—1

Hewlett Packard
Enterprise

HPE Perftools Application Profiling (PAT)

Marcus Wagner
CORAL-2 Centers of Excellence

March/01/2024

Outline

e This presentation builds on presentations by Stephen Abbott:
https://www.openmp.org/wp-content/uploads/2022-04-29-ECP-OMP-Telecon-HPE-Compiler.pdf
Trey White: https://www.olcf.ornl.gov/wp-content/uploads/2-17-22_application_profiling.pdf
Marcus Wagner: https://www.openmp.org/wp-
content/uploads/ecp_sollve_openmp_monthly.offload_perf_ana_craypat.marcus.hpe_.26aug2022.v2.pdf

e Documentation Resources
e What are the "HPE Performance Analysis Tools (PAT)", formerly CrayPat?

e Build, run and profile miniapp examples on Frontier compute nodes (Bard Peak, AMD Trento CPUs
and AMD MI250X GPUs) and show PAT performance analysis using different PAT components.

e Acknowledgements
e The End

E— | 2

https://www.openmp.org/wp-content/uploads/2022-04-29-ECP-OMP-Telecon-HPE-Compiler.pdf
https://www.olcf.ornl.gov/wp-content/uploads/2-17-22_application_profiling.pdf
https://www.openmp.org/wp-content/uploads/ecp_sollve_openmp_monthly.offload_perf_ana_craypat.marcus.hpe_.26aug2022.v2.pdf
https://www.openmp.org/wp-content/uploads/ecp_sollve_openmp_monthly.offload_perf_ana_craypat.marcus.hpe_.26aug2022.v2.pdf

Outline (cont.)

e Disclaimer:
« This is not a comprehensive reference for, or infroduction to anything; instead
e It is meant to be a show-and-tell how to get started with PAT on Frontier
« For more details, please, refer to the documentation or, as always — OLCF Office Hours, email, call, ...

e Claim:
o | claim ownership of mistakes in this presentation.
o If you find or suspect a problem, please, let me know.

Documentation Resources

 https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
e https://support.hpe.com # there, search for (including “” if shown here) ...
o “HPE Performance Analysis Tools User Guide (23.12) S-8014”
o HPE Cray Fortran Reference Manual (17.0) S-3901
e HPE Cray Clang C and C++ Quick Reference (17.0) S-2179
o # where: 1st (number) = software version, 2nd S-number = const. document ID independent of SW version
o Cray Performance Tools manpages https://cpe.ext.hpe.com/docs/performance-tools/index.html#perftools
e https://clang.llvm.org/docs/ClangCommandLineReference.html

e man pages relevant in this context, for the SW env module loaded, e.g., cce/17.0.0

e cc, CC, ftn : CCE compiler drivers

e craycg, crayCC, crayftn : CCE compilers

 infro_openmp, intro_directives, intro_mpi

e intro_craypat, pat_build, pat_opts, pat_help, pat_report, pat_run, grid_order, app2, reveal
e AMD online docs, e.g.,

e« ROCm : https://rocm.docs.amd.com/en/latest/what-is-rocm.html

e MI250X : https://rocm.docs.amd.com/en/latest/conceptual/gpu-arch/mi250.html

o https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-
paper.pdf

e https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/instinct-
m-cd na2-instruction-set-architecture.pdf

| =

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html
https://support.hpe.com/
https://cpe.ext.hpe.com/docs/performance-tools/index.html#perftools
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://rocm.docs.amd.com/en/latest/what-is-rocm.html
https://rocm.docs.amd.com/en/latest/conceptual/gpu-arch/mi250.html
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/instinct-mi200-cdna2-instruction-set-architecture.pdf
https://www.amd.com/content/dam/amd/en/documents/instinct-tech-docs/instruction-set-architectures/instinct-mi200-cdna2-instruction-set-architecture.pdf

AMIWASTING MY TIME BY PROFILING A CODE I KNOW?

e How much should you have to bother with detailed profiling for performance optimization
if you have experience, domain expertise and good intuition?

e These things will typically help you if they pertain to the currently used
(CPU * GPU * Network * Compiler * MPI * Test Case), but ...

e Good Judgement comes from Experience, and ...
Experience comes from Bad Judgement.©

e Case in point...

: CONFIDENTIAL [AUTHORIZED I 5

An “Obvious” Perf. Hotspot and Fix: (crayfin loopmark listing: -h list=a)
Is line 2515 below compute “/” bound? - Not that obvious affer all.©

2508. + l----—-—-———————————— < do ie = nets, nete
2500. 1 ! add hyperviscosity to RHS. apply to Q at timelevel n0O, Qdp(n0O)/dp
2510. + 1 2-————————————————— < do k = kbeg, kend
2511. 1 2 Vps——————==————~— <> dp(:,:,k) = elem(ie)%derivedsdp(:,:,k) - &
rhs multiplier*dt*elem(ie) 3derivedsdivdp proj (:, :, k)
! Changing “dp = (...)” to “dp = 1./(...)"” does not help below
2512. 1 2-—————————— > enddo
2513. + 1 b ——- < do g = gbeg, gend
2514, + 1 b b-———————————————— < do k= kbeg, kend
2515. 1 bb Vps——————————= <> Qtens_biharmonic(:,:,k,q,ie) = & ! 4.0% of wall time in this “/” line
elem(ie) $state%Qdp(:,:,k,q,n0_qdp) / dp(:,:,k) ! changing “/” to “*” does not help
2516. 1 bb if (rhs multiplier ==) then
2517. + 1 b b fVCw——---————- <> qmin(k, g, ie)= &
min (gmin (k, g, ie),minval (Qtens biharmonic(:,:,k,qg,ie)))
2518. lbbf--——————————— <> gqmax (k,qg, ie)= &
max (gmax (k, g, ie) ,maxval (Qtens biharmonic(:,:,k,qg,ie)))
25109. 1 bb else
2520. + 1 b b fVCw——=-==-==——- <> gmin(k,q,ie)=minval (Qtens biharmonic(:,:,k,q,ie))
2521. l1bb f--——————- <> gmax (k,q, ie) =maxval (Qtens biharmonic(:,:,k,q,ie))
2522. 1 bb endif
2523. 1 bbb > enddo
2524. 1 b-——————— == > enddo
2525. l--——-————————— > enddo

Why does “/” =2 “*” not help? See SFILE_NAME.opt CCE compiler listing, line 2515 (-hlist=d)
Skbeg + $I L2514 1031 + 16 * $I L2514 1079, hybrid%gbeg + $I L2513 71060 + 16 * $I L2513 1085, nets +
SI L2508 1089) = (((elem%base addr) (WMets + $I L2508 1089, 07%state%qdp) (1 + $I L2515 9T0, 1 +
SI"L25157972, hybrid$kbeg + $I L2514 1031 + 16 * $I L2514 1079, hybrid%gbeg + $T L2513 1060 + 16 *
§I—L2513—1085, n0 gdp) * 1.0 /~dp(l1 F $I L2515 910, 1 + ST L2515 972, hybrid%kbeg + $I L2514 1031 + 16 *
I L251471079)) — - - - - - -

One “/” and many integer operations, incl. some multiplications for array index and offset arithmetic.
This “/” statement is NOT floating-point bound. Integer Ops and Memory BW dominate time.

