

Al For Science at Scale : Part 2

Sajal Dash dashs@ornl.gov

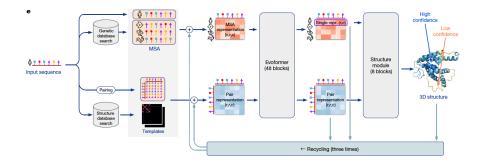
ORNL is managed by UT-Battelle LLC for the US Department of Energy

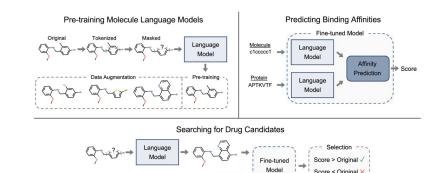
- Al For Science
- Deep Learning and Large Language Model training
- Data parallel training
- Model parallel training
 - Fully Sharded Data Parallel (FSDP)
 - Tensor Parallel (TP)
 - Pipeline Parallel (PP)
 - Hybrid Parallelism
- Case Study: Forge

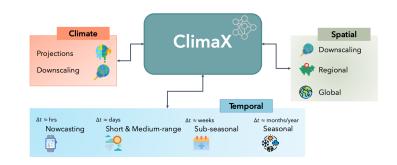
- Slurm
- Data Parallel Training
 - DDP Example
- Sharded Data Parallel Training
 - DeepSpeed ZeRO example
 - FSDP example
- Tensor, Pipeline, and Hybrid Parallelism
 - Megatron-DeepSpeed Example

AI For Science

- Applications of AI methods accelerated and enabled new discoveries
- AlphaFold "solved" decades-old protein folding problem
- Language models were used to predict new drug targets
- ClimaX, a Transformer model predicts climate and weather



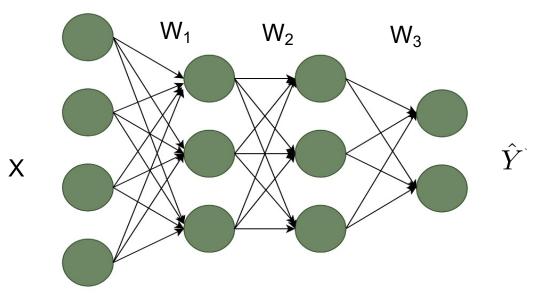




• Al For Science

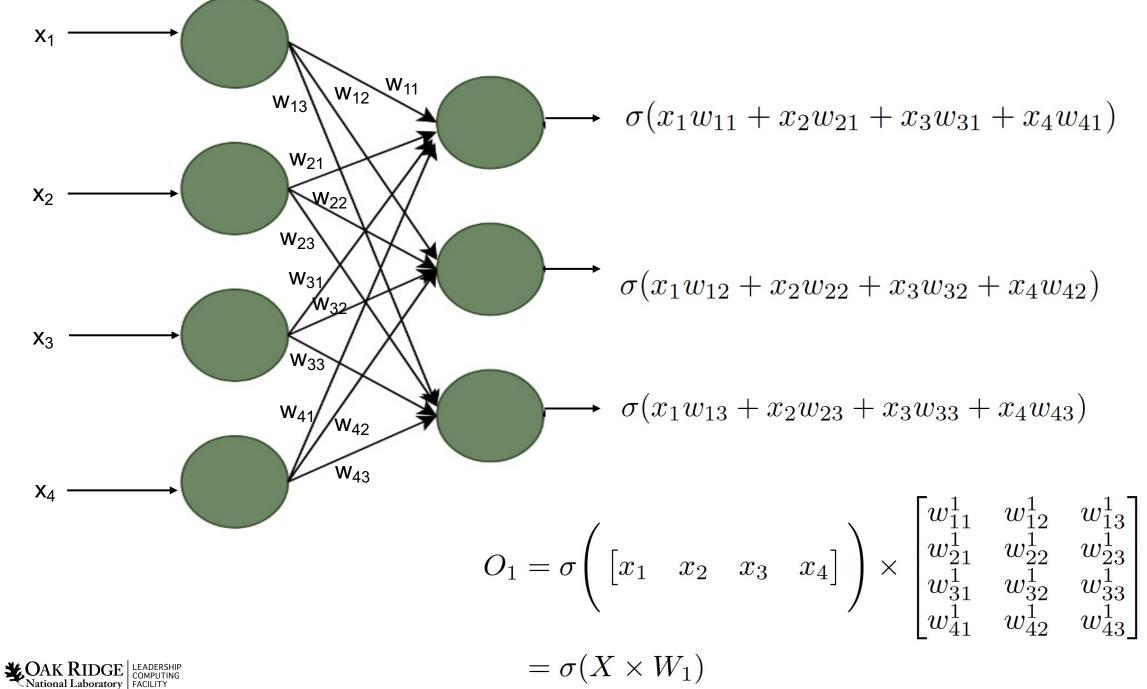
- Deep Learning and Large Language Model training
- Data parallel training
- Model parallel training
 - Fully Sharded Data Parallel (FSDP)
 - Tensor Parallel (TP)
 - Pipeline Parallel (PP)
 - Hybrid Parallelism
- Case Study: Forge

Internals of an Artificial Neural Network

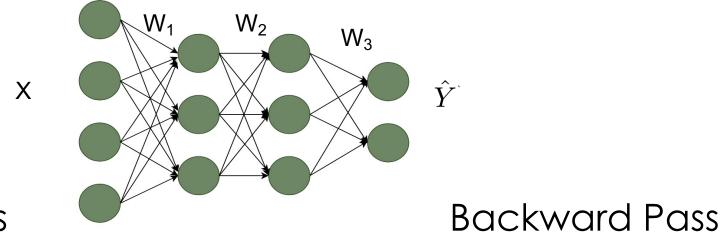


$$X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}, W_1 = \begin{bmatrix} w_{11}^1 & w_{12}^1 & w_{13}^1 \\ w_{21}^1 & w_{22}^1 & w_{23}^1 \\ w_{31}^1 & w_{32}^1 & w_{33}^1 \\ w_{41}^1 & w_{42}^1 & w_{43}^1 \end{bmatrix}, W_2 = \begin{bmatrix} w_{11}^2 & w_{12}^2 & w_{13}^2 \\ w_{21}^2 & w_{22}^2 & w_{23}^2 \\ w_{31}^2 & w_{32}^2 & w_{33}^2 \end{bmatrix}, W_3 = \begin{bmatrix} w_{11}^3 & w_{12}^3 \\ w_{21}^3 & w_{22}^2 \\ w_{31}^3 & w_{32}^2 \end{bmatrix}$$

COAK RIDGE National Laboratory



Training a Neural Network

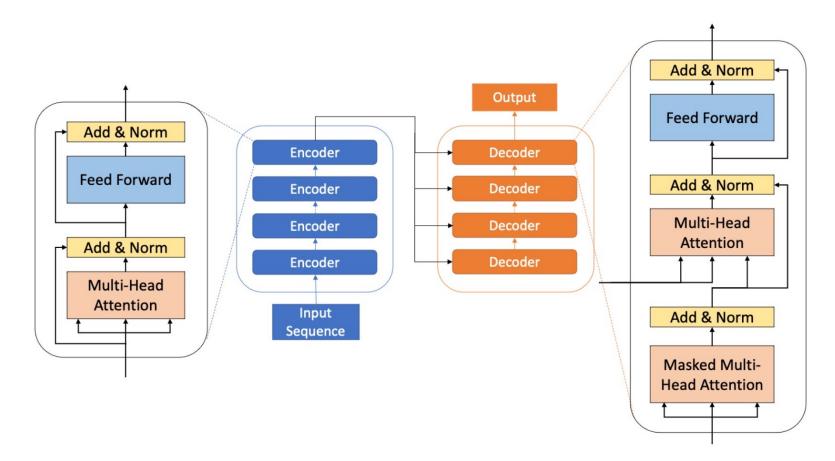


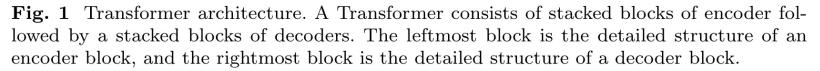
Forward Pass

 $O_1 = \sigma(X \times W_1)$ $O_2 = \sigma(O_1 \times W_2)$ $\hat{Y} = O_3 = \sigma(O_2 \times W_3)$

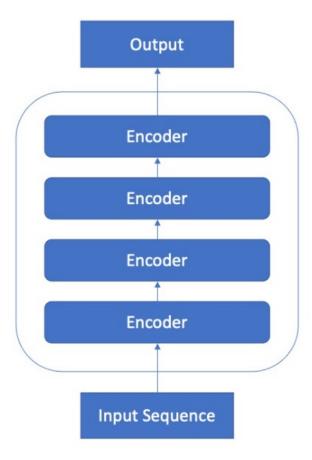
L = Loss = CrossEntropyLoss(Y, Y) $G = Gradient = \frac{\delta L}{\delta W}$ $W' = W - \eta \times \frac{\delta L}{\delta W}$

