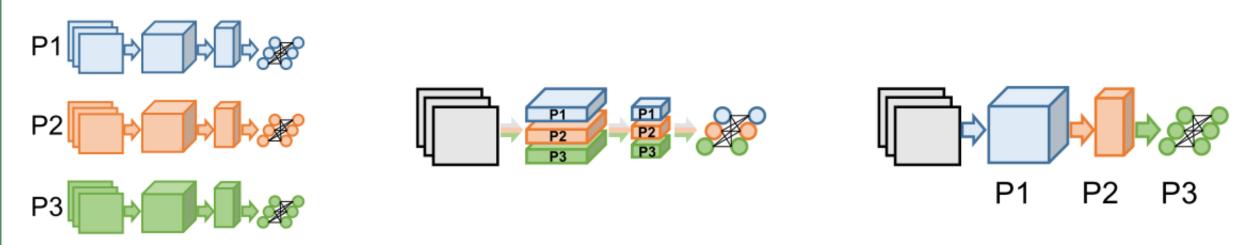


OLCF Training: 2025 Best Practices for Al on Frontier

Aristeidis Tsaris¹, Junqi Yin¹, Sajal Dash¹

¹Oak Ridge National Laboratory (ORNL)

ORNL is managed by UT-Battelle LLC for the US Department of Energy



Data Parallelism

Distribute input samples

Model Parallelism

Distribute network structure, within or across layers

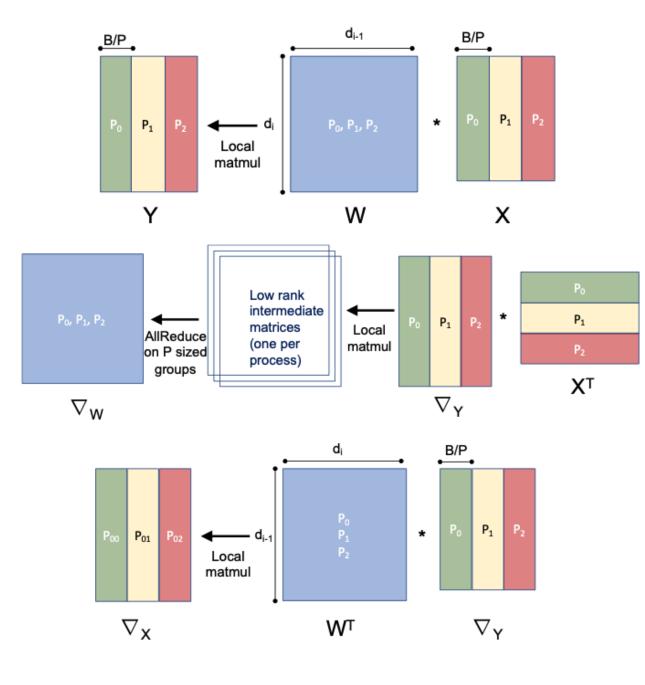
Data-parallel is still the most used

Even on large model era, data-parallel is used at scale

Fig. credit: Ben-Nun and Hoefler arXiv:1802:09941

Data Parallel

- Forward:
 - Batches are distributed across ranks
 - Weight metrices are replicated across ranks
 - Computation locally, no communication necessary
- Backward
 - AllReduce is required to sum gradients across ranks



CAK RIDGE

Fig, credit by A. Buluc

Data Parallel

- Computation grows with communication; good scaling
- Global batch-size grows with the number of ranks, can negatively affect convergence (needs careful learning-rate considerations at scale)

- Performance considerations:
 - use RCCL for communication
 - tune bucket communications to reduce number of allreduce calls (DDP's bucket_cap_mb is 25MB by default; you may see benefit with larger cap)
 - When the model is small, and the data is large consider using node local NVMe burst buffer for better I/O performance

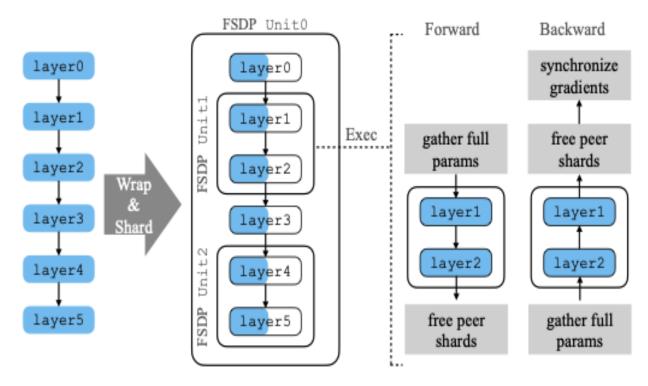
Sharded Data Parallelism (FSDP)