E— | ¢

The of Profiling

 Profile your code

e The compiler/runtime will not do all the optimisation for you.
 Profile your code yourself

« Don't believe what anyone tells you. They're wrong.
 Profile on the hardware you want to run on

« Don't profile on your laptop if you plan to run on a large HPE system;
* Profile your code running the full-sized problem

o The profile will almost certainly be qualitatively different for a test case.
» Keep profiling your code as you optimize

« Concentrate your efforts on the thing that slows your code down.

« This will change as you optimize.

e So keep on profiling.

E—

A HISTORIC CPU SLIDE: THE IMPORTANCE OF DATA LOCALITY

Q1: What should we optimize?

Al: The biggest time consumer. <=1 Redist 100s Bs
ers
Q2: Which is? & -l
A2: Ask your profiler. é‘\' L1 Cache 100s kBs
& S
“ ~10 %,
© L2 Cache MBs %,
v >
Q o 2
S & ~25
& & =S Cache 10s MB
> 0@ S S
‘-\}$\°§ ~ 300s
o
N
QQ o$ Local Memory GB
v & 0ao s
RemOTe m
€mory (.
0(105-%) Over m‘rerconned) 100s GBs

TBs

I COPYRIGHT 2016 CRAY INC.

What are the "HPE Performance Analysis Tools (PAT)", formerly CrayPat?

e The Performance Analysis Tools (Perftools, PAT, formerly CrayPat) are a suite of ufilities to

capture performance data during program execution, and to analyze and visualize those data
afterwards.

e PLEASE, use them when running in a parallel file system (lustre,gpfs) but not in SHOME, because
a lot of data can be generated, and the system administrator and the other users may smite you
with their wrath if you fill up SHOME © ; besides, running in SHOME is also slower.

e PAT can tell you about many things about performance in much detail on- and off-node, such as
CPU and GPU performance, cache, OpenMP, MPI, IO, el. power and specific packages without
having to manually instrument your original source code, but you can (and may want to) do some
instrumentation, e.g., to exclude the initialization phase of your run from taking data, since that
may have different performance characteristics than the steady-state run phase of your code.

e PAT provides detailed customizable analysis in plain text format and a GUI that can run
remotely on the compute host as well as locally in an app on your Windows or macOS laptop.

E— K

PAT programming interfaces

» Perftools-lite: Simple interface that produces reports to stdout. There are five Perftools-lite submodules:
 perftools-lite - Lowest overhead sampling experiment identifies key program bottlenecks.
« perftools-lite-events - Produces a summarized trace, detailed MPI statistics, including sync. overhead.
 perftools-lite-loops - Provides loop work estimates (must be used with CCE).
 perftools-lite-gpu - Focuses on the program’s use of GPU accelerators.
 perftools-lite-hbm - Reports memory traffic info. (must be used with CCE and only for Intel procs).

e Perftools - (Traditional CrayPat) Advanced interface that provides full data collection and analysis
capability, including full traces with timeline displays. It includes the following components:

« pat_build - Utility that instruments programs for performance data collection.
o pat_report — After the instrumented program generated by pat_built was run, pat_report can generate
text reports from the collected profile data and export the data to other apps.
e Not covered here, due to Prep- and Presentation-Time constrainfts:
« perftools-preload - Runtime instrumentation version of perftools, eliminates pat_build instrumentation step.
o pat_run - Launches a program to collect performance information.
Durinﬂ the hackathon, perftools developers are available to help with all the tools, especially pat_run.

| 10

And then, there are...

e Apprentice2 (app2)

« An interactive X Window System tool for visualizing and manipulating performance analysis data captured during
program execution. Mac and Windows clients are also available.

e Installing Apprentice2 on Laptop
module load perftools-base/23.12.0 # or your favorite version
module load perftools # will match above version
cd SCRAYPAT ROOT/share/desktop installers

o download Apprentice2Installer-23.12.0-2.exe to laptop # windows

o download Apprentice2lnstaller-23.12.0-2.dmg # apple

o double-click on installer on laptop and follow directions to install

e Reveal

« Source code visualization and analysis tool, good to point out where to add what OpenMP directives.
Not covered here, due to Prep- and Presentation-Time constraints.
However, there is also a Reveal desktop_installer for apple, Reveallnstaller-23.12.0-2.dmg

E:::::] | 12

CAVEATS

 Tightly coupled with specific versions of ROCm
e Check with “module show perftools-base/$S{VERSION} 2>&1 | grep -i rocm’

e Tip: To minimize problems with SW env module compatibility between
(cce, rocm, cray-mpich, perftools, ..), start with loading a desired cpe/* module,
e.g., cpe/23.12 (=cpe/YY.MM) whose modules are expected to be mutually compatible;
then, add/change modules as desired, e.g., a different ROCm module, and
then check compatibility with “ module show NAME 2>&1 | grep -iE “rocm|cce”’

e No profiling inside AMD GPU kernels*
e Currently limited support for AMD GPU performance counters*
e Timeline visualization for full traces temporarily broken*

* but we are working on it

: CONFIDENTIAL | AUTHORIZED | 12

PAT Overview

e PAT assists the user with application performance analysis and optimization
e Provides concrete suggestions instead of just reporting data.

« Works on user codes at realistic core counts with thousands of processes/threads integrate into large codes with
millions of lines of code

o (To optimize VPIC for the BlueWaters/NCSA acceptance, | ran with CrayPat in 2013 on 180224 MPI-ranks with
4 OpenMP-threads on 720896 cores, 22528 nodes. This is a data point which shows that PAT can scale.
Fine-print:

1. The 1-hour time limit on interactive sessions was too short to read in all *.xf profile data from that run.
(Keep in mind - you don’t want those files to fill up your SHOME)
However, pat_report can be run from within a batch job. ©

2. If yourun ajob on many nodes with perftools-lite-XXX, where the equiv. of pat_report is automatically done
at the end on the first allocated node only (unless PAT_RT_REPORT_METHOD=0), the other still allocated
nodes remain idle.

PAT Overview (cont.)

e PAT is a universal tool (different compilers, hardware, performance aspects — io, communication,
compute, memory, on-node, inter-node)
« Basic functionality available to all compilers on the system

Additional functionality available for the Cray compiler (loop profiling)

Requires no source code or Makefile modification

Automatic instrumentation at group (function) level such as mpi, io, omp (see “man pat_build " -g trace-group)

Requires object files and archives for instrumentation and to be compiled with the {cc, CC, ftn} drivers
while a perftools module was loaded. (If you really don't want to use {cc,CC,ftn} - a workaround shown later.)

