github.com/CQCL/selene

g
: U

https://github.com/CQCL/selene
https://github.com/CQCL/selene
https://github.com/CQCL/guppylang
https://github.com/CQCL/guppylang

Resources

Documentation

docs.quantinuum.com

(‘\ QUANTINUUM | Documentation

QUANTINUUM

Technical Documentation

Explore the documentation, tutorials, and knowledge articles for our products

and opensource toolkits at the links below.

QUANTINVUUM

SYSTEMS

Quantinuum's QCCD ion-trap hardware, the world's highest
peforming quantum computer.

Quantinuum Systems User Guide
Explore how to use the industry's leading quantum
processors.

Getting started with Quantinuum Systems
Find the latest technical documentation and additional
resources.

Q QUANTINUUM

Systems Nexus

QUANTINUUM

»N NEXUS

Cloud platform connecting users with hardware and
compilation services, alongside associated data.

Apply for Access
Register your interest in becoming an early adopter of
‘Quantinuum Nexus.

Tutorials and Documentation
Read the full Quantinuum Nexus documentation.

Developer Tools

Solutions «

Support

QCsupport@guantinuum.com

Get in touch for support

Direct access to experts

© 2026 Quantinuum. All Rights Reserved.

docs.quantinuum.com
mailto:QCsupport@quantinuum.com

‘ 'Q—NE I Q QUANTINUUM modsbsaion Romeuh Campory e

> QQ—NET
What is it? Your hub for quantum collaboration, innovation, and support. Introducing Q-Net
Your hub for quantum collaboration,
innovation, and support
- -Net?
What is the goal of Q-Net~
Enhance Quantinuum user satisfaction through peer support and shared
knowledge.
Drive adoption and retention by showcasing results and use cases. Empowering users. it desel e
- . Building community. quantum computing usint_'; Q\{an}tinuum‘s}full-staok}
Gather actionable feedback to inform product development. Driving excellence. e o e e

your space.

Build brand loyalty by recognizing and empowering users.
Create a thriving ecosystem of advocates, contributors, and learners.

Who can join? New users, power users, community leaders, partners,
developers.

How can people join? Visit interest page.
Receive the latest news, important announcements, info about the annual meeting,
and upcoming webinars.

‘ . QUANTINUUM © 2026 Quantinuum. All Rights Reserved.

Q

Q
U
A
N
-+
|
N
U
U
M

	Introduction
	Slide 1: Helios and Next-Generation Stack ORNL Training January 2026
	Slide 2: Agenda
	Slide 3: Development Roadmap
	Slide 4
	Slide 5: Legacy Technology Stack
	Slide 6: Next-Generation Technology Stack

	Hardware
	Slide 7: Quantinuum Helios
	Slide 8: Evolution of Trap Architecture
	Slide 9: Computational Space
	Slide 10: Universal Native Gateset
	Slide 11: What is a QCCD junction?
	Slide 12: Junctions speed up qubit routing
	Slide 13: Dynamic Transport
	Slide 14: Quantinuum Helios
	Slide 15: QCCD architecture

	Guppy
	Slide 16: Current-Generation Stack
	Slide 17: Next-Generation Stack
	Slide 18: Why Guppy?
	Slide 19: Guppy Features
	Slide 20: Guppy Program
	Slide 21: Technology Stack
	Slide 22: Qubit Safety
	Slide 23: Safety & Ownership
	Slide 24: Safety & Ownership
	Slide 25: Safety & Ownership
	Slide 26: Safety & Ownership
	Slide 27: Qubits & Collections of Qubits
	Slide 28: Gate Operations
	Slide 29: Conditional Branching
	Slide 30: Dynamic Qubit Allocation
	Slide 31: Automated Qubit Management
	Slide 32: Classical Computation
	Slide 33: Classical Computation
	Slide 34: qsystem submodule
	Slide 35: Heralded Leakage Measurement

	Job Submission
	Slide 36
	Slide 37: “Dynamic” Programs
	Slide 38: Max Cost Estimate via Hardware Quantum Credits
	Slide 39: Max Cost Estimation
	Slide 40: Job Submission
	Slide 41: Compilation Lifecycle
	Slide 42: Job Lifecycle

	Selene
	Slide 43: Selene
	Slide 44: Selene
	Slide 45: Selene Operation
	Slide 46: Emulation
	Slide 47: Emulation
	Slide 48: Debugging
	Slide 49: Debugging
	Slide 50: Debugging
	Slide 51: Resource Estimation

	Summary
	Slide 52: Summary
	Slide 53: Opensource Repositories
	Slide 54: Resources
	Slide 55
	Slide 56