Standard data parallelism fully replicates model weights and optimizer states

FSDP reduces memory cost by communicate parameters only when need it

- More communication expensive that DDP, using All-Gather and Reduce-Scatter
- But simpler that model parallel approaches
- It will have a limit on model size eventually due to memory peak

CAK RIDGE

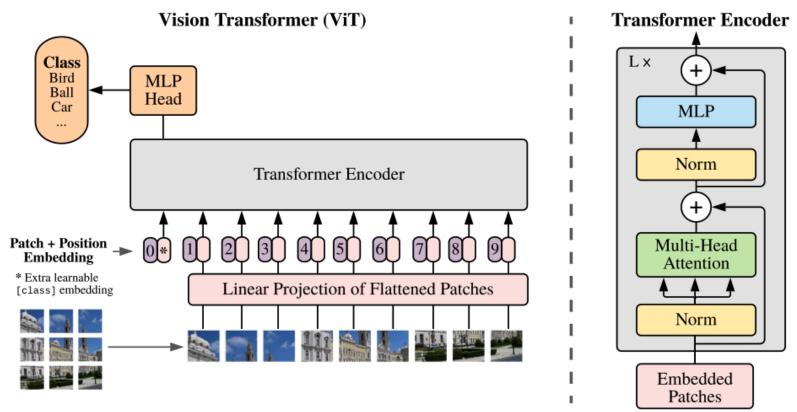


Vision Transformers Introduction

Break images into patches to make tokens

Usually linear or convolutional layers are used

Decoder layers can be from MLP (simple classification) to even a whole new architecture depending on the task



Self-attention is the workhorse of ViTs:

- Input features are projected to query, key, value tensors
- Compute 'similarity' between queries and keys using softmax
- Multiply values by attention matrix

Fig. credit: arXiv:2010.11929

Test ViT on Frontier with FSDP for RS data

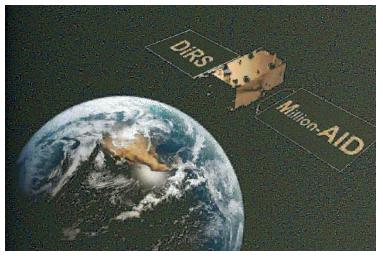
We are going to test six model sizes of a plain ViT

The first four models can fit on a single GCD (half of AMD-MI-250X) on Frontier

The ViT-5B can fit on two GCD's and the ViT-15B can fit on four GCD's

Model	Width	Depth	MLP	Heads	Parameters [M]
ViT-Base	768	12	3072	12	87
ViT-Huge	1280	32	5120	16	635
ViT-1B	1536	32	6144	16	914
ViT-3B	2816	32	11264	32	3067
ViT-5B	1792	56	15360	16	5349
ViT-15B	5040	48	20160	48	14720

Vit-MAE architecture on the Million-AID dataset

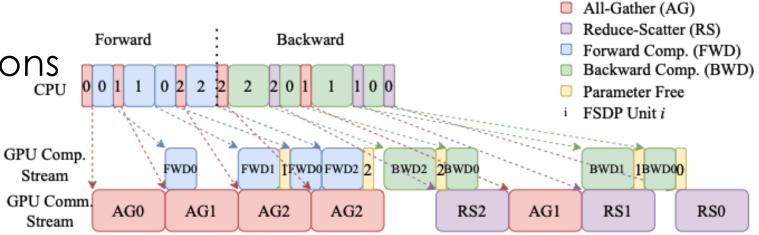


https://arxiv.org/pdf/2404_11706

https://captain-whu.github.io/DiRS/

FSDP Communication Option

- None
- BACKWARD PRE
- BACKWARD POST
- Limit all gathers



model = FSDP(model,

mixed_precision=bfloatPolicy, sharding_strategy=sharding_strategy, device_id=torch.cuda.current_device(), use_orig_params=True, process_group=process_group, param_init_fn=my_init_fn, backward_prefetch=BackwardPrefetch.BACKWARD_PRE, #forward_prefetch=True, limit_all_gathers=True,