PAT Overview (cont.2)

e PAT is able to generate instrumentation on optimized code.

e |[t's not necessary or helpful to add extra "-G/-g" flags for performance analysis with PAT,
because then you would profile a code you normally don't run;
you want to know the hot-spots in the optimized code.

e Instead, build your code as usual (but with the perftools module loaded) and
let pat_build do the instrumentation of your optimized code.

e pat_build creates new stand-alone instrumented program while preserving original binary.

e Note 1: For CCE Fortran < 17.0.0, be careful with the "-g" compilation flag which corresponds to "-GO",
because —g is heavy-handed (more so than with other compilers) and will turn off optimization.
Instead, try "-G2" or, if that's not enough, "-G1".

e Note 2: When you build an app with a perftools module loaded, i.e., perftools or perftools-lite-*
(but not with perftools-base/* alone, where the following is not the case),
PAT may keep some temp files in SHOME/.craypat/
Therefore, you may want to periodically clean out old files under SHOME/.craypat/
if you have built binaries with module perftools or perftools-lite-* loaded.

E— |

15

Sampling and Event Tracing

e CrayPAT provides two fundamental ways of profiling:

e 1. Sampling
« By taking regular snapshots of the applications call stack we can create a statistical profile of
where the application spends most time.

« Snapshots can be taken at regular intervals in time or when some other external event occurs,
like a hardware counter overflowing

e 2. Event Tracing

« Alternatively, we can record performance information every time a specific program event occurs,
e.g., entering or exiting a function.

« We can get accurate information about specific regions of the code every time the event occurs
e Event tracing code can be added automatically or included manually through API calls.

E—

16

Sampling vs. Tracing

e Sampling

o Advantages
—Only need fo instrument main routine
—Low Overhead - depends only on sampling frequency
—Smaller volumes of data produced

« Disadvantages
—-Only statistical averages available
—Limited information from performance counters

e Event Tracing
o Advantages
—More accurate and more detailed information
—Data collected from every traced function call not statistical averages
e Disadvantages
—Increased overheads as number of function calls increases
—Potentially huge volumes of data generated

e Automatic Profile Analysis (CAPA) combines the two approaches.

E—

17

BEFORE BUILDING AND RUNNING,
ESTABLISH THE DESIRED SW MODULE ENVIRONMENT

o

module
module
module
module
module

% cat setup env.cpe 2312

load cpe/23.12 # Dec/2023 version

load rocm/5.7.1 # instead rocm/5.5.1 loaded by cpe/23.12
load craype-accel-amd-gfx90a

load perftools # matches perftools-base/23.12.0
load cmake/3.23.2 # HIP support in cmake >= 3.21, dflt cmake=3.20.4

module unload darshan-runtime # don’t mix with perftools

[]
o® =H= o\© o\©°

source ./setup env.cpe 2312

export LD LIBRARY PATH=${CRAY LD LIBRARY PATH}:${LD LIBRARY PATH}
showing only relevant parts of module checking here

module show perftools-base/23.12.0 2>&l1 | grep -i "supp.*rocm"

* Add support for ROCm 5.7.0

°
o\©

module show cray-libsci/23.12.5 2>&l1 | grep -iE "rocm|cce“

* AMD ROCm 5.0. or later
* CCE 17.x (SLES)

*$ module show cray-mpich/8.1.28 2>&l1 | grep -iE "rocm|cce"“
* AMD ROCM 5.0 or later
* CCE 17.0 or later

e Nofte:

e Loading modules does not change LD_LIBRARY_PATH
e Remember to use same SW module env and LD_LIBRARY_PATH for running as for building

 For production jobs built and run without module perftools, i.e., not profiling runs,
may want to keep module darshan-runtime loaded to get I/O logs

ﬂe/orion/da rshan/<frontier|crusher>/YYYY/<M|MM>/<D|DD>/*.darshan

CONFIDENTIAL [AUTHORIZED I 18

WHEN BUILDING WITH HIPCC RATHER THAN CC OF PRGENV-{CRAY,AMD}

establish SW module env as before
add "CRAY_MPICH_DIR..." for HPE Cray MPI

add PE_MPICH_GTL_DIR_amd_gfx90a and PE_MPICH_GTL_LIBS_amd_gfx90a
for GPU-aware MPI with MPICH_GPU_SUPPORT_ENABLED=1

add "XPMEM... -Ixpmem" for zero-copy on-node MPI with CPU buffers
add “S(pat_opts ..)” when instrumenting with perftools but not using ftn/cc/CC compiler drivers

export CXX=hipcc # not using CC

export CXXFLAGS="S(pat_opts include hipcc) S(pat_opts pre_compile hipcc) \
-g -fopenmp -03 -std=c++17 --offload-arch=gfx90a -Wall \
-IS{CRAY_MPICH_DIRYinclude $(pat_opts post_compile hipcc)"
export LD=hipcc # not using CC

export LDFLAGS="S(pat_opts pre_link hipcc) S{CXXFLAGS} -LS$S{CRAY_MPICH_DIR}/lib \
S{PE_MPICH_GTL_DIR_amd_gfx90a} S$S{CRAY_XPMEM_POST_LINK_OPTS}"

export LIBS="-Impi $S{PE_MPICH_GTL_LIBS_amd_gfx90a} -Ixpmem $(pat_opts post_link hipcc)"
make

: CONFIDENTIAL | AUTHORIZED | 19

WHEN BUILDING WITH HIPCC, PERFTOOLS AND CMAKE

o # establish SW module env as before

e # Turn on Hip
-DENABLE_HIP=0ON
-DWITH_HIP=TRUE

e # Target MI250X
-DWITH-GPU-ARCH=gfx90a
-DGPU_TARGETS=gfx90a
-DHIP_ARCH=gfx90a
-DCMAKE_HIP_ARCHITECTURES="gfx90a“

e # Use hipcc
-DCMAKE_CXX_COMPILER=*hipcc”
-DMPI_CXX_COMPILER="hipcc -IS{MPICH_DIR}/include*

e # Add Perftools (and other) arguments
-DCMAKE_CXX_FLAGS="$S(pat_opts include hipcc) S(pat_opts pre_compile hipcc) \
--offload-arch=gfx90a -munsafe-fp-atomics $(pat_opts post_compile hipcc)“
-DCMAKE_EXE_LINKER_FLAGS="S(pat_opts pre_link hipcc) S(pat_opts post_link hipcc)"

: CONFIDENTIAL | AUTHORIZED | 20

WHEN BUILDING WITH HIPCC, PERFTOOLS AND CMAKE (CONT.)

e If you get errors such as ...
readelf: Warning: Unrecognized form: 0x22

readelf: Warning: Unrecognized form: 0x23
then that indicates an issue with readelf from binutils-2.38 and earlier.
This is fixed in binutils-2.39.

e As a temporary workaround (if using binutils < 2.39)
add to the above CMAKE_CXX_FLAGS also -gdwarf-4 as in
-DCMAKE_CXX_FLAGS="S(pat_opts include hipcc) S(pat_opts pre_compile hipcc) \
--offload-arch=gfx90a -gdwarf-4 -munsafe-fp-atomics $(pat_opts post_compile hipcc)“
to use an older debug format.

e If cmake gives you the error
Cannot determine location of 'ld.1lld' i1n PATH
then export PATH="S{PATH}:$S {ROCM_PATH} /11lvm/bin™
(see https://docs.olcf.ornl.gov/systems/crusher quick start guide.html#olcfdev-513-error-with-

perftools-lite-gpu (I did some of my prep work on crusher))