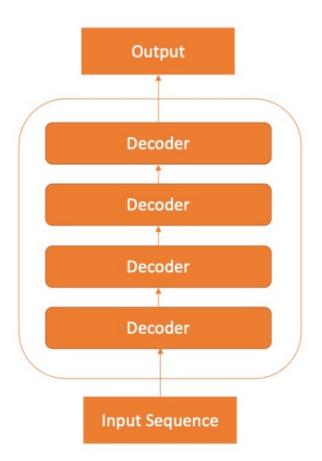
Transformer Model Architecture



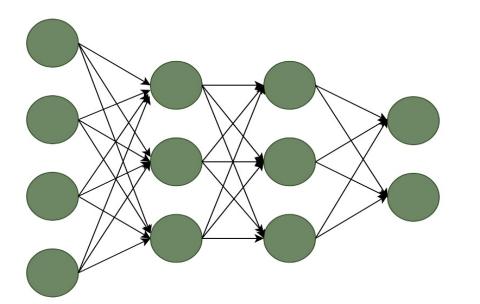


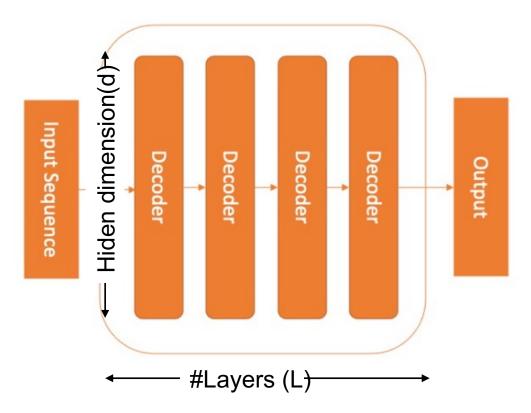
Large Language Models (LLM): BERT vs GPT



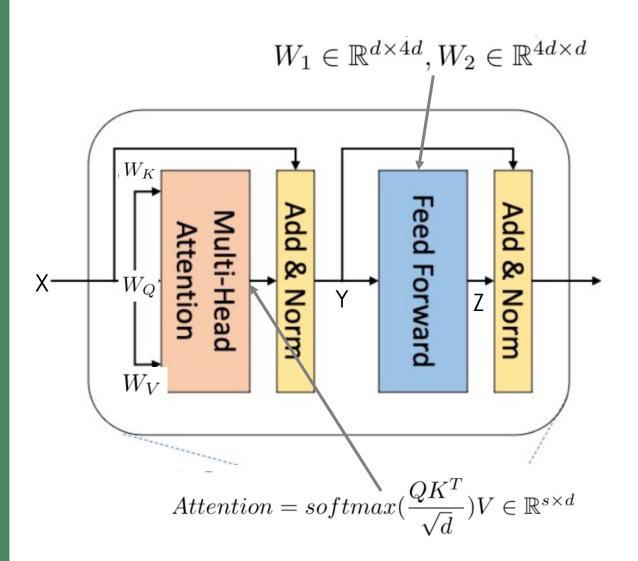


Transformers are Neural Networks





Forward Pass

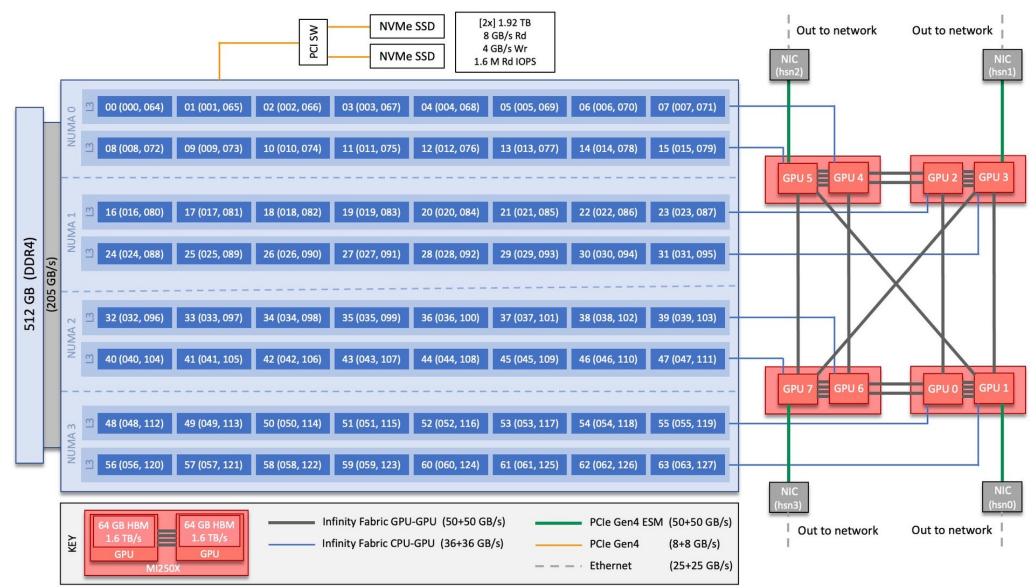


Weights to update: W_K , W_Q , W_V , W_1 , W_2

Let,
$$X \in \mathbb{R}^{s \times d}, W_K, W_Q, W_V \in \mathbb{R}^{d \times d}$$
.
Then, $K = XW_K, Q = XW_Q, V = XW_V$,
 $K, Q, V \in \mathbb{R}^{s \times d}$.
And, Attention = $softmax(\frac{QK^T}{\sqrt{d}})V \in \mathbb{R}^{s \times d}$
 \cdots
 $Y = func(Attention) \in \mathbb{R}^{s \times d}$
 $W_1 \in \mathbb{R}^{d \times 4d}, W_2 \in \mathbb{R}^{4d \times d}$
 $Z = GeLU(YW_1) \times W_2 \in \mathbb{R}^{s \times d}$

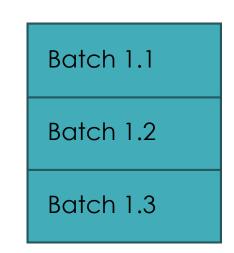
- Al For Science
- Deep Learning and Large Language Model training
- Data parallel training
- Model parallel training
 - Fully Sharded Data Parallel (FSDP)
 - Tensor Parallel (TP)
 - Pipeline Parallel (PP)
 - Hybrid Parallelism
- Case Study: Forge

Frontier Node Architecture

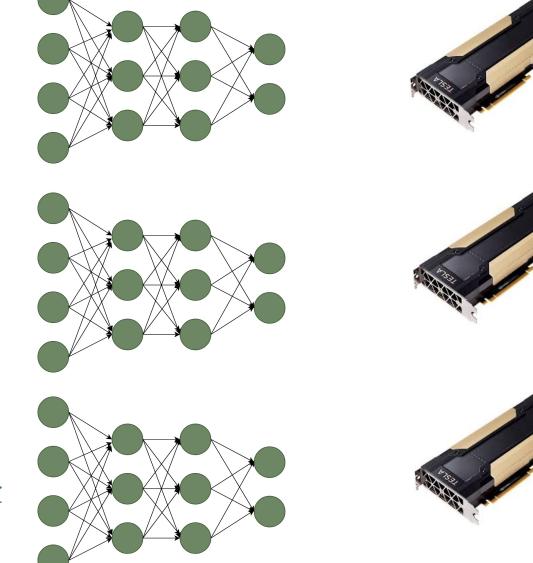


CARE RIDGE National Laboratory

Training DL Models with Large Data



Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour



Data Parallel Training With PyTorch DDP

- DDP == Distributed Data Parallel
- A group of processes will work together to perform data parallel training
- One process will be designated as the "Master" and every process needs to know the IP address (MASTER_ADDR) of it
- Identifying the "MASTER_ADDR" varies from Summit to Frontier
- With this, you initialize DDP and wrap your model with model = DDP(model)

Setup DDP on Frontier

• There are a few ways. For this tutorial, we will pass the MASTER_ADDR as argument

scontrol show hostnames \$SLURM_NODELIST > job.node.list input="./job.node.list" readarray -t arr <"\$input" first=\${arr[0]} ips=`ssh \$first hostname -I` read -ra arr <<< \${ips} export MASTER_ADDR=\${arr[0]} def setup_distributed_env(init_method=None, rank = 0, world_size=16): from mpi4py import MPI comm = MPI.COMM WORLD world size = comm.Get size() world_rank = rank = comm.Get_rank() backend = Noneos.environ['MASTER ADDR'] = master addr os.environ['MASTER_PORT'] = master_port os.environ['WORLD_SIZE'] = str(world_size) os.environ['RANK'] = str(world_rank) os.environ['LOCAL_RANK'] = "0"#str(world_rank % 8) print("initialization parameters:", init_method, backend, rank, world_size) torch.distributed.init_process_group(backend, timeout=default pg timeout, init method=init method, rank=rank,

world_size=world_size)

CAK RIDGE National Laboratory

def forward(self, x):

model = CNN()

model = models.resnet50(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs,
num_classes)

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)

SCALING

for epoch in range(1):
 for i, data in enumerate(train_dataloader):
 outputs = model(inputs)
 loss = criterion(outputs, labels)
 optimizer.step()

Scaling <u>Up</u> and <u>Out</u> a model

• Move the model to GPU

device = "cuda" model.to(device)

• Run on multiple GPU

model = DataParallel(model, device_ids =
[0, 1, 2])