Fig. credit: https://arxiv.org/abs/2304.11277v2

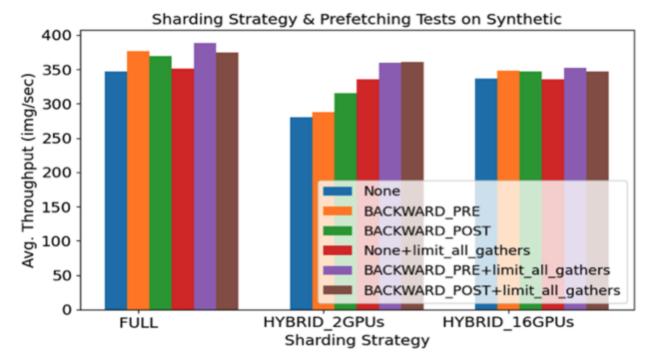
FSDP Communication Option

Test Communication Options

- None
- BACKWARD PRE
- BACKWARD POST
- Limit all gathers

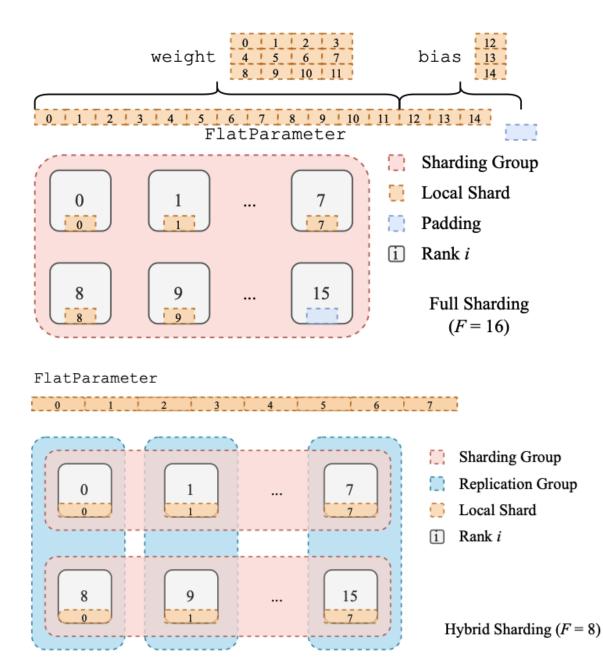
Best found BACKWARD PRE and limit-all-gathers (most computecommunication overlap)

Model	Width	Depth	MLP	Heads	Parameters [M]
ViT-Base	768	12	3072	12	87
ViT-Huge	1280	32	5120	16	635
ViT-1B	1536	32	6144	16	914
ViT-3B	2816	32	11264	32	3067
ViT-5B	1792	56	15360	16	5349
ViT-15B	5040	48	20160	48	14720



Model Sharding Options

- FULL SHARD
- SHARD GRAD OP
- NO SHARD
- HYBRID SHARD



Solutional Laboratory

10

Fig. credit: https://arxiv.org/abs/2304.11277v2

```
FSDP Model Sharding Options
                                                                 shardina_strateav = ShardinaStrateav.NO_SHARD
                                                                 process\_aroup = None
                                                                num_tasks = world_size
                                                                if (args.mode=='hybrid'):
                                                                    from torch.distributed._tensor import DeviceMesh
 Model Sharding Options
                                                                    scaling_group_size = 2 # how many gpus
                                                                    mesh_list = []
 • FULL SHARD
                                                                    dmesh = torch.arange(0, world_size).view(-1, scaling_group_size)
                                                                    for i, sg in enumerate(dmesh):
                                                                        mesh_list.append(sg.tolist())

    HYBRID SHARD

                                                                    mesh = DeviceMesh(device_type="cuda", mesh=mesh_list)
                                                                    mesh_groups = mesh.get_dim_groups()

    SHARD GRAD OP

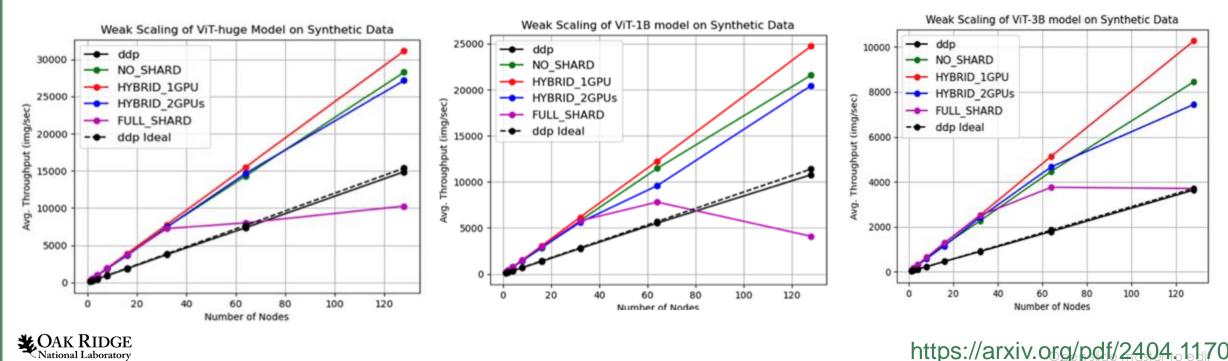
                                                                    replicate_group, shard_group = mesh_groups[0], mesh_groups[1]
                                                                    sharding_strategy = ShardingStrategy.HYBRID_SHARD

    NO SHARD

                                                                    process_group = (shard_group, replicate_group)
                                                                    num_tasks = world_size / scaling_group_size
                                                             model = FSDP(model,
                                                                          mixed_precision=bfloatPolicy,
                                                                           sharding_strategy=sharding_strategy,
                                                                           device_id=torch.cuda.current_device(),
                                                                           use_orig_params=True,
                                                                           process_group=process_group,
                                                                           param_init_fn=my_init_fn,
                                                                           backward_prefetch=BackwardPrefetch.BACKWARD_PRE,
                                                                          #forward_prefetch=True.
                                                                           limit_all_gathers=True,
CAK RIDGE
National Laboratory
                                                                            Fig. credit: https://arxiv.org/abs/2304.11277v2
```