E—

21

https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#olcfdev-513-error-with-perftools-lite-gpu
https://docs.olcf.ornl.gov/systems/crusher_quick_start_guide.html#olcfdev-513-error-with-perftools-lite-gpu

USING PAT_BUILD TO GENERATE AN INSTRUMENTED BINARY

With the desired SW module env set up on the previous slide
while still having module perftools loaded now, just as it was for compiling and linking ...

pat_build a.out” generates an instrumented binary executable named
a.out+pat to be run to generate profiling data as a.out would be;

Build binary instrumented for sampling,
where the default PAT_RT_EXPERIMENT is samp_pc_time;

see "man cray_pat’ for PAT_RT_EXPERIMENT;
pat_build -S a.out

or, build binary instrumented for tracing (-w),

see "man pat_build" for the many supported trace groups:
pat_build -w -g mpi,omp,io,hip a.out

: CONFIDENTIAL | AUTHORIZED | 22

USING PAT_BUILD TO GENERATE AN INSTRUMENTED BINARY (CONT.)

... Or by default, build binary instrumented for

"automatic profiling analysis" (apa) implying 2 build+run cycles:

make clean ; make ; pat_build a.out # generates a.out+pat

export MPICH_ENV_DISPLAY=1

export MPICH_GPU_SUPPORT_ENABLED=1

export MPICH_OFI_NIC_POLICY=GPU

export MPICH_VERSION_DISPLAY=1

export OMP_PLACES=threads

export OMP_PROC_BIND=spread

CORES_PER_RANK=7 # if the Frontier default of "#SBATCH -S 8" is used;

you have 8 GCDs/node and want 8 MPI-ranks/node && 1 MPI-rank/GCD;

want/node: 64 cores = (8 MPI) * SCORES_PER_RANK + SSPECIALIZED_CORES;
want the 8 MPI-ranks/node spaced 8 cores apart to optimally map to GCDs;
export OMP_NUM_THREADS=7 # <= CORES_PER_RANK

run generates a.out+pat+<PID>-<node>s experiment data directory.

srun -N SNODES -n SRANKS -c SCORES_PER_RANK\
--gpus-per-task=1 --gpu-bind=closest a.out+pat [a.out args]

see compute node diagram at https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

: CONFIDENTIAL | AUTHORIZED | 23

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

USING PAT_BUILD TO GENERATE AN INSTRUMENTED BINARY (CONT2.)

run pat_report to make report from experiment data and produce a text file,

pat_report -i a.out+pat a.out+pa+<PID>-<node>s\
> pat_report.out.dflt.l # capture default sampling report

the above pat_report generated 1 or more *.ap2 files from *.xt files,
i.e, a.out+pat+<PID>-<node>s/ap2-files/*.ap2;
the *.xt files can now be deleted, but not the *.ap2 files;

build the 2nd instrumented binary based pat_build's recommendations;

this is the "automatic" part of "automatic profiling analysis®, using the plain text file build-options.apa
generated in the previous run, which contains instrumentation instructions for PAT to be used now:
this 2nd pat_build invocation generates a.out+apa

pat_build -O <my_program>+pat+<PID>-<node>s/build-options.apa

srun -N SNODES -n SRANKS -c SCORES_PER_RANK '\
--gpus-per-task=1 --gpu-bind=closest a.out+apa [a.out args]
run generates <my_program>+apa+<PID2>-<node>t profiling data dir

pat_report -i a.out+apa <my_program>+apa+<PID2>-<node>t \
: > pat_report.out.dflt.2 # capture default tracing report
from automatic instrumentation CONFIDENTIAL | AUTHORIZED | 24

USING PAT_BUILD TO GENERATE AN INSTRUMENTED BINARY (CONT3.)

e If, during “srun ... a.out+pat ...", you get a warning like
pat[WARNING][O]: 19543 CID to EID records were dropped.
Try increasing the value of PAT_RT_ACC_CID_TO_EID_BUFFER_SIZE
then ... Try increasing that®©, e.g.,
export PAT_RT_ACC_CID_TO_EID_BUFFER_SIZE=128 MB # default = 1 MB

e A description of the many PAT_RT_* environment parameters can be found
in “man cray_pat under "Runtime Environment Variables Summary"

e If you want other reports from pat_report than the default one, such as
pat_report -O acc_time -s show_ca=fu,so,li experiment-data-dir > pat_report.out.show_ca.fu.so.li
(for accelerator kernels also showing callers by function, source, line);

 you can get the pre-defined options pat_report supports listed
with a short description from "pat_report -O -h"

: CONFIDENTIAL | AUTHORIZED | 25

DEFAULT REPORT

Table 1: Profile by Function Group and Function
Time% | Time | Imb. | Imb. | Calls | Group
| | Time | Time% | | Function
| | | | | PE=HIDE
| | | | | Thread=HIDE
100.0% | 5.136167 | -— | -- | 1,327,756.0 | Total
| ___
| 64.7% | 3.321289 | -— | -— | 727,589.0 | HIP
|| == = m s
|| 26.2% | 1.346300 | 0.284986 | 20.0% | 33,000.0 | hipStreamSynchronize
|| 11.6% | 0.595530 | 0.000128 | 0.0% | 253.0 | hipMemset
| | 7.9% | 0.406597 | 0.006219 | 1.7% | 20.0 | hipStreamDestroy
| | 5.6% | 0.286828 | 0.018657 | 7.0% | 66,000.0 | hipKernel.gpuRun3xl<>
| | 2.5% | 0.129979 | 0.003099 | 2.7% | 198,232.0 | hipLaunchKernel
| | 2.4% | 0.122329 | 0.0011306 | 1.1% | 20.0 | hipStreamCreate
| | 2.3% | 0.118819 | 0.003993 | 3.7% | 110.0 | hipKernel.init

// Host times spent on Hip API calls,
[:::::] // not kernel execution times on accelerator.

Load-Imbalance - What is it? Do we care?

e |t’s the fraction of time that rest of team is not engaged in useful work on the given function.

e |dentifies computational code regions and synchronization calls that could benefit most from load
balance optimization.

e Estimates how much overall time could be saved if corresponding code had a perfect balance.
e Represents an upper bound on "potential savings® due to better load-balancing (Max — Avg)
» Assumes other processes are waiting, not doing useful work while slowest member finishes.
 Perfectly balanced code segment has imbalance of zero.

e Imbalance time = (Maximum - Average) time # user functions
e Imbalance time = (Average - Minimum) time # MPI sync + barrier

e Tmbalance% = 100% * [(Imbal/Max)time] * [ntasks/ (ntasks-1)]

27

DEFAULT REPORT (CONT.1)

