
Linaro Forge
Debugging and Optimization Tools for HPC

HPC Development Solutions from Linaro
Best in class commercially supported tools for HPC

Debug
Linaro DDT

Profile
Linaro MAP

Analyse
Linaro

Performance Reports

Linaro Forge

Performance Engineering for any architecture, at any scale

DistromacOS Windows

Supported Platforms

Arm (AArch64)AMD/Intel (x86-64) Power8 (ppc64le)

RHEL 7+ SLES 15 Ubuntu 20.04+

Open MPI MPICH IBM Spectrum MPIHPE MPIIntel MPI …

CPU Architecture

AMD ROCm NVIDIA CUDA GP-GPU Accelerator

GCCACfLCCE NVHPC IBM XLIntel Compiler ROCm Compiler

MPISlurm PALS

Python

Debugging with DDT

The de-facto standard for HPC development
● Most widely-used debugger in HPC
● Fully supported by Linaro on Intel, AMD, Arm, Nvidia, AMD GPUs, etc.

State-of-the art debugging capabilities
● Powerful and in-depth error detection mechanisms (including memory debugging)
● Available at any scale (from serial to exascale applications)

Easy to use by everyone
● Unique capabilities to simplify remote interactive sessions
● Innovative approach to present quintessential information to users

An interoperable toolkit for debugging

Linaro DDT Debugger Highlights

The scalable print alternative Stop on variable change Static analysis warnings on
code errors

Detect read/write beyond array
bounds

Detect stale memory
allocations

Multi-dimensional Array Viewer
What does your data look like at runtime?

View arrays
● On a single process
● Or distributed on many ranks

Use metavariables to browse the array
● Example: $i and $j
● Metavariables are unrelated to the variables in your program
● The bounds to view can be specified
● Visualise draws a 3D representation of the array

Data can also be filtered
● “Only show if”: $value>0 for example $value being a specific

element of the array

Debug Example - Fortran code

Linaro Performance tools

Gather a rich set of data
● Analyses metric around CPU, memory, IO, hardware counters, etc.
● Possibility for users to add their own metrics

Build a culture of application performance & efficiency awareness
● Analyses data and reports the information that matters to users
● Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users’ workflows
● Define application behaviour and performance expectations
● Integrate outputs to various systems for validation (eg. continuous integration)
● Can be automated completely (no user intervention)

Characterize and understand the performance of HPC application runs

Relevant advice  
to avoid pitfalls

Accurate and
Astute insight

Commercially supported
by Linaro

MAP Capabilities
MAP is a sampling based scalable profiler
● Built on same framework as DDT
● Parallel support for MPI, OpenMP, CUDA
● Designed for C/C++/Fortran

Designed for ‘hot-spot’ analysis
● Stack traces
● Augmented with performance metrics

Adaptive sampling rate
● Throws data away - 1,000 samples per process
● Low overhead, scalable and small file size

Linaro MAP Source Code Profiler Highlights

Custom Metrics

Find the peak memory use Fix an MPI imbalance Remove I?O bottleneck

Improve memory accessMake sure OpenMP regions
make sense

MAP Example - ROCm AMD GPU
Profile
● Ran for 6s, taking 300 samples per process
● Able to bring up metadata of the profile
● Mixed CPU [green] / GPU [purple] application
● CPU time waiting for GPU Kernels [purple]
● GPU Kernels graph indicating Kernel activity

 
GUI information
● GUI is consistent across platforms
● Zoom into main thread activity
● Ranked by highest contributors to app time

Performance Reports Example - Python

Report information
● Summary of application performance
● Actionable insight
● Could integrate into CI/CD

Generating a report
● Able to generate from a MAP file
● Generated through the command-line
● Text output or HTML report

 

Running on Frontier
Forge is already on Frontier
module load forge
 
DDT offline debugging
ddt --offline srun -A <project_id> -t 00:05:00 -p <partition> -N 2 -n 4 --ntasks-per-node=2 ./app
 
MAP offline profile
map --profile srun -A <project_id> -t 00:05:00 -p <partition> -N 2 -n 4 --ntasks-per-node=2 ./app
 
Performance report
perf-report srun -A <project_id> -t 00:05:00 -p <partition> -N 2 -n 4 --ntasks-per-node=2 ./app
 
For remote connection
https://docs.linaroforge.com/latest/html/forge/forge/connecting_to_a_remote_system/connecting_remotely.html

https://docs.linaroforge.com/latest/html/forge/forge/connecting_to_a_remote_system/connecting_remotely.html

~

Thank you
Go to www.linaroforge.com
rudy.shand@linaro.org

http://www.linaroforge.com

