CRUSHER USER-EXPERIENCE TALKS

PREPARING CHOLLA FOR

FRONTIER . , e

December $th

CRUSHER USER-EXPERIENCE TALKS

SCIENTIFIC MOTIVATION.
GALAXY EVOLUTION AT PARSEC™* SCALE

Star Cluster NGC 1929

Ground: MPG/ESO 2.2m/WFI -

%

. HSTWFC3/UVIS | YR e
Spiral Galaxy M83
Hubble Space Telescope = WFC3/UVIS
NASA, ESA, R. O’Connell (University of Virginia), the WFC3 Science Oversight Committee, and ESO STScl-PRC09-29

*1 Parsec = a few Iig ht years Image credit: X-ray: NASA/CXC/U.Mich./S.Oey, IR: NASA/JPL, Optical: ESO/WFI/2.2-m

CRUSHER USER-EXPERIENCE TALKS

SCIENTIFIC MOTIVATION:

» Goal is to simulate a Milky Way-like galaxy at a resolution
that allows for self-consistent star formation and supernova
explosions within a multiphase interstellar medium

» Milky Way diameter: ~30 kpc

. . Spiral Galaxy UGC 12158
» Resolution required to resolve star * |

clusters: ~few pc

» Target resolution for “grand challenge”
problem on Frontier ~10,0003 cells

Image credit:ESA/Hubble & NASA

CRUSHER USER-EXPERIENCE TALKS

CHOLLA: COMPUTATIONAL HYDRODYNAMICS ON Il ARCHITECTURES

» Chollais a GPU-native, massively-parallel, finite-volume
hydrodynamics code developed for astrophysics
simulations

» Chollais open source — code is publicly available at
https://github.com/cholla-hydro/cholla

» All of the code development work | will discuss today is in
the main branch of the public cholla repository

https://github.com/cholla-hydro/cholla

CRUSHER USER-EXPERIENCE TALKS

CHOLLA: COMPUTATIONAL HYDRODYNAMICS ON Il ARCHITECTURES

» Cholla is a GPU-native, massively-parallel, finite-volume
hydrodynamics code developed for astrophysics
simulations

O
< _ T
& ' U=lp,pu,pv,pw, E]
Qo Z
Y Hy
4 Atk
0\(0 : n+1 n Ot [nt1)2 n+1/2
%\(Q Ui,j,k =U, Sx (Fi—|-1/2,j,k a Fi—1/2,j,k>
Gi i+ 1k
T Ot [_nt1)2 n+1/2
U, i H __(Gi'12k_Gi'—12k)
/l;‘i+%,;]j,,k) (;y yJ T /7 2] /a
2 > 5 n+1/2 n+1/2
............ y — E(H17J7k+1/2 _Hz,],k—1/2)
/
/ Finite Volume

CRUSHER USER-EXPERIENCE TALKS

HOW DOES IT WORK? CHOLLA CIRCA 2019 (PRE-CAAR)

» Simulation domain is divided into sub
volumes, each MPI rank is assigned a
single sub-volume and a single GPU

» Typical sub-volume is 2563 cells

» Each cell is mapped to a single
thread on the GPU

» Subvolumes can be further divided if
data size is too large to fit in memory
on a single GPU

U

()

U

Q)

U

w

CRUSHER USER-EXPERIENCE TALKS

HOW DOES IT WORK? CHOLLA CIRCA 2019 (PRE-CAAR)

» Serial portions of the code execute Initialization
on the CPU

» Parallel portions execute on the GPU

» Some of the new physics modules
executed partially on the GPU, some
executed exclusively on the CPU

» Fundamentally, the grids “lived” on
the CPU, and were transferred to the
GPU with every time step

CRUSHER USER-EXPERIENCE TALKS

FIRST TASK: PORTABILITY

» Cholla was written in C++ / Cuda / MPI / OpenMP
» Crusher (and Frontier) have AMD GPUs, which use HIP
» Solution: use HIP

» Option one: HIPify

» Use AMD-provided perl script to modify all cuda source files,
changing all cuda syntax to hip syntax

» hipcc compiles resulting code for either AMD or NVIDIA hardware

» Option two: HIPifly!