Table 6: MPI Message Stats by Caller

MPI | MPI Msg Bytes | MPI Msg | MsgSz | 256<= | 64KiB<= | Function

Msg | | Count | <lé6 | MsgSz | MsgSz | Caller
Bytes% | | | Count | <4KiB | <1MiB | PE=[mmm]

| | | | Count | Count | Thread=HIDE

100.0% | 7,550,930,468.0 | 77,714.0 | 11,114.0 | 33,300.0 | 33,300.0 | Total
| ___
| 100.0% | 7,550,930,400.0 | 77,700.0 | 11,100.0 33,300.0 33,300.0 MPI Isend
| 99.1% | 7,482,904,000.0 | 77,000.0 | 11,000.0 33,000.0 33,000.0 Faces: :share
3 | | | main
||| == === == = oo
4111 99.1% | 7,482,904,000.0 | 77,000.0 | 11,000.0 | 33,000.0 | 33,000.0 | pe.O
4111 99.1% | 7,482,904,000.0 | 77,000.0 | 11,000.0 | 33,000.0 | 33,000.0 | pe.4d
4111 99.1% | 7,482,%904,000.0 | 77,000.0 | 11,000.0 | 33,000.0 | 33,000.0 | pe.?

| 28

DEFAULT REPORT (CONT.2)

Table 7:

Avg Read
Time per
Reader
Rank

File Input Stats by Filename

per

Rank

Read Rate
MiBytes/sec

Bytes/
Call

File Name='!'x/"/ (proc|sys)/
PE=HIDE

0.000020
0.000008
0.000008
0.000007
0.000006
0.000006
0.000006
0.000006
0.000005
0.000005
0.000005
0.000005
0.000005
0.000005
0.000004

.000097
.004499
.004499
.000690
.004499
.008984
.004499
.004499
.004499
.004499
.008984
.008984
.004499
.008984
.008984

.926054
.516441
.156081
.833138
.125818
.106780
.104564
.953255
.688618
.351304
.8160444
.913153
.204432
.641490
.245901

stdin
/tmp/comgr-538d7e/input/CompileSource
/tmp/comgr-b039d7/input/CompileSource
/opt/rocm-5.3.0/bin/.hipVersion
/tmp/comgr-9788a0/input/CompileSource

/tmp/comgr-9788a0/output/CompileSource.

|

|

|

|

|

|

| /tmp/comgr-ebcd47e/input/CompileSource
| /tmp/comgr-1££8d6/input/CompileSource
| /tmp/comgr-bl72la/input/CompileSource
| /tmp/comgr-5c35ff/input/CompileSource
| /tmp/comgr-bl721la/output/CompileSource
| /tmp/comgr-b039d7/output/CompileSource
| /tmp/comgr-dda55e/input/CompileSource
| /tmp/comgr-538d7e/output/CompileSource
| /tmp/comgr-ebcd7e/output/CompileSource

bc

.bc
.bc

.bc
.bc

29

DEFAULT REPORT (CONT.3)

Table 9: Time and Bytes Transferred for Accelerator Regions

Time$% | Time | Acc | Acc | Acc Copy | Events | Calltree
| | Time% | Time | Out | | Accelerator ID
| | | | (MiBytes) | | PE=HIDE
I | | | | | Thread=HIDE
100.0% | 5.136167 | 100.0% | 3.77 | 36.00 | 331,016 | Total
| ___
| 100.0% | 5.135812 | 100.0% | 3.77 | 36.00 | 331,016 | main
| oo oo
|| 61.3% | 3.147641 | 99.8% | 3.77 | -— | 330,000 | Faces::share
|| == oo oo
311 26.2% | 1.346300 | -— | -— | -— | 33,000 | hipStreamSynchronize
41 | | | | | | | acc.0
311 15.9% | 0.815399 | -— -— -— 0O | MPI Waitall
a1l | | | | | | | acc.0
311 13.8% | 0.707482 | 99.8% | 3.77 | -— | 297,000 | gpuFor<>
|1

DEFAULT REPORT (CONT.5)

Notes for table 9:
This table shows energy and power usage for the nodes with the

maximum, mean, and minimum usage, as well as the sum of usage over

all nodes.

Energy and power for accelerators is also shown, if available.

For further explanation,

// this is from a different app

see the "General table notes" below, or

use: pat report -v -O program energy
Table 9: Program Energy and Power Usage from Cray PM
Node Id / PE=HIDE / Thread=HIDE

PM Energy

Node
Cpu
Memory
AccO
Accl
Acc2
Acc3

Process Time

E—

3,158
316
319
530
534
506
520

W 194,060
W 19,437
W 19,589
W 32,565
W 32,825
W 31,073
W 31,981
61.452468

oo aggqggg

0
(]
Q
0]

| 31

DEFAULT REPORT (CONT.6)

Notes for table 10:

This table shows values shown for HiMem calculated from information
in the /proc/self/numa maps files captured near the end of the
program. It is the total size of all pages, including huge pages,
that were actually mapped into physical memory from both private
and shared memory segments.

For further explanation, see the "General table notes" below, or
use: pat report -v -O himem

Table 10: Memory High Water Mark by Numa Node

Process | HiMem | HiMem | HiMem | HiMem | Numanode
HiMem | Numa Node | Numa Node | Numa Node | Numa Node | PE=HIDE
(MiBytes) | 0 | 1 | 2 | 3 |
| (MiBytes) | (MiBytes) | (MiBytes) | (MiBytes) |
514.2 | 427.7 | 29.6 | 28.9 | 28.0 | numanode.
521.5 | 29.1 | 435.6 | 28.8 | 27.9 | numanode.
521.1 | 29.1 | 29.6 | 434 .5 | 27.9 | numanode.
514.5 | 29.0 | 29.5 | 28.9 | 427.1 | numanode.

32

WHAT ELSE CAN PAT_REPORT TELL YOU?

A lot.

% pat_report -O -h
pat report: Help for -O option:

D1 D2 observation D1 + D2 cache utilization

D1 D2 util Functions with low D1+D2 cache hit ratio

D1 observation D1 cache utilization

D1 util Functions with low D1 cache hit ratio

samp profile Sample Profile by Function

samp profile+hwpc Sample Profile by Function with Counters

samp profile+src Sample Profile by Group, Function, and Line

samp profile+src+hwpc Sample Profile by Group, Function, and Line with Counters

% pat_report -O -h | wc -1
158

% pat _report -O OPTION -h # more details on option OPTION

[0)

% man pat report

E—

TEMPLATES - CAN MAKE PROFILES MORE OBSCURE

e C++ codes often launch kernels from template functions that take lambda arguments
e "Real" kernel code is in the user-provided lambdas

e Think "portability layers", Kokkos, Raja, Alpaka, Yakl, efc.

e Templates get inlined info user code

 Profiles show line numbers somewhere inside portability layers
instead of line numbers in user code where lambdas appear

e WORKAROUND - Turn off compiler inlining of top layer of portability-layer templates:
template <typename F>
#ifdef CRAYPAT

attribute ((noinline))
Fendif _
vold gpuFor (const std::initializer list<int> 110,
const hipStream t stream = 0)
{ ...

Minimal impact on runtime
o Kernel launches are much more expensive than host function calls
e But changes are in portability layer, not user code

E—

F £,

34

Apprentice2 - Graphic Representation of Performance Data

e Apprentice2 is a post-processing performance data visualization tool; takes *.ap2 files as input.
e Main features:
« Call graph profile
Communication statistics
Time-line view for Communication and IO.

