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Outline

e Distributed fraining of LLMs
e Best strategies for distributed fraining

e Training large LLMs on Frontier : Our experience
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Transformer Model Architecture _ow

Fig. 1 Transformer architecture. A Transformer consists of stacked blocks of encoder fol-

lowed by a stacked blocks of decoders. The leftmost block is the detailed structure of an
encoder block, and the rightmost block is the detailed structure of a decoder block.
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Inside a Transtormer Layer

W, [dx4d]

4dA2 + 4dA2 = 8dA2

T
>
N

Number of parameters
One layer: 11dA2
L layers: 12LdA2
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Memory Requirement During Training an LLM

Model Weights: Number of parameters: 12Ld"2

4 bytes * number of parameters for fp32 training

6 bytes * number of paramet

memory) Memory Requirement
oRmieneEEs | Adamn Values 22B Model 175B Model 1T Model
(mea Parameters (6x) 132 GB 1050 GB 6 TB
bytes T number ofparamet Gradients (4x) 388 GB 700 GB 4TB
2bytes“numberofparamet ()ptimizer States (8x) 176 GB 1.4 TB 8§ TB
4bytesTnumberofparamet - Tota] Memory (20x¥) 440 GB 3.5 TB 20 TB

Gradients Same as nutnuer vl paiaiiieens

4 bytes * number of parameters for either fp32 or mixed precision training (gradients are always kept in fp32)

Forward Activations  Batch-size x output-nodes?

size depends on many factors, the key ones being sequence length, hidden size and batch size.
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Tensor Parallelism

« Model is too large to fit in a GPU's memory

« We slice the model tensors along a suitable dimension (row or
column), and the GPU memory is large enough to fit one slice.

e Unlike sharded data parallelism, this is not data parallelism, the
same data gets evaluated by different part of the same layer,
and the outfput gets combined.
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Tensor Parallelism (TP=4)
GPU1

GPU4
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Limitations of Tensor Parallelism

e Requires frequent AllIReduce communication after every
ayer

e Intermediate outputs get AllReduced

e Tensor Parallel (TP) size is imited by the number of GPUs in @
node (6 for Summit, 8 for Frontier)

e For TP > 6/8 the communication requires crossing node
boundary through 25+25GB/s ethernet cable
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Lessons Learnt From Tensor Parallelism
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Pipeline Parallelism (PP = 2)

L2 L3 L4

GPU1 GPU2

#.O0AK RIDGE | sizeir

National Laboratory | FACILITY




Pipeline Parallelism

Bubble size ~ (#Pipeline stages) / (#Microbatches)
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Pipeline Bubble vs #Microbatches

* Increasing the #Microbatches will reduce the bubble
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(a) Throughput vs. global batch-size for 22B model. (b) Throughput vs global batch-size for 1T model.

e But that will result in large global batch size, hurting the
convergence
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Bubble vs #pipeline-stages

e Reducing the #pipeline-stages reduces bubble
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(a) Throughput vs. PP while keeping global batch size fixed at (b) Throughput vs. PP while scaling global batch size to keep
128. the pipeline bubble ratio fixed.

e Then, we cannot use too many GPUs
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3D Parallelism

« A Combination of Tensor, Pipeline, and Data Parallelism

e Determine how many GPUs (world-size) you need to fit the

model

e Factorize world-size into TP (tensor parallel size) and PP (pipeline

parallel size)

| Distribution Strategy

Tunable Parameters

Hyperparameters

Range

Tensor Parallelism

Tensor Parallel Size (T'P)

Pipeline-parallel-size (PP)

PP e {1,2,4,8,12,16}

Pipeline Parallelism

Pipeline Parallel Size (P P), #Mi-
crobatches (m)

Tensor-parallel-size (TP)

Ele o iRl

Micro-batch-size (MBS)

MBS € [4, 20]

Gradient accumulation steps (GAS)

GAS € {5,10}

ZeRO-1 Optimizer

ZeRO — 1 € {True, False}

Sharded Data Parallelism ZeRO-1
Common Micro Batch Size
Mixed Precision Training FP16, BF16

Number of Nodes (NNODES)

NNODES € {12, 16}

TABLE IV: Distribution Strategies and relevant tunable pa-

rameters
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TABLE V: Hyperparameter Tuning for 175B Model



Hylbrid (TP=4, PP=2) i
ePUL : GPU5

L1 L2 i L3 L4 i
GPU2 GPU6
GPU3 U
GPU4 GPUS
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Best practices with parallelism paradigms

e Tensor Parallelism
— Keep it within the node (TP < §)

e Pipeline Parallelism

— Use large number of micro-batches (But that can increase the global
batch-size)

e Data Parallelism

— Can’t use too much data parallelism. A large global batch size will
make the model divergence.
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TABLE VI: Best parameters for training a 175B model and a

1

%

“Best"” Strategy to Train 175B and 1T Models

Disclaimers:

1. We didn’t train any model till completion. We only frained for 10 iterations
and less than 2 hours.

2. We don't have any completely trained models

Hyperparameters Value
175B Model | 1T Model

TP 4 8

PP 16 64

MBS 1 |
GBS 640 1600

ZeRO Stage 1 1

Flash Attention v2 v2
Precision fpl6 fpl6
checkpoint-activations True True

T model.
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Fig. 11: MI250X Throughput for various model sizes. We
report the hardware FLOPS, which are in close agreement
with the model FLOPS.



Weak Scaling Performance
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(a) Weak scaling of 175b model training by keeping per replica batch- (b) Weak scaling of 1T model training by keeping per replica batch-
size fixed at 640. size fixed at 1600.

Fig. 12: Weak scaling performance of 175b model and 1T model training.
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Strong Scaling Performance
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(a) Strong scaling of 175b model training by keeping the total batch (b) Strong scaling of 1T model training by keeping a total batch-size
size fixed at 8000. The strong scaling efficiency at 1024 GPUs is fixed at 8016. The strong scaling efficiency at 3072 GPUs is 87.05%.

89.93%.

Fig. 13: Strong scaling performance of 175b model and 1T model training.
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Takeaways

« We ported a SOTA distributed training Framework to ROCM
platform

« We established a workflow to find the “best” distributed training
strategy for different sized LLMs

« We demonstrated GPU throughput and scaling performance
by training three models (22B, 175B, and 1T) only for a few
Iferations

e Training a 175B model is realistic, but 1T model will need 6+
months
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