CRUSHER USER-EXPERIENCE TALKS

HIPIFLY: HIP ON THE FLY

Added a single header file, gpu.hpp

#ifdef O_HIP

#define cudaDeviceSynchronize hipDeviceSynchronize

#define cudaError hipError_ t

#define cudaError t hipError t

#define cudaErrorInsufficientDriver hipErrorInsufficientDriver

#define cudaErrorNoDevice hipErrorNoDevice

etc.

This means there is a single CUDA code base for both NVIDIA and
AMD GPUs.

CRUSHER USER-EXPERIENCE TALKS

HIPIFLY MAKEFILE

ifdef HIPCONFIG
DFLAGS += —-DO_HIP
CXXFLAGS += $(HIPCONFIG)
GPUCXX ?= hipcc

LD := $(CXX)
LDFLAGS := $(CXXFLAGS) -L$(ROCM_PATH)/1ib
LIBS += -lamdhipé64

else

CUDA_INC ?= -I$(CUDA_ROOT)/include

CUDA_LIB ?= -L$(CUDA_ROOT)/11ib64 -lcudart

CXXFLAGS += $(CUDA_INC)

GPUCXX ?= nvcc

GPUFLAGS += ——expt-extended-lambda —-arch $(CUDA_ARCH) -fmad=false
GPUFLAGS += $(CUDA_INC)

LD := $(CXX)
LDFLAGS += $(CXXFLAGS)
LIBS += $(CUDA_LIB)

endif

CRUSHER USER-EXPERIENCE TALKS

HIPIFLY BUILD SYSTEM

#-- make.host for Frontier at the OLCF with

#-- Compiler and flags for different build type

CcC = cC

CXX = CC

GPUCXX ?= hipcc
CFLAGS_DEBUG = -g -00
CFLAGS_OPTIMIZE = -g -02
CXXFLAGS_DEBUG = -g -00 -std=c++14

CXXFLAGS_OPTIMIZE

-g -0Ofast -std=c++14 -Wno-unused-result

GPUFLAGS = --offload-arch=gfx90a -Wno-unused-result

HIPCONFIG = -I$(ROCM_PATH)/include

#-- Libraries

MPI_ROOT

${CRAY_MPICH DIR}

FFTW_ROOT $(shell dirname $(FFTW_DIR))

GOOGLETEST ROOT := $(if $(GOOGLETEST ROOT),$(GOOGLETEST ROOT),$
(OLCF_GOOGLETEST_ROOT))

#-- Use GPU-aware MPI

MPI_GPU = -DMPI_GPU See also: https://github.com/cholla-hydro/cholla/tree/main/builds

https://github.com/cholla-hydro/cholla/tree/main/builds

CRUSHER USER-EXPERIENCE TALKS

SECOND TASK: DATA MUST LIVE ON THE GPU

» Originally, Cholla was designed to offload hydro calculations to the
GPU every time step (largely to allow bigger grids)

» As GPUs speeds have increased, CPU-GPU communication speeds
have stayed roughly the same

—> Data transfer was taking up a larger portion of the time step than
hydro calculation!

» Solution: keep the hydro grid on the GPU, transfer boundary cells using
GPU-aware MPI, only transfer the grid back to the CPU for output

» Results in a ~4x speedup for hydro on Summit hardware

CRUSHER USER-EXPERIENCE TALKS

THIRD TASK: PORT THE FFT SOLVER

» The primary gravity solver in Cholla is FFT-based; our domain

decomposition is block based — need a block-based FFT library
to do Poisson solve

» Previously, did this with PFFT on the CPU (using FFTW)

» There was no existing parallel block-based FFT library for GPUs

» Solution: Write one. Trey White (HPE) wrote a block-based
Poisson solver, Paris, that uses either cuFFT (Nvidia GPUS) or

rocFFT (AMD GPUs) to perform FFTs on the GPU, and GPU-direct
MPI| communication

CRUSHER USER-EXPERIENCE TALKS

PARIS

» Paris moves all the following from the CPU to the GPU:
» FFTs (now computed using cuFFT or rocFFT)
» Poisson solve in frequency space
» Buffers for MPI communication