Activity view
Pair-wise communication statistics
Text reports
e Helps identify:
e Load imbalance

Excessive communication
Network contention
Excessive serialization
|/O Problems

E—

35

Apprentice2 - Graphic Representation of Performance Data (cont.)

e module load perftools-base

e Must run pat_report to generate the *.ap2 file(s) from the *.xf file(s),
after that, can remove the *.xf file(s)

e From the linux command prompt:
e app2 <pat-exp-data-dir>/index.ap2 " or just
"app2 index.ap2’ # opens an X-window

e On your laptop (win/mac):
o Can run app2 on frontier and display the GUI on your laptop, but that’s slow.

« MUCH faster to run app2 on your laptop and
File -> Open Remote... -> enter user(@host -> enter PIN+OTP
-> cptpaste full path to PAT-expt-dir -> click index.ap2

 Alternatively, scp PAT-expt-dir to laptop (pfew!) and then
File -> Open -> ...
but that’s not much faster and gave me errors for some app2 functions.

E—

36

File Compare View Help

Apprentice2 overview comes up after having clicked on index.ap2

v About Apprentice2 % ~ index.apz X |

HOP MO AY AT

¥ Overview x|‘mlﬁm x|

Function/Region Profile

79.4% = main
17.9% = MPI_Waitany
1.9% = MPI_Waitall

-
-

Load]mI:J»rsllr:mcel

(seconds)

1.29s = MPI_Waitany
1.08s = MPI_Waitall
(1.865 = main

Profile
CPU

Programming Model
20.56%

\

Memory Utilization
Process HiMem = 517.8 MiBytes

|
A

:H

Energy Usage
PM Energy Node 194060 J

10011} __ (10011
10101 10101

Data Movement

MPI Msg = 152.064 GiBytes
MPI Msg Count = 181.5 msgs

30.73

46,09 61,45

4

CONFIDENTIAL | AUTHORIZED

FUNCTION / REGION PROFILE

File Compare View Help

~ About Agprentices B, ~ ndexan X |

& "W MO A Y QS R
w Profile X|
Sort by Calls Sort by Time =4
All Others:2.5%
A | | | A
0.00 15.36 30.73 46.09 61.45
[pone (0.01233) 7 A

—

CONFIDENTIAL | AUTHORIZED I

38

After clicking on desired function in “Sort by Calls”: Load Balance

File Compare View Help

v About Apprentice2 % ~ index.apz X |

SO YW AV QT

v overview 3|~ call Tree 3|~ Profile 3|~ 18: MPI Trecy 3 ¥ LB: MPI Isena X |
Load Balance: MPI Isend B
PE Calls Average Time (in secs) ¥ B
PE #13
PE #00 1
PE #01 1
PE #35 1
PE #27 1
PE #24 1
PE #21 1
PE #10 1
PE #26 1
PE #12 1
PE #04 1
PE #07 1
PE #05 1
PE #20 |
PE #23 |
PE #31 |
PE #16 | -
PE #15 |
PE #29 |
PE #22 |
PE #06 |
3. 2e+002 [1] 00035 0.012 0031 :I
Y | | | A
0.00 15.36 30.72 46.08 61.45
[pone (0.0275s) 4|

—

MinLine , Avg-SdevMark , AvgLine , Avg+SdevMark , MaxLine

39

MPI COMMUNICATION HEAT MAP

File Compare View Help

v About Apprentice2 % ~ index.apz X |

OO M AN T

v overview 3| v Activity 3| 10 Rates 3|~ call Tree 3|~ Time Line 3|~ Plots 3 ~ Mosaic X |
Avg Time (Send)

Destination PE
0 4 5 85 7 26 27 28 29 30 31

910 11 12 13 14 15 18 18 19 20 21 22 23 24

Source PE

MG0 w o B W R O

1t

=
[+
1x1 P N
4 | I | A
0,00 15.36 30.73 45.09 61.45
[pone (0.9305s) A

E—

CALL TREE VIEW

{Width & inclusive time L

@CV EHI B ME

w Overview & = Call Graph X| . . .
Height < exclusive time
(«=%1083)

ot {511 Filtered
V Londl beliies overlers o — nodes or
Height < Max time (c-0.0251 =g 4705) (e=0.388 e0.5031) sub tree
Middle bar <> Average time g
Lower bar < Min time DUH Button:

: _—1 mvtie:ac?s)ﬂ'nl’l Provides hints for

mpi_ waitall)[3]

Yellow represents

\imbalance time h ferfonnance
, uning
: MRSl -
Function
List Z.oom
. I>Iz‘
7] search] B o\
h

CALL TREE VIEW - FUNCTION LIST

Eile Help
@ ™ v EH <P B o B -
- Overview J " Call Graph xl
Info =
ImbTime|Name

0.3702 mpi_waitall_[7] ::-n%f:{HBSQ

0.3103 mpi_waitall_[4] -

0.1586 mpi waitall_[10] / \

0.1226 mpi_waitall_[&] R. h I. k (:I-"I:I.tl:l-lllaj

0.1108 mpi_waitall_[1] I -I- mouse C IC . /

0.1017 mpi_waitall_[3] g °

0.0917 calcl_ . mpi uL-DItu!‘I:Il_ZBIO]

0.0673 cale3_ VIeW menu: {c=0/3993' S=0.2033) -

0.0649 calc2_

0.0249 mpi_waitall_[9] 8

0.0161 mpi_isend_[13] e’g" FIITer =n ozcz?llc:i__n P —o 38%?5":2—‘0 d031

0.0129 mpi_irecy_[10] (c=0. |) fe=o =))

0.0117 mpi_isend_[10] . .

0.0090 mpi_waitall_[0] /1 nght mouse Cllck'

0.0084 mpi_isend_[7] °

0.0072 mpi_irecw_[13] .

EEE;E mpiisend_[4] Sort Optlons \ NOdC menu

. mpi_irecv_[4] . .

0.0048 mpi_irecv_[7] b h d / h d

0.0031 mpi_waitall_[2] % Tlme, ///} mpj waitall (7] e'g'a 1ac/unniae

0.0029 mpi_reduce_{sync) . - 5

QL0025 e iwelen Thine SIS E b children

0.0001 mpi_reduce_ 5

0.0000 mpi_waitall_[8] 0

0.0000 mpi_irecv_[18] Imbalance A)

0.0000 mpi_isend_[16] . mp(% u-|3t2-é|s][4]

0.0000 mpi_finalize_ b 1 T

0.0000 mpi_comm_rank_ Im a ance tlme j

0.0000 mpi_init_

0.0000 mpi_comm_siz
3l [.)
ﬂ Time | Imb Imb Time FunCtlon =]

| . [v]
I List off co| QL 2
0.56 1.12 1.68 2.24

TIME LINE VIEW (communication) Traffic Tab

Full trace (sequence of events) enabled by setting

PAT_RT_SUMMARY=0 . ,

= covimiompi+ 1 566td ap2 % T+ | +swp+iosmpi+48p 202 |
@, E <O RE AME m & =

- Overview |VFuncti0n |VEnvir0nment W Traffic Fieport |VText Report | w Mosaic |VActi\.-'ity |
0,000 0,462 0,924 1,386 1,848 2,310 . 4,520

Helpful to see & - '

PE #2

communication

bottlenecks.