Test scaling for models that can fit on single GCD: <u>throughput</u>

Γ	Model	Width	Depth	MLP	Heads	Parameters [M]	
Γ	ViT-Base	768	12	3072	12	87	
	ViT-Huge	1280	32	5120	16	635	
	ViT-1B	1536	32	6144	16	914	
	ViT-3B	2816	32	11264	32	3067	
	ViT-5B	1792	56	15360	16	5349	
	ViT-15B	5040	48	20160	48	14720	



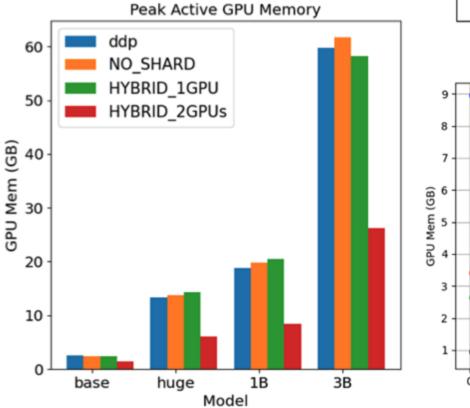
https://arxiv.org/pdf/2404_11706

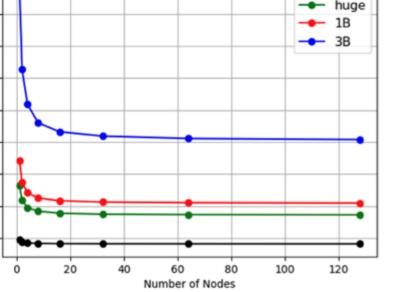
12

Test scaling for models that can fit on single GCD: <u>memory usage</u>

	Model	Width	Depth	MLP	Heads	Parameters [M]	
ſ	ViT-Base	768	12	3072	12	87	
	ViT-Huge	1280	32	5120	16	635	
	ViT-1B	1536	32	6144	16	914	
	ViT-3B	2816	32	11264	32	3067	
	ViT-5B	1792	56	15360	16	5349	
	ViT-15B	5040	48	20160	48	14720	