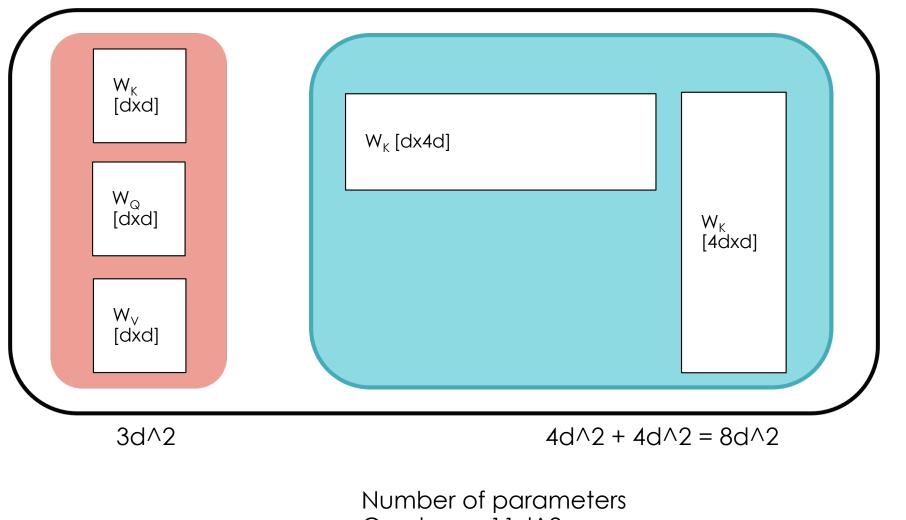
• Run on multiple Nodes

setup_DDP(backend="nccl")
model = DDP(model, device_ids = [0, 1,
2])

- Al For Science
- Deep Learning and Large Language Model training
- Data parallel training
- Model parallel training
 - Fully Sharded Data Parallel (FSDP)
 - Tensor Parallel (TP)
 - Pipeline Parallel (PP)
 - Hybrid Parallelism
- Case Study: Forge

- Al For Science
- Deep Learning and Large Language Model training
- Data parallel training
- Model parallel training
 - Distributed Data Parallel (DDP)
 - Fully Sharded Data Parallel (FSDP)
 - Tensor Parallel (TP)
 - Pipeline Parallel (PP)

Inside a Transformer Layer



One layer: 11d^2 L layers: 12Ld^2

Memory Requirement During Training an LLM

Model Weights: Number of parameters: 12Ld^2

- 4 bytes * number of parameters for fp32 training
- 6 bytes * number of parameters for mixed precision training (maintains a model in fp32 and one in fp16 in memory)

Optimizer States:

Adam Optimizer uses two extra parameters (mean and variance)

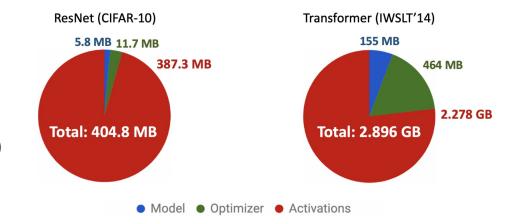
- 8 bytes * number of parameters for normal AdamW (maintains 2 states)
- 2 bytes * number of parameters for 8-bit AdamW optimizers like <u>bitsandbytes</u>
- 4 bytes * number of parameters for optimizers like SGD with momentum (maintains only 1 state)

Gradients Same as number of parameters

• 4 bytes * number of parameters for either fp32 or mixed precision training (gradients are always kept in fp32)

Forward Activations Batch-size x output-nodes?

size depends on many factors, the key ones being sequence length, hidden size and batch size.



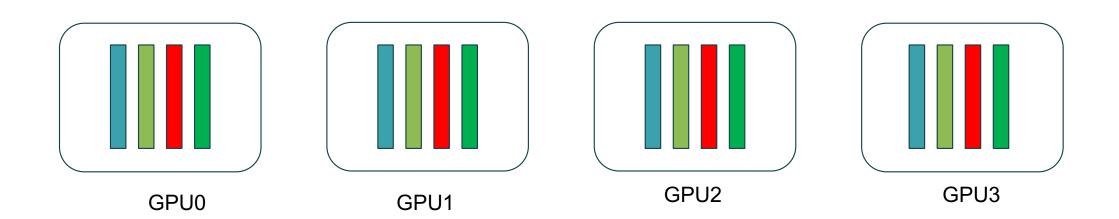
National Laboratory | FACILITY

Model Parallelism: Why and How

- Models (or Memory needed for their training) are too big to fit in a single GPU
- So, we need to break the model into pieces
- What's broken needs to be rebuilt from the pieces
- It's like Kintsugi, but with a more practical concern such as price of gold (comm. Latency)

Kintsugi

Data Parallelism

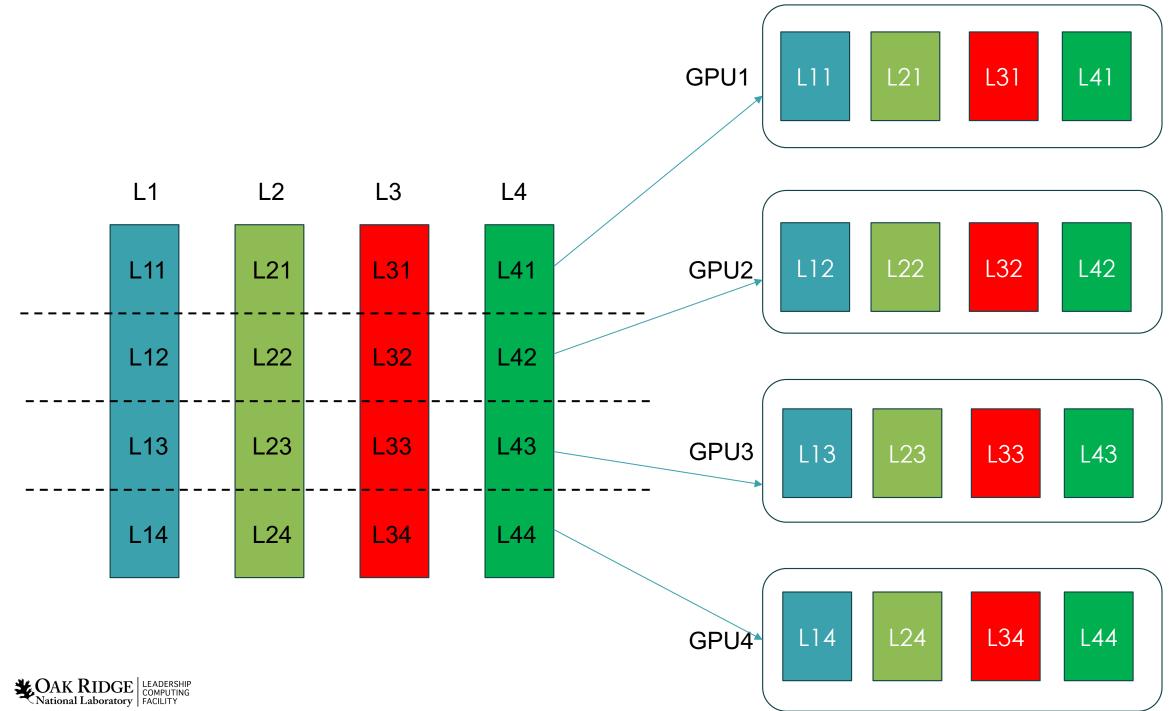


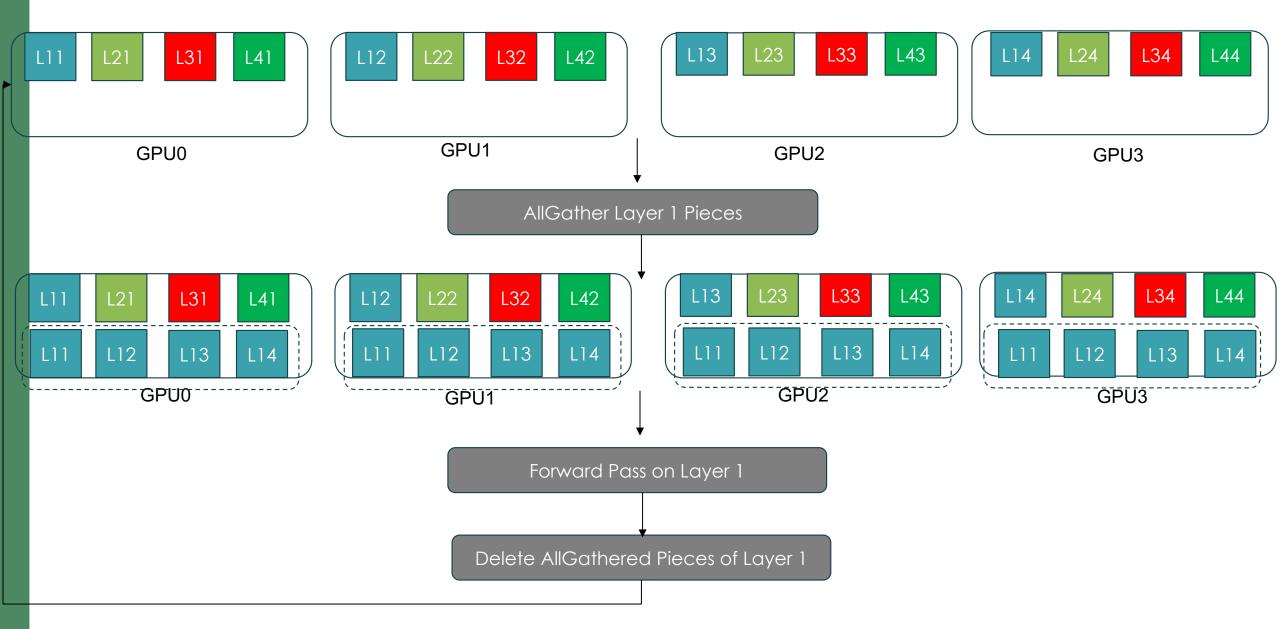


- Al For Science
- Deep Learning and Large Language Model training
- Data parallel training
- Model parallel training
 - Sharded Data Parallel (ZeRO and FSDP)
 - Tensor Parallel (TP)
 - Pipeline Parallel (PP)
 - Hybrid Parallelism
- Case Study: Forge

