

#### Frontier's Architecture

Scott Atchley

Preparing For Frontier Training Series July 12, 2022

ORNL is managed by UT-Battelle LLC for the US Department of Energy



#### Agenda

- OLCF Leadership Systems
- Frontier Node Overview
- Frontier's Interconnect



### OLCF Leadership Systems



#### From Petascale to Exascale

Mission: Providing world-class computational resources and specialized services for the most computationally intensive global challenges

Vision: Deliver transforming discoveries in energy technologies, materials, biology, environment, health, etc.



# Energy Efficiency - One of the key Exascale challenges

Since 2008, one of the biggest concerns with reaching Exascale has been energy consumption

- ORNL pioneered GPU use in supercomputing beginning in 2012 with Titan thru today with Frontier. Significant part of energy efficiency improvements.
- **DOE \*Forward vendor investments** in energy efficiency (2012-2020) further reduced the power consumption of computing chips (CPUs and GPUs).
- **150x reduction in energy per FLOPS** from Jaguar to Frontier at ORNL
- ORNL achieves additional energy savings from using warm water cooling in Frontier (32 C).
  ORNL Data Center PUE= 1.03

**COAK RIDGE** National Laboratory



## Frontier Overview

#### **Extraordinary Engineering**



#### System

- 2.0 EF Peak DP FLOPS
- 74 compute racks
- 29 MW Power Consumption
- 9,408 nodes
- 9.2 PiB memory (4.6 PiB HBM, 4.6 PiB DDR4)
- Cray Slingshot network with dragonfly topology
- 37 PB Node Local Storage
- 716 PB Center-wide storage
- 4,000 ft<sup>2</sup> footprint

**COAK RIDGE** National Laboratory

## Built by HPE

### Powered by AMD

#### Olympus rack

- 128 AMD nodes
- 8,000 lbs
- Supports 400 KW



#### AMD node

- 1 AMD "Trento" CPU
- 4 AMD MI250X GPUs
- 512 GiB DDR4 memory on CPU
- 512 GiB HBM2e total per node (128 GiB HBM per GPU)
- Coherent memory across the node
- 4 TB NVM
- GPUs & CPU fully connected with AMD Infinity Fabric
- 4 Cassini NICs, 100 GB/s network BW

#### **Compute blade**

• 2 AMD nodes



#### All water cooled, even DIMMS and NICs

#### One more word on power efficiency

- One cabinet of Frontier has a 10% higher HPL than all of Titan
  - While only using 309 kW compared to the Titan's 7 MW



One Cabinet 24 ft<sup>2</sup> 200 Cabinets ~4,500 ft<sup>2</sup>



# OLCF Systems by the numbers

| System                  | Titan (2012)                                | Summit (2017)                                          | Frontier (2021)                                                                         |
|-------------------------|---------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Peak                    | 27 PF                                       | 200 PF                                                 | 2.0 EF                                                                                  |
| # nodes                 | 18,688                                      | 4,608                                                  | 9,408                                                                                   |
| Node                    | 1 AMD Opteron CPU<br>1 NVIDIA Kepler GPU    | 2 IBM POWER9™ CPUs<br>6 NVIDIA Volta GPUs              | 1 AMD EPYC "Trento" CPU<br>4 AMD Instinct MI250X GPUs                                   |
| Memory                  | 0.6 PB DDR3 + 0.1 PB<br>GDDR                | 2.4 PB DDR4 + 0.4 HBM +<br>7.4 PB On-node storage      | 4.6 PB DDR4 + <b>4.6 PB HBM2e</b> +<br>36 PB On-node storage, 75 TB/s Read 38 Write     |
| On-node<br>interconnect | PCI Gen2<br>No coherence<br>across the node | NVIDIA NVLINK<br>Coherent memory<br>across the node    | AMD Infinity Fabric<br>Coherent memory<br>across the node                               |
| System<br>Interconnect  | Cray Gemini network<br>6.4 GB/s             | Mellanox Dual-port EDR IB<br>25 GB/s                   | Four-port Slingshot network<br>100 GB/s                                                 |
| Topology                | 3D Torus                                    | Non-blocking Fat Tree                                  | Dragonfly                                                                               |
| Storage                 | 32 PB, 1 TB/s,<br>Lustre Filesystem         | 250 PB, 2.5 TB/s, IBM<br>Spectrum Scale™ with<br>GPFS™ | 695 PB HDD+11 PB Flash Performance Tier,<br>9.4 TB/s and 10 PB Metadata Flash<br>Lustre |
| Power                   | 9 MW                                        | 13 MW                                                  | 29 MW                                                                                   |