base

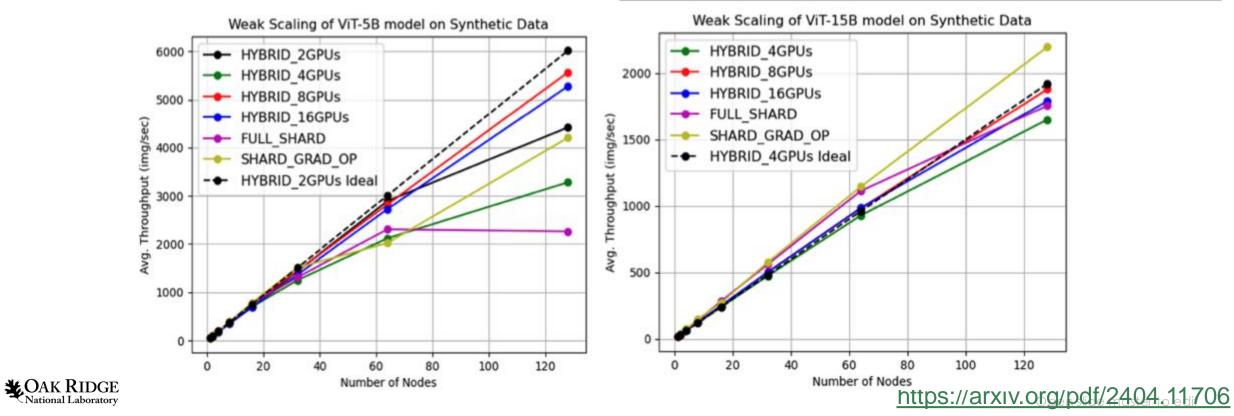




Peak Active GPU Memory (FULL_SHARD)

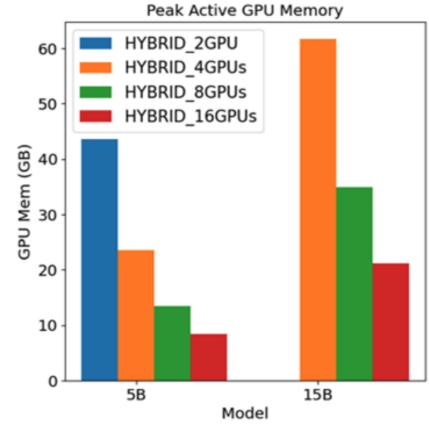
Test scaling for models that can't fit on single GCD: <u>throughput</u>

Model	Width	Depth	MLP	Heads	Parameters [M]	
ViT-Base	768	12	3072	12	87	
ViT-Huge	1280	32	5120	16	635	
ViT-1B	1536	32	6144	16	914	
ViT-3B	2816	32	11264	32	3067	
ViT-5B	1792	56	15360	16	5349	
ViT-15B	5040	48	20160	48	14720	



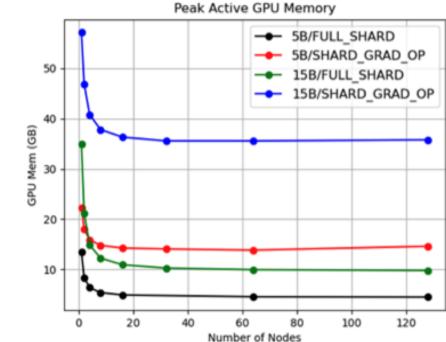
Test scaling for models that can't fit on single GCD: <u>memory usage</u>

	Model	Width	Depth	MLP	Heads	Parameters [M]	
Γ	ViT-Base	768	12	3072	12	87	
	ViT-Huge	1280	32	5120	16	635	
	ViT-1B	1536	32	6144	16	914	
	ViT-3B	2816	32	11264	32	3067	
	ViT-5B	1792	56	15360	16	5349	
	ViT-15B	5040	48	20160	48	14720	



CAK RIDGE National Laboratory

15



Best Practice of I/O

It is a good practice to try to identify bottlenecks when scale. At first approach it is useful to just look real data Vs cached data Vs standalone dataloader run

```
dataiter_train = iter(data_loader)
if(args.run == 'syn'):
    samples, _ = next(dataiter_train)
    samples = samples.to(torch.cuda.current_device())
```

for data_iter_step in range(0, len(data_loader)):

```
if(args.run == 'real' or args.run == 'io'):
    samples, _ = next(dataiter_train)
    samples = samples.to(torch.cuda.current_device())
```

```
if(args.run == 'real' or args.run == 'syn'):
```

loss, _, _ = model(samples, mask_ratio=args.mask_ratio)

loss.backward()
optimizer.step()
optimizer.zero_grad()

Best Practice of I/O

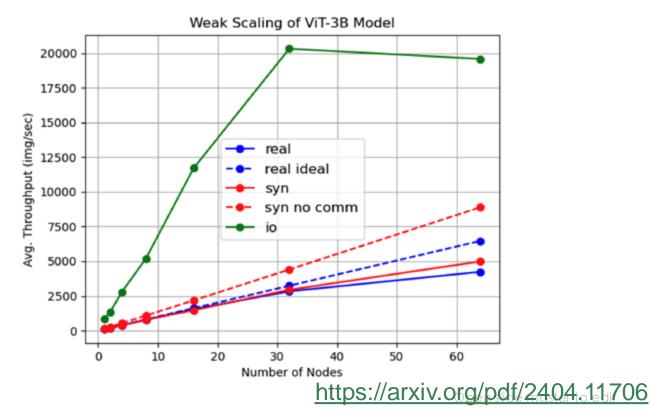
Test if IO or communication is the main bottleneck, using remote-sensing images