Sharded Data Parallelism

- The model is too big to fit in a single GPU's memory
- One GPU has enough memory to fit a fraction of the model
- Slice the model with horizontal lines and place one horizontal slice in one GPU
- But, when a layer is being evaluated, each GPU should have the copy of that layer
- The GPU has enough memory to fit one full layer on top of its slice





CARE RIDGE National Laboratory

Two Methods to do Sharded Data Parallelism

• DeepSpeed ZeRO (by Microsoft) and PyTorch FSDP (by Meta)

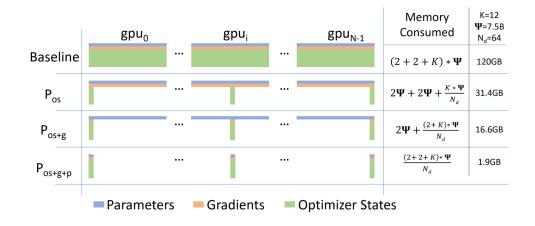
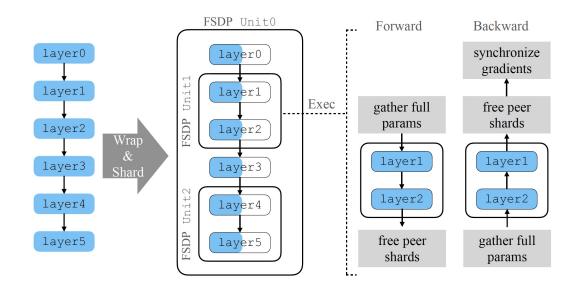


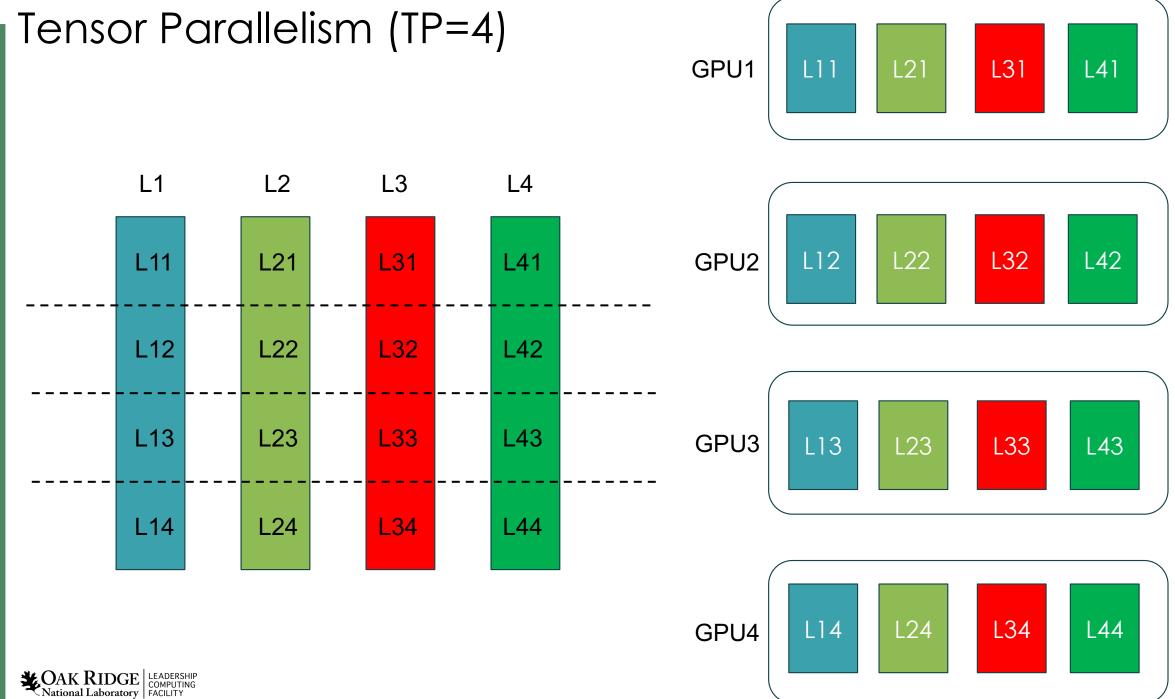
Figure 1: Comparing the per-device memory consumption of model states, with three stages of ZeRO-DP optimizations. Ψ denotes model size (number of parameters), K denotes the memory multiplier of optimizer states, and N_d denotes DP degree. In the example, we assume a model size of $\Psi = 7.5B$ and DP of $N_d = 64$ with K = 12 based on mixed-precision training with Adam optimizer.

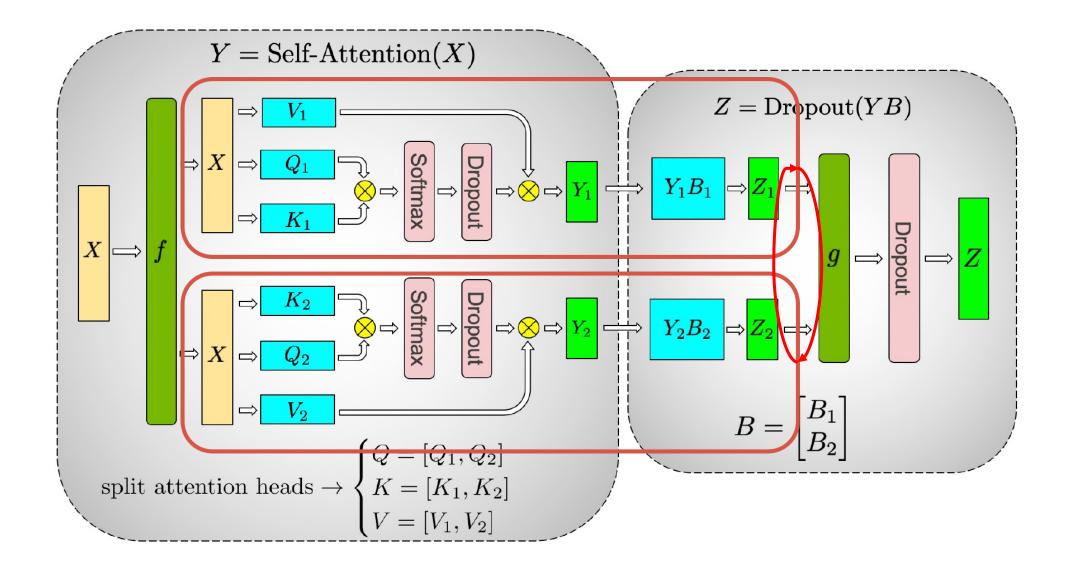


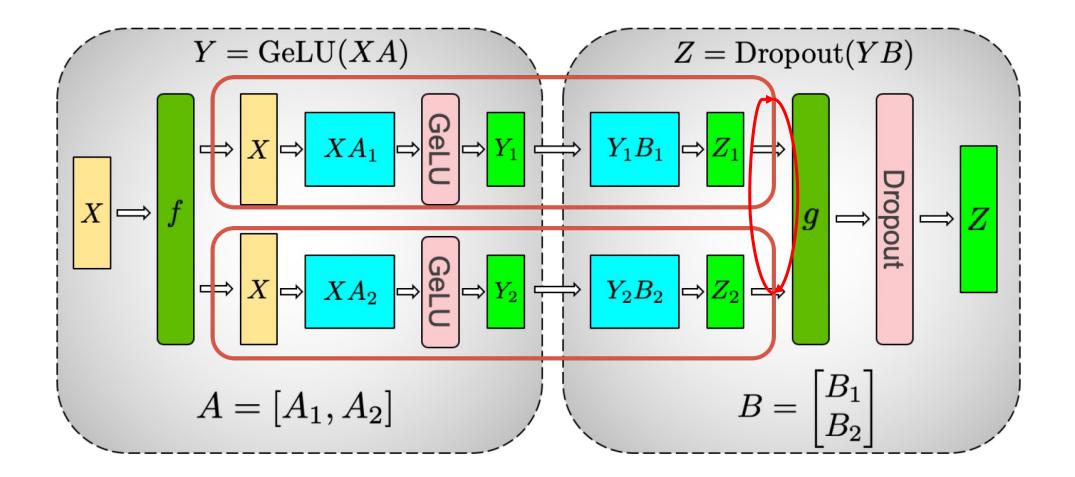
- Al For Science
- Deep Learning and Large Language Model training
- Data parallel training
- Model parallel training
 - Fully Sharded Data Parallel (FSDP)
 - Tensor Parallel (TP)
 - Pipeline Parallel (PP)
 - Hybrid Parallelism
- Case Study: Forge

Tensor Parallelism

- Model is too large to fit in a GPU's memory
- We slice the model with horizontal line, and the GPU memory is large enough to fit one slice.
- Unlike sharded data parallelism, this is not data parallelism, the same data gets evaluated by different part of the same layer, and the output gets combined.