Use it only for f:
small experiments ! (=

Wurite Read I Barrier Beast Il Send MReceive Housekeeping Reduce AllToAll Comm File Other M EBarrier IParallel Region Housekeeping

@. Zoorm Cut
A I | I A

seale = 137.7% (&), 2Zoom In

(3] Best At |

0.00 1.15 2.30 3.45 4 51

TIME LINE VIEW (FINE GRAIN ZOOM)

File

Help

- swim+Hompi+ 1 SEEtd ap2 % T+ | +swp-io+mpi+4Sp.apa |

@Ry E ME E IR G

= Overview |vFunctiDn W Traffic Report |VTe><t Fiepart | Mosaic |V.i\.ctivit5-' | W Counters Flot | w HW Counters Overview | = |0 Fates |

3.506 3.ga7 3,007 3.500 3.600 3.508 3.5a9
[| 1

—
FE #42 A i
FE #43
PE #44
PE #45

7,889

M-ite Read Il Barrier Bcazt MM send I Receive Housekeeping Reduce Al1TaAll Camm File

scale = 152198.2%

1

Other IMEarricr I@Parallel Region

@ Zoom In

2,890

Housekeeping

a Zoom Dot

3] Best Fit |

A

461

Misc. PAT Topics: More MPI-rank specific info, e.g., for Apprentice2 Timeline

e |If you are doing fracing but don't get as much detailed information
per MPI-rank as expected, consider export PAT_RT_SUMMARY=0

e However, this will collect SIGNIFICANTLY more data during the run.
e E.g., from the "same" 8-MPI-rank ~2min perftools-lite-gpu run of minigmc:
e % du -sh minigmc+*
e 18G minigmc+104730-6078151t.run_18 # export PAT_RT_SUMMARY=0
e YES, that’s 18 GB counter data from 1 compute-node in 2 minutes code wallclock time.
e 15M minigmc+62750-6079239t.run_17 # default PAT_RT_SUMMMARY=1
o Again, please, don't try that at SHOME © - use gpfs/lustres instead.

45

What if pat_report ...

e Says “No APA data file was generated because no samples occurred in USER functions.” ...

« This usually means either that the program spent so little time in user-defined functions that
no samples were taken there, or that CrayPat failed to identify the user-defined functions (and
instead showed them under the group ETC).

e .. Or shows a lot of time spent under ETC in Automatic Profiling Analysis CAPA).

o While APA instruments some libs, such as MPI, it does not instrument some others, such as
libsci. A lot of time spent in ETC suggests that PAT was not able to identify where those calls
under ETC originated. For sampling, the classification of functions as USER versus ETC is
based on whether the user running pat_report had write access to the directory that contained
the source file of the call.

e To remedy this:

« Move aside or delete the *.ap2 files created by pat_report from the *xf files
that were generated by running the PAT-instrumented binary

o export PAT_REPORT_PRUNE_NON_USER=0 # search for PAT_RT_in "man intro_craypat’
e repeat pat_report invocation

e .. because that pruning is done when the *.ap2 files are generated from the *.xf files;
if EaT_reporT finds *.ap2 files, it will not attempt to regenerate those from * xf files

If you want to limit or completely turn off PAT’s pruning

e Search "man pat_report” for _PRUNE
e PAT_REPORT_PRUNE_NON_USER

« based on ownership of compilation dir of function def
to turn off: export PAT_REPORT_PRUNE_NON_USER=0 # while *.ap2 file is being created

e PAT_REPORT_PRUNE_NAME

e based on function name
to turn off: export PAT_REPORT_PRUNE_NAME=""

e PAT_REPORT_PRUNE_NAME_FILE

e based on name of file that contains function
to tfurn off: export PAT_REPORT_PRUNE_NAME_FILE=""

e PAT_REPORT_PRUNE_SRC

« based on path of file that contains function
to turn off: export PAT_REPORT_PRUNE_SRC="“ # while *.ap2 file is being created

E— |

47

Misc. PAT Topics: More MPI stats

e To get more MPI stats out of CrayPAT, if you did
e pat_build -w -g mpi a.out ; srun [srun-opts] a.out+pat
o fry
e pat_report -i a.out+pat -0 opt{,opt,...} experiment_data_dir > pat_report.out.mpi
e with {opt}in
e mpi_callers
Show MPI sent- and collective-message statistics
e mpi_sm_callers
Show MPI sent-message statistics
e mpi_coll_callers
Show MPI collective-message statistics
e mpi_dest_bytes
Show MPI bin statistics as total bytes
e mpi_dest_counts
Show MPI bin statistics as counts of messages

E—

48

Misc. PAT Topics: More OpenMP stats

e To get more OpenMP info from CrayPAT, try (after pat_build -w —-g omp ...
e patf_report -i a.out+pat -O opt{,opt,..} experiment_data_dir > pat_report.out.mpi
e with {opt}in
o profile_pe.th
Show the imbalance over the set of all threads in the program.
 profile_pe_th
Show the imbalance over PEs of maximum thread times.
o profile_th_pe
For each thread, show the imbalance over PEs.

e thread_times
For each thread number, show the average of all PE times
and the PEs with the minimum, maximum, and median times.

E—

49

Misc. PAT Topics: Avoid “contamination” of profiles by initialization phase

Minor code changes are necessary for that. Whenever you make PAT calls:
#if defined (CRAYPAT)

#include “pat api.h” // C/C++
include pat apif.h ' F90
include pat apif77.h ! F77
fendif

Method 1:

// At the beginning of main

#i1f defined (CRAYPAT)

int rcO0 = PAT record(PAT STATE OFF); // returns PAT API OK(l) or PAT API FAIL(O)
#endif

// initialization - not to be PAT-recorded

#i1f defined (CRAYPAT)

int rcl = PAT record(PAT STATE ON) ;

#endif

// code of interest

Method 2:
Start your job with export PAT RT RECORD=PAT STATE OFF
// in the source code, just above the region of interest
#i1if defined (CRAYPAT)
int rc2 = PAT record(PAT STATE ON) ;
#endif

E—

50

Misc. PAT Topics: What if you want pat_report only from selected MPI-ranks?