#### Frontier Node Overview



## Bard Peak Node

- Trento has 8 CCDs
- Each MI250X has two GCDs
  - Each GCD appears as a GPU to the user
  - Each node has 8 GPUs
- One GCD per CCD

**COAK RIDGE** 

10

National Laboratory FACILITY

- xGMI2 links each pair
- 1 NIC attached to each • MI250X
  - HBM resident data avoids slower CPU link



CCD

CCD

CCD

CCD

CCD

CCD

CCD

# OLCF Systems by the numbers revisited

| System                       | Titan (2012)                                   | Summit (2017)                   | Frontier (2021)                    |
|------------------------------|------------------------------------------------|---------------------------------|------------------------------------|
| CPU:GPU                      | 1:1                                            | 1:3                             | 1:8                                |
| CPU Mem BW                   | 50 GB/s                                        | 170 GB/s per CPU                | 205 GB/s                           |
| GPU Mem BW                   | 1x 250 GB/s<br>250 GB/s Total                  | 3x 900 GB/s<br>2,700 GB/s Total | 8x 1,635 GB/s<br>13,080 GB/s Total |
| Interconnect<br>BW           | 1x 6 GB/s<br>6 GB/s Total                      | 3x 50 GB/s<br>150 GB/s Total    | 8x 36 GB/s<br>288 GB/s Total       |
| Fast-to-Slow<br>Memory Ratio | 5:1 GPU:CPU<br>42:1 GPU:CPU limited<br>by PCIe | 16:1 not limited by NVLink      | 64:1 not limited by xGMI-2         |

- Titan's ratio was too slow to effectively use the host memory
- Frontier's ratio is much worse

11

- Each Frontier has more than 5x the HBM than a Summit node
- Size your application to fit in HBM

- The host memory is good for caching data that would be read from/written to the file system

#### Frontier's Interconnect



# **OLCF** System Interconnects









Interconnect Cray SeaStar

Node Injection 8 GB/s

> Interface Portals-3

**Topology** 3D Torus Interconnect Cray Gemini

Node Injection 6.4 GB/s

UGNI

**Topology** 3D Torus Interconnect Mellanox EDR IB

Node Injection 2x 12.5 GB/s

> Interface Verbs

Topology Clos (non-blocking fat-tree)

180+ miles of cables

Interconnect HPE Slingshot

Node Injection 4x 25 GB/s

Interface Libfabric/OFI

> **Topology** Dragonfly

90+ miles of cables



### What is Slingshot?

- HPC Ethernet Protocol
  - A superset of Ethernet
  - Optimizes packet headers, reduces padding and interframe gap
  - Negotiated between switch and NIC after link training
    - Otherwise falls back to standard Ethernet
- Hardware
  - Rosetta switches
  - Cassini NICs
    - Accessed via OpenFabrics (aka libfabric)
      - FIFOs, tagged messages, RMA, atomics

What is a Dragonfly group?

• A group of endpoints connected to switches that are connected all-to-all





What is a Dragonfly topology?

- A set of groups that are connected all-to-all
  - Every group has one or more links to every other group



#### Another view of a Dragonfly Group

 A group of endpoints connected to switches that are connected all-to-all





## Another view of a Dragonfly Topology

- A group of endpoints connected to switches that are connected all-to-all
- A set of groups that are connected all-to-all







### Similar Latency with CPU or GPU memory



COPYRIGHT HPE 2022



#### Better GPU Bandwidth



COPYRIGHT HPE 2022



#### Questions?