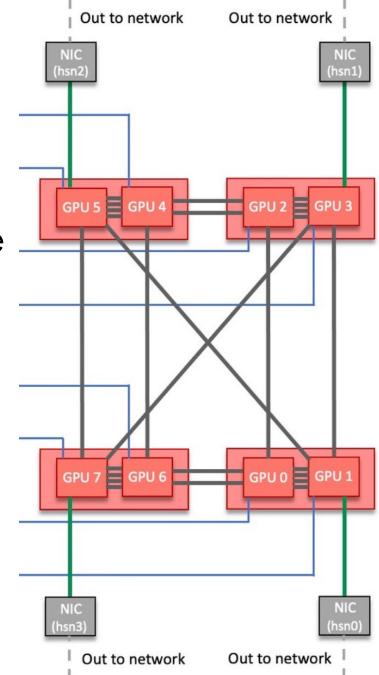


Limitations of Tensor Parallelism

- Like Sharded data parallelism, Tensor Parallelism requires frequent AllReduce communication after every layer
- Instead of model weights, the intermediate outputs get AllReduced
- Tensor Parallel (TP) size is limited by the number of GPUs in a node (6 for Summit, 8 for Frontier)
- TP > 6/8 works, but the communication requires crossing node boundary, that introduces larger communication latency

AK RIDGE LEADERSHIP

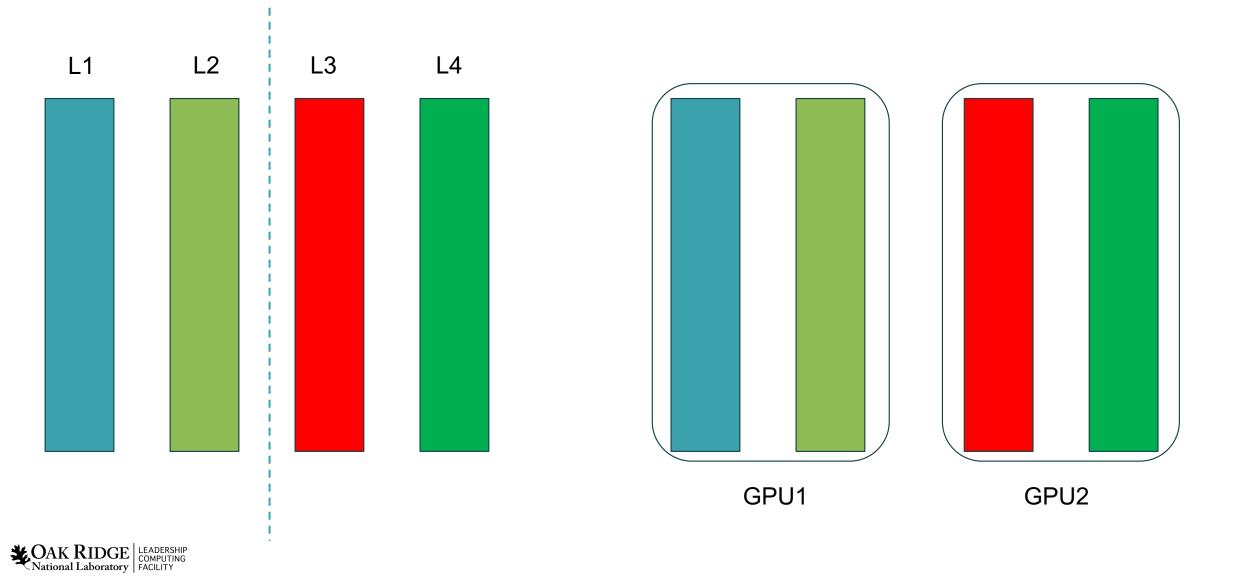
Vational Laboratory | FACILIT



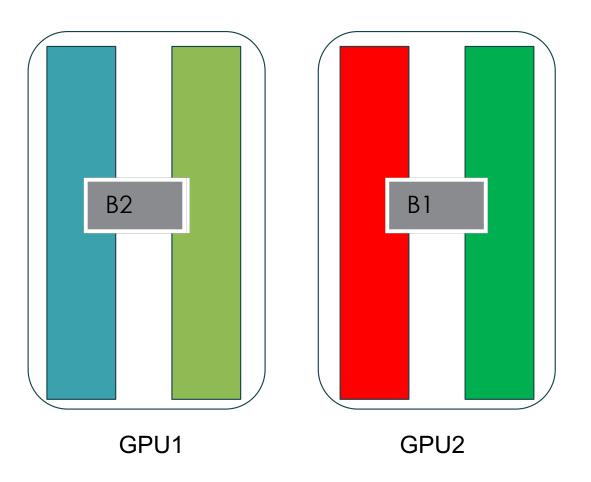
Overview (Hour 1)

- Al For Science
- Deep Learning and Large Language Model training
- Data parallel training
- Model parallel training
 - Sharded Data Parallel (FSDP)
 - Tensor Parallel (TP)
 - Pipeline Parallel (PP)
 - Hybrid Parallelism
- Case Study: Forge

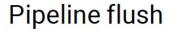
Pipeline Parallelism (PP = 2)

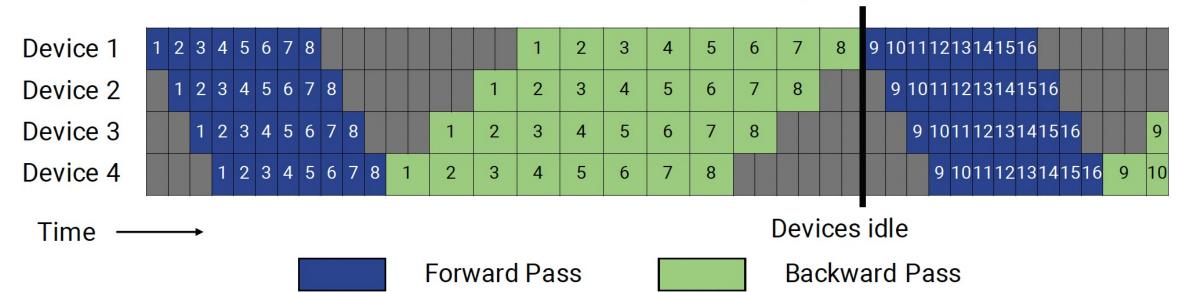


Pipeline Parallelism

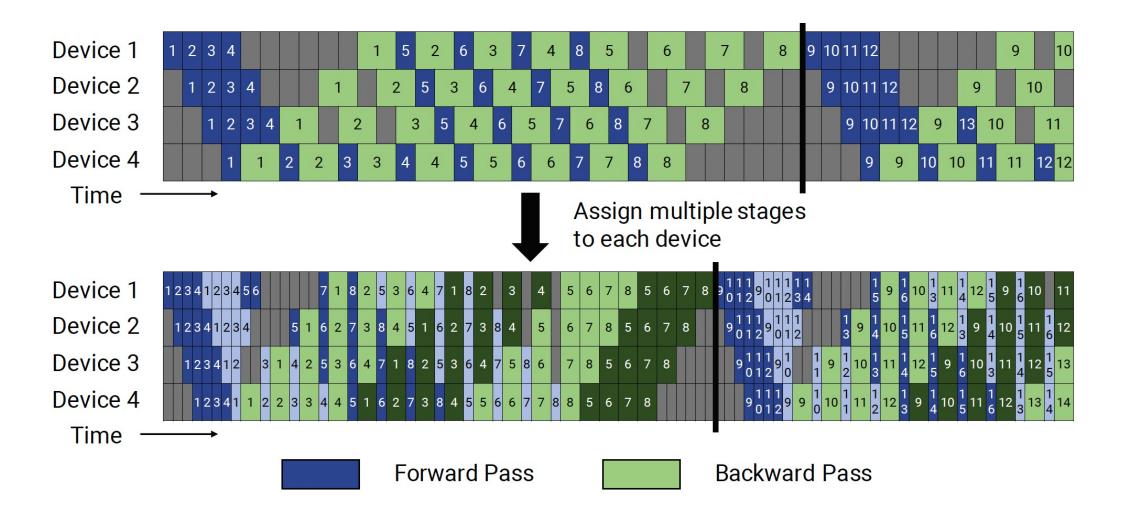


Pipeline Parallelism (Gpipe)