*pat report -sfilter input=‘condition’

« The ‘condition’ could be an expression involving 'pe’
such as 'pe<l1l024' or 'pe$%2==0"

TIP FORBETTER SCALING

How can we improve strong scaling in the number of MPI-ranks
without touching scaling in the number of MPI-ranks?

e (You are probably already doing this, but just in case you don’t:)

e At https://docs.olcf.ornl.gov/systems/frontier_user_guide.html look for
“SBCASTIing a binary with libraries stored on shared file systems”

e Using the bare-bones test case of
#include <stddef.h>
#include <mpi.h>
int main () // cc -o mpi blip mpi blip.cc # stddef.h for NULL
{ MPI Init thread(NULL, NULL, MPI THREAD MULTIPLE, NULL);
MPTI Flnallze()
}

* #SBATCH --constraint=nvme

cd SSLURM SUBMIT DIR

x=./mpi blip

export LD LIBRARY PATH—"/mnt/bb/$USER/${x} libs: ${LD LIBRARY PATH}“

time sbcast --send-libs -pf $x /mnt/bb/$USER/$x

if [[$?2 != "0"]]; then echo "error: sbcast failed with 'S?’'"; exit 1; fi
time srun -N SNUM NODES -n SNUM RANKS -c 7 $x

: CONFIDENTIAL | AUTHORIZED | 52

https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

TIP FOR BETTER SCALING (CONT.)

e srun wallclock times in seconds (sbcast was always <= 1 second)
submit from: # SHOME # /lustre/orion

use sbcast: # N | Y # N | Y
Nodes | MPI # t/s | t/s # t/s | t/s
512 | 4096 # 66 | 14 # 14 | 11 // some nolise here
1024 | 8192 # 119 | 14 # 11 | 7
2048 | 16384 # 218 | 17 # 13 | 9
4096 | 32768 # 434 | 19 # 155 | 16

==> Without using sbcast, your jobs’ strong scaling behavior
may appear undeservedly slow, because
as the jobs’ wall clock time shrinks with more MPI-ranks,
the startup time 1increases due to loading shared libs to more nodes.

==> Consider developing the habit of using that sbcast approach.
(For production jobs built and run without module perftools,
i.e., not profiling runs, may want to trim LD LIBRARY PATH
after using the sbcast trick, see Frontier user guide.)

: CONFIDENTIAL | AUTHORIZED | 53

TIP: SAVE (SOME) SW ENV MODULE VERSION COMPATIBILITY HEADACHE

e To minimize potential version compatibility issues between loaded SW env modules
such as (cce, rocm, cray-mpich, cray-libsci, perftools-base, ...
start out with loading a desired cpe/* module, e.g., cpe/23.12
(=cpe/YY.MM) whose modules are expected to be mutually compatible.

e Then, add/change modules as desired, e.g., a different rocm module and then
check compatibility with " module show MODNAME 2>&1 | grep -iE “rocm|cce””
e Also, here are is an incomplete/patch-work compatibility chart.
If you see relevant omissions, please add. If you see mistakes, definitely correct.
ecray- |

I I

e mpich | ROCm | CCE | GCC
e8.1.27 | 5.0-5.4 | 14.0-16.0 | 9.1-12.2
e8.1.28 | 5.5-5.7 | 17.0-" | >= 12.3
e8.1.29 | 6.0-6.? | 17.0-" | >= 12.3
e ROCm | clang | CCE

«5.3.0-5.4.3 | 15.0.0 | 15.~*
«e5.5.0-5.6.1 | 16.0.0 | 16.*
«5.7.0-6.0.0 | 17.0.0 | 17.%*

: CONFIDENTIAL | AUTHORIZED | 54

Acknowledgements

e Useful input from Stephen Abbott, Mark Stock, Tanner Firl, Kostas Makrides,

Luke Roskop (all HPE) and Trey White (formerly HPE, now ORNL)
is gratefully acknowledged

e as is your patience having made it to this point.©

55

The End

e Questions, Comments, Concerns, Corrections?
e PAT is vast — nobody knows everything about it and forgetting details, even important ones, is normal.
« Don’t be shy to ask! We may not know either, but we will find out.©
o And if you found or suspect a bug in any PAT utility, please, report it.
e Discuss now
e Email me
o Contact any CORAL-2 CoE member
« Take advantage of OLCF Office Hours
e Email help@olcf.ornl.gov

THANK YOU

Marcus Wagner
marcus.wagner@hpe.com

: | s6

mailto:help@olcf.ornl.gov

	Presentation
	Slide 1: HPE Perftools Application Profiling (PAT)
	Slide 2: Outline
	Slide 3: Outline (cont.)
	Slide 4: Documentation Resources
	Slide 5: Am I wasting my time by profiling a code I know?
	Slide 6: An “Obvious” Perf. Hotspot and Fix: (crayftn loopmark listing: –h list=a) Is line 2515 below compute “/” bound?  Not that obvious after all.
	Slide 7: The Golden Rules of Profiling
	Slide 8: A historic CPU slide: the importance of data locality
	Slide 9: What are the "HPE Performance Analysis Tools (PAT)", formerly CrayPat?
	Slide 10: PAT programming interfaces
	Slide 11: And then, there are ...
	Slide 12: CAVEATS
	Slide 13: PAT Overview
	Slide 14: PAT Overview (cont.)
	Slide 15: PAT Overview (cont.2)
	Slide 16: Sampling and Event Tracing
	Slide 17: Sampling vs. Tracing
	Slide 18: Before building and running, Establish the desired Sw module environment
	Slide 19: When building with hipcc rather than CC of PrgEnv-{cray,amd}
	Slide 20: When building with hipcc, perftools and cmake
	Slide 21: When building with hipcc, perftools and cmake (CONT.)
	Slide 22: Using Pat_build to generate an instrumented binary
	Slide 23: Using Pat_build to generate an instrumented binary (CONT.)
	Slide 24: Using Pat_build to generate an instrumented binary (CONT2.)
	Slide 25: Using Pat_build to generate an instrumented binary (CONT3.)
	Slide 26: Default Report
	Slide 27: Load-Imbalance – What is it? Do we care?
	Slide 28: Default Report (CONT.1)
	Slide 29: Default Report (CONT.2)
	Slide 30: Default Report (cont.3)
	Slide 31: Default Report (cont.5)
	Slide 32: Default Report (cont.6)
	Slide 33: What else can pat_report tell you?
	Slide 34: Templates – can make profiles more obscure
	Slide 35: Apprentice2 – Graphic Representation of Performance Data
	Slide 36: Apprentice2 – Graphic Representation of Performance Data (cont.)
	Slide 37: Apprentice2 overview comes up after having clicked on index.ap2
	Slide 38: Function / Region profile
	Slide 39: After clicking on desired function in “Sort by Calls”: Load Balance
	Slide 40: MPI communication heat map
	Slide 41: Call Tree View
	Slide 42: Call Tree View – Function List
	Slide 43: TIME LINE VIEW (communication) Traffic Tab
	Slide 44: Time Line View (Fine Grain Zoom)
	Slide 45: Misc. PAT Topics: More MPI-rank specific info, e.g., for Apprentice2 Timeline
	Slide 46: What if pat_report ...
	Slide 47: If you want to limit or completely turn off PAT’s pruning
	Slide 48: Misc. PAT Topics: More MPI stats
	Slide 49: Misc. PAT Topics: More OpenMP stats
	Slide 50: Misc. PAT Topics: Avoid “contamination” of profiles by initialization phase
	Slide 51: Misc. PAT Topics: What if you want pat_report only from selected MPI-ranks?
	Slide 52: TIP for better scaling
	Slide 53: TIP for better scaling (CONT.)
	Slide 54: TIP: save (some) SW env module version compatibility headache
	Slide 55: Acknowledgements
	Slide 56: The End