» Copies and transposes for changing dimensions in the 3D
FFTs

» Immediately saw at least a 3x speedup when using Paris vs
PFFT

See also: https://github.com/cholla-hydro/cholla/tree/main/src/gravity/paris

https://github.com/cholla-hydro/cholla/tree/main/src/gravity/paris

CRUSHER USER-EXPERIENCE TALKS

HOW DOES IT WORK? CHOLLA CIRCA 2022

» Final step in the GPU- Initialization
CPU W 4 On Summit, boundary

reS | d e ﬂt d ata Calculate first time step data must move back
m across CPU-GPU link
to transfer off-node

t =tout

transition: : |
v

Resident Grid
Data on GPU

» Packing boundary ~ GPU

buffers on the GPU e oo

(new C u d d ke e I S) Boundary Conditions

and sending off -
node using GPU- -

awa I’e M PI v On Crusher/Frontier,

network-connected GPUs
transfer boundary data
off-node

See also: https://github.com/cholla-hydro/cholla/blob/main/src/grid/cuda_boundaries.cu

https://github.com/cholla-hydro/cholla/blob/main/src/grid/cuda_boundaries.cu

TRANSITION SLIDE

CRUSHER USER-EXPERIENCE TALKS

DOCUMENTATION

» Several old versions exist. Correct Docs at: https://
docs.amd.com/

» ROCm is rapidly changing and so documentation is
sometimes incomplete

» Documentation is improving

» CUDA documentation is often the best resource for
anything that isn't documented by AMD

https://docs.amd.com/
https://docs.amd.com/

CRUSHER USER-EXPERIENCE TALKS

POINTER ATTRIBUTES

» When null: cudaPointerAttributes.device = -2 but
hipPointerAttribute_t.device = 0

» cudaPointerAttributes.type — hipPointerAttribute_t.memoryType

typedef enum hipMemoryType {
hipMemoryTypeHost, ///<Memory is physically located on host
hipMemoryTypeDevice, ///< Memory is physically located on device.
hipMemoryTypeArray, ///<Array memory, physically located on device.
hipMemoryTypeUnified ///< Not used currently

} hipMemoryType;

enum cudaMemoryType

{
cudaMemoryTypeUnregistered = 0, // Unregistered memory.
cudaMemoryTypeHost = 1, // Host memory.
cudaMemoryTypeDevice = 2, // Device memory.
cudaMemoryTypeManaged = 3, // Managed memory

}

CRUSHER USER-EXPERIENCE TALKS

SHUFFLE

» HIP's __shfl_down uses the same syntax as CUDA's
deprecated __shfl_down

» _ shfl_down_sync doesn’t appear in HIP documentation

» No *_sync shuffle operations

CRUSHER USER-EXPERIENCE TALKS

ATOMICS

» HIP supports floating point atomics!

» Hardware or software floating point atomics

CRUSHER USER-EXPERIENCE TALKS

INSTALLATION

» Installation methods have changed and aren’t always well
documented

» Additional libraries (rocRAND, rocFFT, etc) don't always install the
same version as the system ROCm unless you're very careful with

the repos

» Might need to trick ROCm into thinking there's a GPU when there
Isn't

» echo "gfx90a" | sudo tee --append $(hipconfig -R)/bin/target

» Docker containers work great. https://hub.docker.com/u/rocm

https://hub.docker.com/u/rocm

CRUSHER USER-EXPERIENCE TALKS

CLANG-TIDY

» Uses CUDA instead of ROCm backend

» Runs into compilation errors

» /cholla/cholla/src/particles/feedback_CIC_gpu.cu:382:32:
error: no matching function for call to 'atomicMax’ [clang-
diagnostic-error]

» /opt/rocm-5.2.3/include/hiprand/
hiprand_kernel_nvcc.h:43:1: error: typedef redefinition
with different types ('struct hiprandStateMRG32k3a' vs
'struct curandStateMRG32k3a') [clang-diagnostic-error]

