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Outline

• Distributed training of LLMs

• Best strategies for distributed training

• Training large LLMs on Frontier : Our experience
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Transformer Model Architecture
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Inside a Transformer Layer
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3d^2 4d^2 + 4d^2 = 8d^2

Number of parameters
One layer: 11d^2
L layers: 12Ld^2
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Memory Requirement During Training an LLM

Number of parameters: 12Ld^2

Adam Optimizer uses two extra parameters

 (mean and variance)

Same as number of parameters

Batch-size x output-nodes?



6

Tensor Parallelism

• Model is too large to fit in a GPU’s memory

• We slice the model tensors along a suitable dimension (row or 
column), and the GPU memory is large enough to fit one slice.

• Unlike sharded data parallelism, this is not data parallelism, the 
same data gets evaluated by different part of the same layer, 
and the output gets combined.
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Tensor Parallelism (TP=4)
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Limitations of Tensor Parallelism

• Requires frequent AllReduce communication after every 
layer

• Intermediate outputs get AllReduced

• Tensor Parallel (TP) size is limited by the number of GPUs in a 
node (6 for Summit, 8 for Frontier)

• For TP > 6/8 the communication requires crossing node 
boundary through 25+25GB/s ethernet cable
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Lessons Learnt From Tensor Parallelism
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Pipeline Parallelism (PP = 2)

L1 L2 L3 L4

GPU1 GPU2
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Pipeline Parallelism

Bubble size ~ (#Pipeline stages) / (#Microbatches)
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Pipeline Bubble vs #Microbatches 

• Increasing the #Microbatches will reduce the bubble

• But that will result in large global batch size, hurting the 
convergence
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Bubble vs #pipeline-stages

• Reducing the #pipeline-stages reduces bubble

• Then, we cannot use too many GPUs
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3D Parallelism

• A Combination of Tensor, Pipeline, and Data Parallelism

• Determine how many GPUs (world-size) you need to fit the 
model

• Factorize world-size into TP (tensor parallel size) and PP (pipeline 
parallel size)
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Hybrid (TP=4, PP=2)
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Best practices with parallelism paradigms

• Tensor Parallelism

–  Keep it within the node (TP < 8)

• Pipeline Parallelism 

– Use large number of micro-batches (But that can increase the global 
batch-size)

• Data Parallelism

– Can’t use too much data parallelism. A large global batch size will 
make the model divergence.
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“Best” Strategy to Train 175B and 1T Models

Disclaimers: 
1. We didn’t train any model till completion. We only trained for 10 iterations 

and less than 2 hours.
2. We don’t have any completely trained models
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Weak Scaling Performance
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Strong Scaling Performance
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Takeaways

• We ported a SOTA distributed training Framework to ROCM 
platform

• We established a workflow to find the “best” distributed training 
strategy for different sized LLMs

• We demonstrated GPU throughput and scaling performance 
by training three models (22B, 175B, and 1T) only for a few 
iterations

• Training a 175B model is realistic, but 1T model will need 6+ 
months
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