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CNMS is a national user facility with a 
mission to advance nanoscience
About CNMS:
• Unlike many user facilities, you don’t 

need to have samples to apply for time
• Two calls per year for continuous 

access; anytime for short-term projects

• Simple 2-page proposal
• Free access to laboratories, equipment 

and expertise if you agree to publish
• Proposal deadlines: early May and 

mid-October
• Joint proposals with neutron sources 

(SNS, HFIR)

Research areas:
• Synthesis – 2D, precision synthesis, selective 

deuteration

• Nanofabrication – direct-write, microfluidics, 
cleanroom

• Advanced Microscopy – AFM, STM, aberration-
corrected TEM/STEM, atom-probe tomography

• Functional Characterization – laser 
spectroscopy, transport, magnetism, 
electromechanics

• Theory and Modelling – including gateway to 
leadership-class high performance computing

CNMS is a Nanoscale Science Research Center supported by the U.S. Department of Energy, 
Office of Science, Scientific User Facilities Division

1.0µm
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Why do we need smart microscopy?

Control over 
synthesis pathways

Enabling new 
experiments

Closing the theory-
experiment cycle 
in a reasonable 
timeframe

Focus on Science, 
not Operations
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Realizing smart microscopy labs at user facilities

Compute infrastructure Data infrastructure Software infrastructure

• Standardized data 

models

• Data pipelines / access

• Federated data stores

• Open-source analysis 

packages

• Data pipelines / access / 

control (INTERSECT)

• Federated data stores

• Cloud services

• Edge computing – FPGAs

• “Far-edge” – dedicated 

GPUs for experiments

• Leadership class

Compute Infrastructure Data Infrastructure Software Infrastructure
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Abstractions make the (automated) world go round

Hammer, Leonov, Bell and Cronin, JACS 1, 1572 (2021)

“Chemputation” – Digital chemistry PycroManager

A complete programming language for 
chemistry that can run on open hardware

Pinkard, et al. Nat. Methods. 18, 226 (2021)
Computation already has abstractions. But most science characterization tools do not.
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Hardware abstraction - FPGA Software abstraction - python

Call low-level functions to control tip 
position, scanning (e.g., raster, spiral, 
move etc.), specify voltage 
waveforms, collect data all in 
Jupyter notebook

Enables design of complicated 
automated and autonomous 
experiments, hardware independent

Instrument 1 Instrument 2

Hardware 
connection layer

Software layer

User
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Automating SPM: AEcroscopy

Credit: Yongtao Liu (CNMS/ORNL)

Software Infrastructure

Deploy

Vasudevan et al. Advanced 
Theory and Simulations 
(10.1002/adts.202300247) 
(2023)

• Standardized 
data model

• In-built 
processing and 
viz utilities

Results
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Example automated datasets
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Same experiment, different day

Vertical PFM Amplitude Vertical PFM Phase
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Automated experiments and ML can only go so far

We have access to theory: why not use it?



Polarization(𝑝!, 𝑝", 𝑝#)
$%!
$&
= −𝐿 '(

'%!
= −𝐿 $(

$%!
− ∇ ⋅ $(

$ ∇%!
 

Mechanical equilibrium equation
∇ ⋅ 𝐶!"#$𝜖#$ − 𝑞!"#$𝑝#𝑝$ = 0

Electric potential 𝜙: 𝜅*∇"𝜙 − ∇ ⋅ 𝒑 = 0 Fully coupled

Fully coupled

Open source
software

3D simulations of 
polarization 
response to a high-
field at a domain-
wall in BaTiO3 

𝜙=8V

Scalable Multi-Physics Modeling of Field Driven Coupled Phase Transitions

High-Throughput
Phase Field

Symbolic 
Regression

Ganesh, Rajeev, Shuaifang, CNMS



1818

Autonomous theory-experiment workflow requirements

Large scale phase-
field simulations

Experiment script

Data stores 
(e.g., cloud)

Orchestrating 
Agent

Updated 
Parameters

Results viz. + analysis

DoE
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Reinforcement Learning

Agent Environment

States

Actions

Model-based 
Approximations

Partial 
Information

Rewards

• RL is a type of machine learning 
where an agent learns to a policy in 
an environment by repeated 
interactions, with a goal of 
improving that policy’s expected 
rewards

Standard Policy Gradient:

Actor-Critic  Policy Gradient:

𝜋 𝑎 𝑠 = 	ℙ 𝐴* = 𝑎	 𝑆* = 𝑠)

𝐽 𝜃 = 𝔼.~0! 	[𝑅 𝜏 ]  

Policy Objective
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Policy gradient methods:
Stein variational policy gradient (SVPG) algorithm 

• The first term drives the policy particles towards the high probability regions of 
𝑝(𝜽) by following a gradient ascent direction.

• The second term pushes particles away from each other diversifying the policies.
• SVPG balances exploitation (driven by policy gradient) and exploration (driven 

by repulsion between different policies). Thus, SVPG can learn robust and 
diverse policies to improve the training convergence.

Liu, Yang, et al. "Stein variational policy gradient." arXiv 
preprint arXiv:1704.02399 (2017).
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Calc. Policy 
gradient

Asynchronous Load-Balanced RL Algorithm
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With P. Sao, R. Kannan 
(CSMD/ORNL)
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Results: Load Balanced Asynchronous SVPG-RL

Load Balanced: 465 iterations at 3.02s/it
No Load Balanced: 320 iterations at 5.32s/i
t



2323

Experimental workflow

Let’s say we want to optimize 
a sequence of bias pulses and 

create regions of 
high curvature at this 

ferroelectric domain wall

Write 
automation 

script

Collect data on 
state transitions 

with policy

From data, train 
a surrogate 

model

Workflow

Domain 
knowledge, 
Simulations

Up
d

at
e 

Po
lic

y

Train RL agent, 
obtain policy
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Sample from J. C. Yang (NCKU/Taiwan)

Wall Manipulation in (110) PbTiO3 thin flims
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Surrogate Model Training

Example of training data
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Reinforcement Learning: Autonomous Wall manipulation

HUMAN SOLUTION RL SOLUTION

Not yet deployed on the instrument: full workflow requires better 
connections, more data acquisition speeds, and input from simulations
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Workflow Requirements
Write 

automation 
script

Collect data on 
state transitions 

with policy

From data, train 
a surrogate 

model

Workflow

Domain 
knowledge, 
Simulations

Up
d

at
e 

Po
lic

y

Train RL agent, 
obtain policy

• Algorithms, Simulations

• Instruments connected to 

compute

• Data infrastructure

• Experiment-Theory workflow 

orchestration
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Summary: “Smart” workflow necessities
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Thank you

vasudevanrk@ornl.gov