Pipeline Parallelism

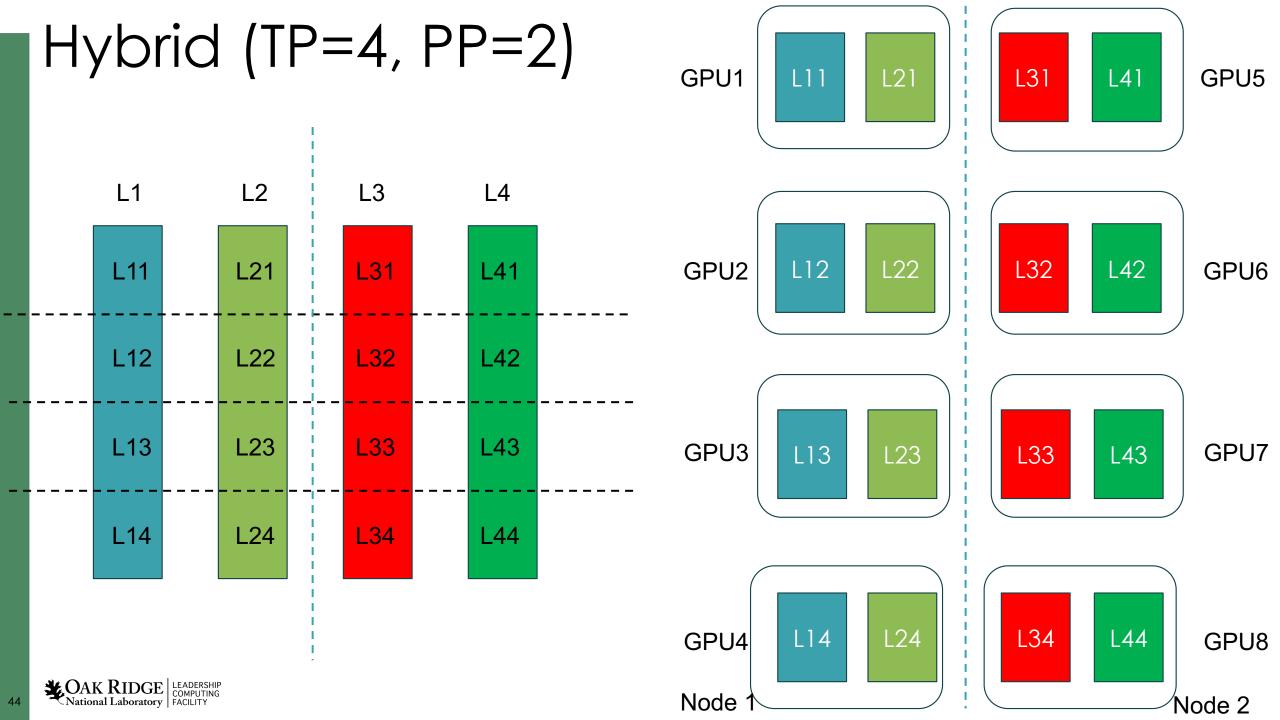


Data vs. Sharded vs. Tensor vs. Pipeline Parallelism

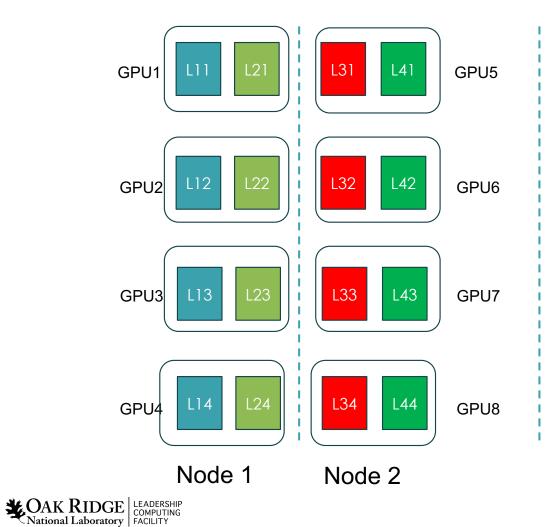
	Data Parallelism	Sharded Data Parallelism	Tensor Parallelism	Pipeline Parallelism
Dimension of distribution	Full Model gets replicated	Horizontal Slices + one layer replicated	Horizontal Slices	Vertical slices
Model/Output	Output	Model	Output	Output
Communicati on frequency	Least frequent	Most frequent	Most frequent	Intermediate
Communicati on volume	Large volume	Small	Small	Small
Limitation	High-volume communication	Frequent low- volume communication	Frequent low- volume communication	Bubbles from insufficient overlap
Advantage	Necessary for consuming large data	Allows large model training	Allows large model training	Can hide latency with smaller bubbles

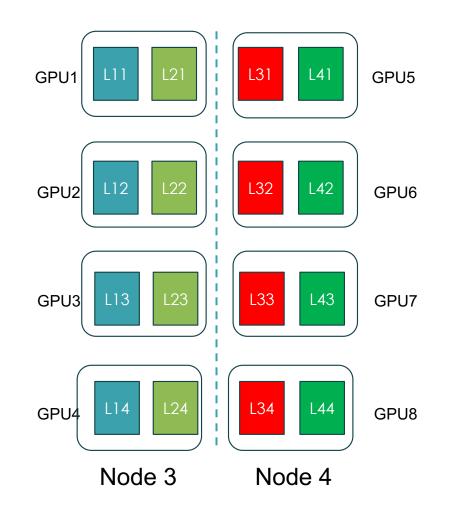
Overview (Hour 1)

- Al For Science
- Deep Learning and Large Language Model training
- Data parallel training
- Model parallel training
 - Sharded Data Parallel (ZeRO and FSDP)
 - Tensor Parallel (TP)
 - Pipeline Parallel (PP)
 - Hybrid Parallelism
- Case Study: Forge



Hybrid (TP=4, PP=2, DP=2)





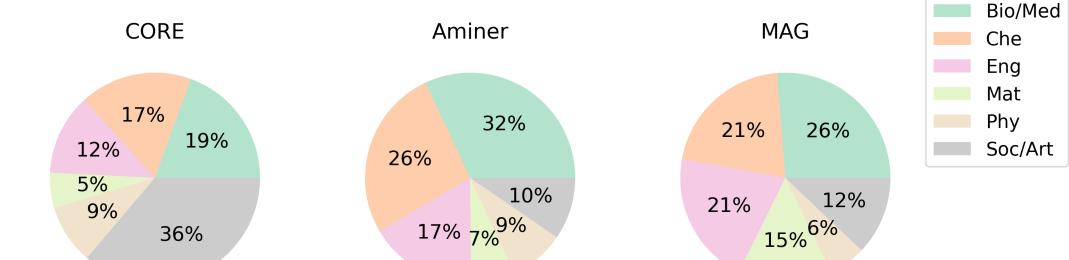
Overview (Hour 1)

- Al For Science
- Deep Learning and Large Language Model training
- Data parallel training
- Model parallel training
 - Sharded Data Parallel (ZeRO and FSDP)
 - Tensor Parallel (TP)
 - Pipeline Parallel (PP)
 - Hybrid Parallelism
- Case Study: Forge

Case Study: Forge

- FORGE: Pre-Training Open Foundation Models for Science
 - Junqi Yin, Sajal Dash, Feiyi Wang, Mallikarjun Shankar
- An open foundation model by AAIMS team trained on scientific research articles to perform science tasks
- Will be presented at SuperComputing Conference, 2023
- Will need volunteers for fine-tuning its "Chat" capability

Scientific Texts



Data sources: 200M papers (abstracts, full-texts)

Source	#Docs (M)	# Tokens (B)	Size (GB)	Domain	#Docs (M)	#Tokens (B)	Size (GB)
CORE	52.3	225	764	Bio/Med	52.5	38	155
Aminer	47.1	10	55	Che	43.2	41	158
MAG	103.8	20	108	Eng	35.7	29	113
SCOPUS	6.3	1.5	6.5	Mat	27.4	15	67
ArXiv	2.2	0.8	3.4	Phy	14.7	32	108
Total	212	257	937	Soc/Art	36	90	336

FORGE Models

Ś

#Params	d model	n layers	n heads	d head
1.44B	2064	24	24	86
13B	5120	40	40	128
25.6B	6144	48	48	128
	1.44B 13B	1.44B 2064 13B 5120	1.44B 2064 24 13B 5120 40	13B 5120 40 40

FORGE	#Params	#Tokens
Biology/Med	1.44B	38B
Chemistry	1.44B	41B
Engineering	1.44B	29B
Material	1.44B	15B
Physics	1.44B	32B
Social/Art	1.44B	90B
All	1.44B/13 B/ 25.6B	257B