For the ViT-3B model it looks communication drives the performance rather than IO

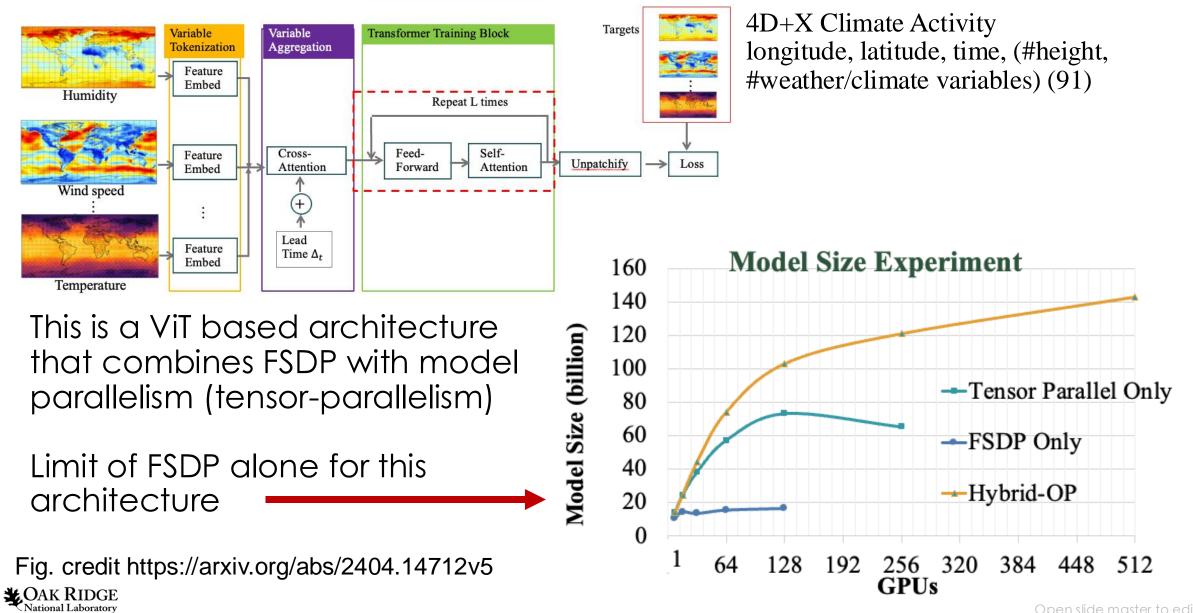
Also, you can estimate communication cost

Once bottleneck identified it needs detailed profiled tools to improve

Model	Width	Depth	MLP	Heads	Parameters [M]
ViT-Base	768	12	3072	12	87
ViT-Huge	1280	32	5120	16	635
ViT-1B	1536	32	6144	16	914
ViT-3B	2816	32	11264	32	3067
ViT-5B	1792	56	15360	16	5349
ViT-15B	5040	48	20160	48	14720



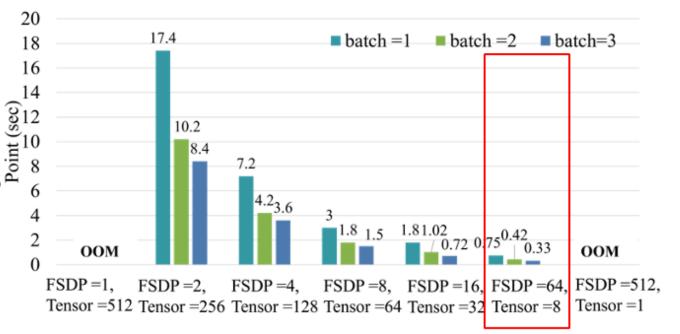
Example from Climate Forecasting: ORBIT



Example from Climate Forecasting: ORBIT

For 113 billion m measure 5.7x spe						ervation Data
Layer wrapping	×	✓	✓	✓	✓	Obser
Mixed precision	×	x	✓	✓	✓	e per
Prefetching	×	×	x	✓	✓	Walltime
Activation Checkpoint	×	x	x	×	✓	Wa
Speedup	OOM	1	1.97	2.4	5.7	1

FSDP tuning and other optimizations help with more parallel modes as well



Usually, best performance with heavier communication within node and dataparallel across nodes