J. Yin, S. Dash, F. Wang, and M. Shankar, SC'23

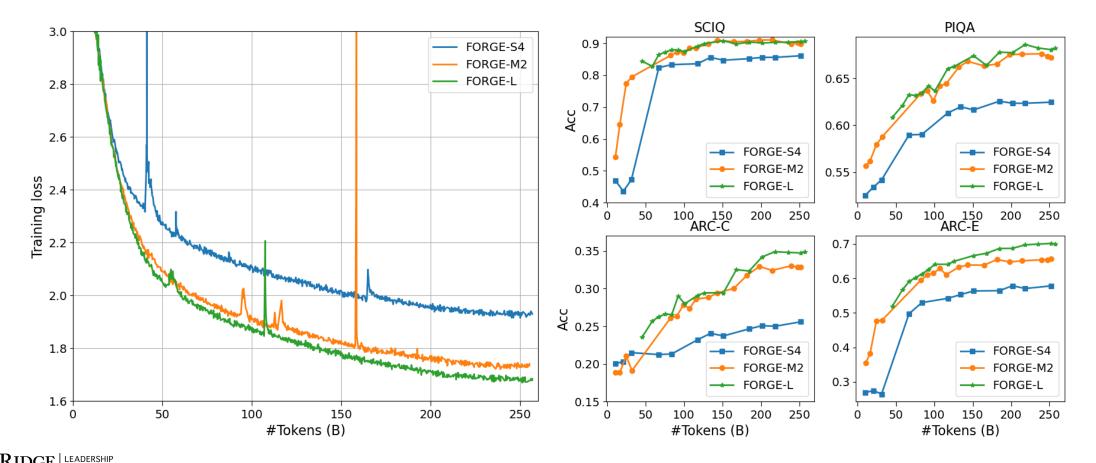
Generic Language Benchmarks

• Lm-eval: zero-shot performance

Model\Test	#Params:#Tokens	ARC-E	ARC-C	HT-CC	HT-CCS	HT-CM	HT-CP	HT-S	OBQA	PIQA	SCIQ
GPT2	124M:1.5B	0.44	0.19	0.25	0.28	0.19	0.23	0.31	0.16	0.63	0.75
GPT2-Large	774M:45B	0.53	0.22	0.28	0.29	0.24	0.26	0.32	0.19	0.70	0.80
GPT2-XL	1.5B:150B	0.58	0.25	0.26	0.26	0.21	0.23	0.31	0.22	0.71	0.83
Ref[14]	1.47B:201B	0.55	0.24	0.25	n/a	n/a	n/a	n/a	0.17	n/a	0.84
GPT-NeoX-20B	20B:472B	0.72	0.38	0.17	0.25	0.24	0.30	0.29	0.29	0.77	0.93
FORGE-Bio	1.44B:38B	0.47	0.24	0.24	0.31	0.20	0.22	0.24	0.17	0.61	0.79
FORGE-Che	1.44B:41B	0.53	0.24	0.30	0.29	0.22	0.21	0.29	0.2	0.60	0.82
FORGE-Eng	1.44B:29B	0.45	0.22	0.23	0.31	0.19	0.18	0.31	0.16	0.58	0.80
FORGE-Mat	1.44B:15B	0.47	0.23	0.29	0.34	0.19	0.20	0.30	0.17	0.60	0.78
FORGE-Phy	1.44B:32B	0.42	0.21	0.26	0.28	0.24	0.21	0.30	0.14	0.55	0.76
FORGE-Soc	1.44B:90B	0.5	0.21	0.32	0.34	0.22	0.23	0.34	0.2	0.61	0.82
FORGE-S4	1.44B:257B	0.58	0.26	0.36	0.39	0.25	0.21	0.35	0.2	0.62	0.86
FORGE-M2*	13B:143B	0.64	0.29	0.24	0.3	0.21	0.28	0.34	0.2	0.67	0.91
FORGE-L*	25.6B:125B	0.65	0.29	0.27	0.27	0.24	0.22	0.28	0.24	0.66	0.90

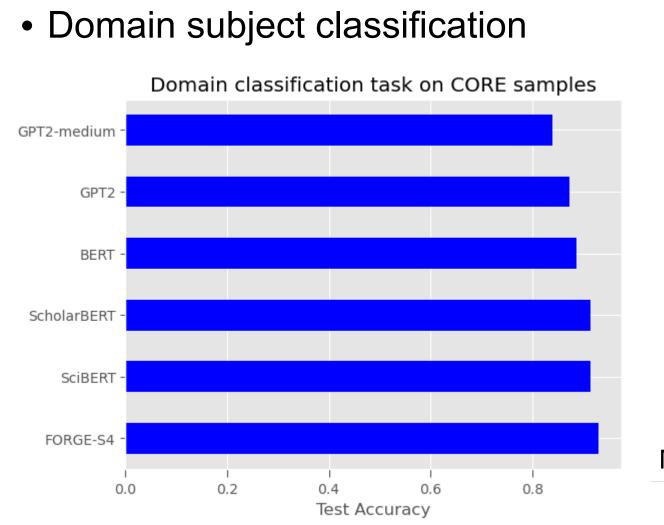
Generic Language Benchmarks

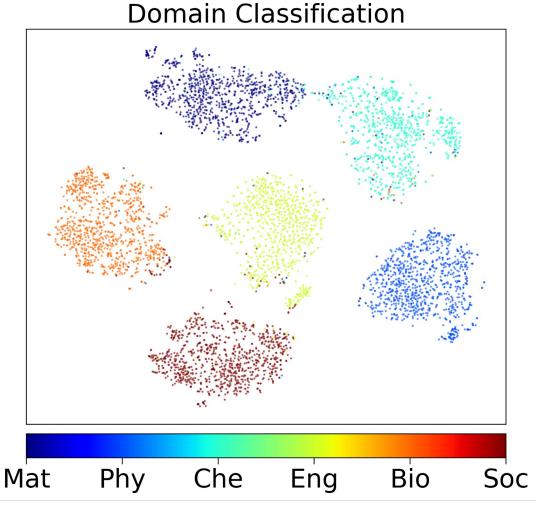
• Lm-eval: loss & accuracy progression



CARE RIDGE

Scientific Downstream Tasks



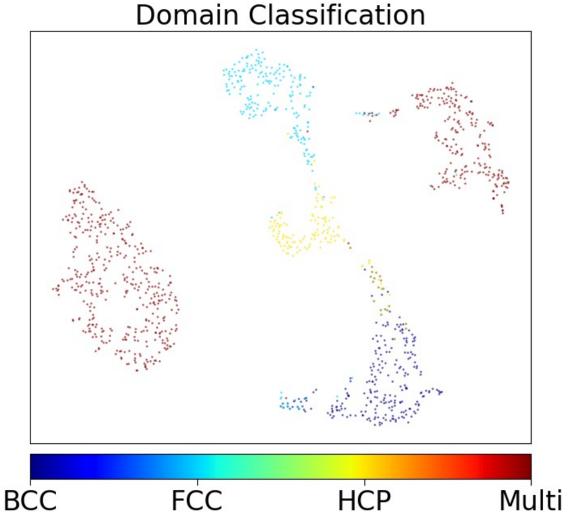


52 **CAK RIDGE** LEADERSHIP COMPUTING FACILITY

Scientific task: Alloy Phase Prediction

- Alloy phase dataset - npj Computational Materials 6, 50 (2020)
- FORGE-mat: LLM embeddings ~ 92%

[[-0.0032954	-0.0443229	0.03746693	0.00976305	0.01051364]
[-0.00595172	-0.04582867	0.02879063	0.0108158	-0.0043186]
[-0.0070161	-0.04830499	0.01686401	0.00728451	0.00023745]
[-0.00519273	-0.03851099	0.02685266	-0.02516581	-0.00436113]



Scientific task: Energy Regression

- A sample DFT dataset on Fe_xPt_y systems (DOI:10.17188/1198813)
 - 10 different concentrations
 - [x, y]: [15, 1], [7, 1], [13, 3], [3, 1], [11, 5], [5, 3], [9, 7], [1, 1], [7, 9], [3, 5]
- Traditional model of effective pair interaction (DOI:10.1016/j.matdes.2019.108247):

$$E \approx N \sum_{j < i, s} V_{ij}^s P_{ij}^s + \text{const},$$

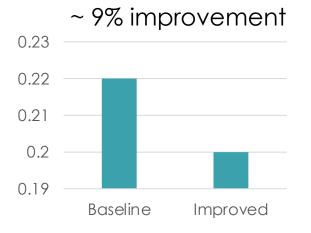
conc	shell1	shell2	shell3	shell4	shell5	shell6	enthalpy
0.625	0.484375	0.5625	0.4375	0.479167	0.5	0.208333	25.33232
0.625	0.5	0.520833	0.458333	0.5	0.375	0.166667	24.55154
0.625	0.484375	0.4375	0.5	0.479167	0.5625	0.166667	25.92364
0.625	0.5	0.458333	0.541667	0.484375	0.5	0.125	25.93012
0.625	0.453125	0.520833	0.5625	0.463542	0.375	0.166667	25.61216

Scientific task: Energy Regression

- LLM embeddings on materials formula
 - Hidden dimension: [10, 2064]
 - Reduced via PCA: [10, 3]

[[0.31629855, -0.26957738, 0.23415331], [0.31629948, -0.24336472, 0.13244611], [0.31616915, 0.24951304, 0.11633574],

- Improve the regression with LLM embeddings
 - $E \sim f(V_{ij}^{s}, embedding)$



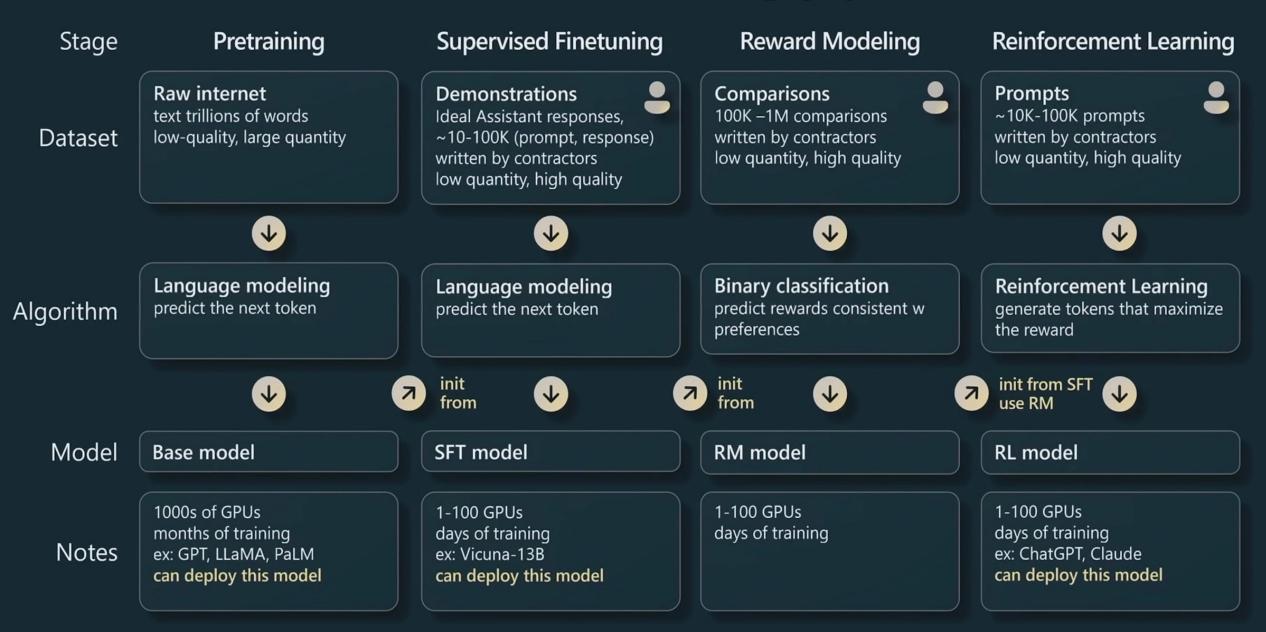
Scientific Downstream Tasks

• Phase classification / energy regression

			1
Model\Task	Classific	Degracion	
Model/Task	Domain	Phase	Regression
MatSciBERT	0.91	0.88	0.07
BioGPT	0.90	0.81	0.05
FORGE-Mat	0.90	0.88	0.09
FORGE-Bio	0.91	0.83	0.07
FORGE-Che	0.90	0.83	0.05
FORGE-Phy	0.89	0.86	0.06
FORGE-Eng	0.90	0.81	0.05
FORGE-Soc	0.91	0.88	0.07

Model\Task	Classifie	Degregation	
Model Task	Domain	Phase	Regression
BERT	0.88	0.90	0.05
SciBERT	0.91	0.90	0.05
ScholarBERT	0.91	0.90	0.05
GPT2	0.87	0.90	0.03
GPT2-Medium	0.90	0.85	0.04
GPT2-Large	0.91	0.85	0.06
FORGE-S1	0.92	0.91	0.06
FORGE-S2	0.91	0.89	0.06
FORGE-S3	0.91	0.87	0.05
FORGE-S4	0.93	0.92	0.06
FORGE-M1	0.92	0.90	0.06
FORGE-M2 [*]	0.92	0.91	0.05
FORGE-L*	0.91	0.90	0.03

GPT Assistant training pipeline



Hands On

- Data and Model Preparation
- DDP Example with gpt-xl (1.5B)
- ZeRO Example with GPT-J (6B)
- "3D"-parallel with Megatron (22B)
 - Tensor Parallel
 - Data Parallel
 - Pipeline Parallel
 - Sharded data parallel (ZeRO-1)

Python Environment

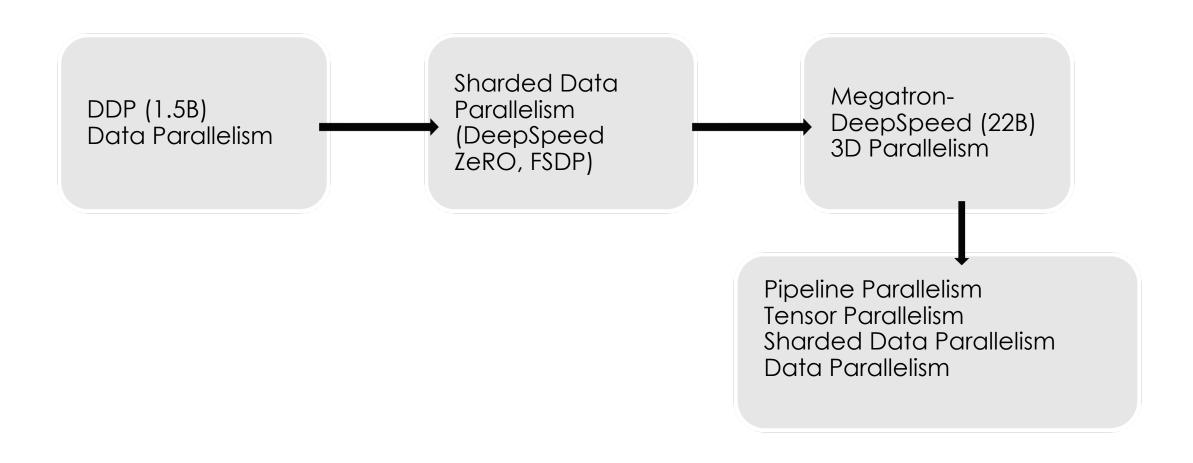
Following lines can be used with all the scripts.

source /lustre/orion/world-shared/stf218/sajal/miniconda3/bin/activate
conda activate /lustre/orion/world-shared/stf218/sajal/TORCH2/env-py310-rccl-megatron-new
export LD_PRELOAD="/usr/lib64/libcrypto.so /usr/lib64/libssh.so.4 /usr/lib64/libssl.so.1.1"

Download Data and Models

- <u>https://github.com/olcf/ai-training-</u> series/tree/main/ai_at_scale_part_2/ddp_examples
- bash download_oscar.sh
- bash dl_models.sh

Training Progression



DDP Example

- <u>https://github.com/olcf/ai-training-</u> series/tree/main/ai_at_scale_part_2/ddp_examples
- sbatch launch_gpt_srun.frontier
- This launches gpt_oscar_srun.py on 2 Frontier nodes (16 Ml250X GCDs)

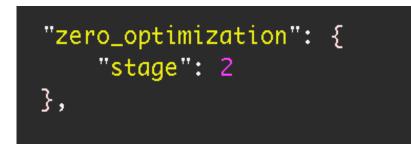
DDP: Initializing DDP

def setup_distributed_env(init_method=None, rank = 0, world_size=16): from mpi4py import MPI Comments C Share V comm = MPI.COMM_WORLD world_size = comm.Get_size() world_rank = rank = comm.Get_rank() backend = None os.environ['MASTER_ADDR'] = master_addr os.environ['MASTER_PORT'] = master_port os.environ['WORLD_SIZE'] = str(world_size) os.environ['RANK'] = str(world_rank) os.environ['LOCAL_RANK'] = "0" assword to a strong torch.distributed.init_process_group(backend, init_method=init_method, rank=rank, world_size=world_size) using_mpi = torch.distributed.get_backend() == 'mpi' setup_distributed_env()

Acility

Sharded Data Parallelism (ZeRO Optimizers)

 Add ZeRO Optimizer to ds_config.json



• bsub launch_gptJ_srun.frontier

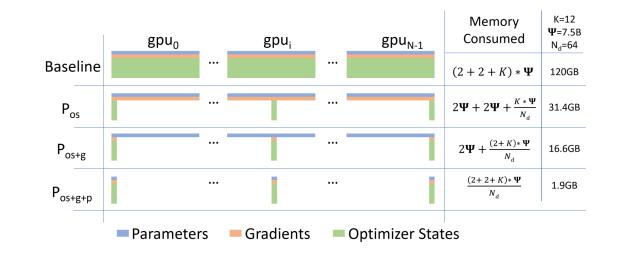


Figure 1: Comparing the per-device memory consumption of model states, with three stages of ZeRO-DP optimizations. Ψ denotes model size (number of parameters), K denotes the memory multiplier of optimizer states, and N_d denotes DP degree. In the example, we assume a model size of $\Psi = 7.5B$ and DP of $N_d = 64$ with K = 12 based on mixed-precision training with Adam optimizer.

FSDP Example

- Launch launch_gpt_fsdp.frontier
- Wrap the model with FSDP in the python script

model = AutoModelForCausalLM.from_pretrained("models/gpt2-xl")
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
model = FSDP(model)

Specify "input_id" field of the dataset

trainer = Trainer(

model=model,

args=training_args,

```
data_collator=data_collator,
```

train_dataset=tokenized_dataset["input_ids"]

3D Parallelism

- sbatch launch_gpt22b_srun.frontier
- Enable 3D parallelism and change model-size in the launch script (setting to 1 disables parallelism in that dimension)

export GPT_ARGS="--tensor-model-parallel-size 4 \

- --pipeline-model-parallel-size 8 \setminus
- --num-layers 48 \setminus
- --hidden-size 6144 \setminus

