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A Story where Goliath Wins

2017: Attention is all you need 
[Google]

2020: Language Models are Few-Shot Learners 
[OpenAI]
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Model Size Exploded with Time

GPT-4 (1T)
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What Do You Need to Train a Trillion Parameter Model?

• How to distribute the training workload across hundreds of 
MI250X GPUs?

• How to take advantage of the existing software developed 
targeting NVIDIA gpus?

Compute: 
120*P^2 ~ 120 Million ExaFlops

Memory: 
20P ~ 20 Terabytes

Modern GPUs:
A100 – 80GB Memory, 312Teraflops 
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Outline

• Distributed training of LLMs

• Preparing a training software stack for Frontier

• Finding best distributed training strategies

• Training up to a Trillion parameter model on Frontier (for a few 
iterations)

• Training LLMs on OLCF resources
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Transformer Model Architecture

BERT

GPT
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Forward Pass

X Y Z

Weights to update: WK , WQ, WV, W1, W2
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Training DL Models with Large Data

Batch 1

Batch 1.3

Batch 1.2

Batch 1.1

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

https://arxiv.org/pdf/1706.02677.pdf
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Frontier Node Architecture
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Inside a Transformer Layer

WK 
[dxd]

WQ 
[dxd]

WV 
[dxd]

WK [dx4d]

WK 
[4dxd]

4d^2 4d^2 + 4d^2 = 8d^2

Number of parameters
One layer: 12d^2
L layers: 12Ld^2

WO 
[dxd]

Attention FFN
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How to Grow a Transformer Model?

• Number of parameters 12Ld^2 can be think of a volume
– With L (#Layers), the model grows linearly
– With d (hidden dimension), model grows quadratically

L

d

d
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Memory Requirement During Training an LLM

Number of parameters: 12Ld^2

Adam Optimizer uses two extra parameters
 (mean and variance)

Same as number of parameters

Batch-size x output-nodes?



13

Model Parallelism: Why and How

• Models (or Memory needed for their training) 
are too big to fit in a single GPU

• So, we need to break the model into pieces

• What’s broken needs to be rebuilt from the 
pieces

• It’s like Kintsugi, but with a more practical 
concern such as price of gold (comm. 
Latency)

Kintsugi
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Tensor Parallelism

• Model is too large to fit in a GPU’s memory

• We slice the model tensors along a suitable dimension (row or 
column), and the GPU memory is large enough to fit one slice.

• Unlike sharded data parallelism, this is not data parallelism, the 
same data gets evaluated by different part of the same layer, 
and the output gets combined.
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Tensor Parallelism (TP=4)
L11 L21 L31 L41

L12 L22 L32 L42

L13 L23 L33 L43

L14 L24 L34 L44

L1 L2 L3 L4

L11

L12

L13

L14

L21

L22

L23

L24

L31

L32

L33

L34

L41

L42

L43

L44

GPU1

GPU3

GPU2

GPU4
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Self-Attention
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Feed Forward Network (FFN)
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Limitations of Tensor Parallelism

• Requires frequent AllReduce communication after every 
layer

• Intermediate outputs get AllReduced

• Tensor Parallel (TP) size is limited by the number of GPUs in a 
node (6 for Summit, 8 for Frontier)

• For TP > 6/8 the communication requires crossing node 
boundary through 25+25GB/s ethernet cable
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Lessons Learnt From Tensor Parallelism
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Pipeline Parallelism (PP = 2)

L1 L2 L3 L4

GPU1 GPU2
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Pipeline Parallelism (Gpipe)
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Pipeline Parallelism
Bubble size ~ (#Pipeline stages) / (#Microbatches)
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Pipeline Bubble vs #Microbatches 

• Increasing the #Microbatches will reduce the bubble

• But that will result in large global batch size, hurting the 
convergence
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Bubble vs #pipeline-stages

• Reducing the #pipeline-stages reduces bubble

• Then, we cannot use too many GPUs
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Sharded Data Parallelism

• The model is too big to fit in a single GPU’s memory
• One GPU has enough memory to fit a fraction of the model
• Slice the model with horizontal lines and place one horizontal 

slice in one GPU
• But, when a layer is being evaluated, each GPU should have 

the copy of that layer
• The GPU has enough memory to fit one full layer on top of its 

slice
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L11 L21 L31 L41

L12 L22 L32 L42

L13 L23 L33 L43

L14 L24 L34 L44

L1 L2 L3 L4

L11

L12

L13

L14

L21

L22

L23

L24

L31

L32

L33

L34

L41

L42

L43

L44

GPU1

GPU3

GPU2

GPU4
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Layer 1
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Data vs. Sharded vs. Tensor vs. Pipeline Parallelism

Data Parallelism Sharded Data 
Parallelism

Tensor Parallelism Pipeline 
Parallelism

Dimension of 
distribution

Full Model gets 
replicated

Horizontal Slices + 
one layer 
replicated

Horizontal Slices Vertical slices

Model/Output Output Model Output Output
Communicati
on frequency

Least frequent Most frequent Most frequent Intermediate

Communicati
on volume

Large volume Small Small Small

Limitation High-volume 
communication

Frequent low-
volume 
communication

Frequent low-
volume 
communication

Bubbles from 
insufficient overlap

Advantage Necessary for 
consuming large data

Allows large 
model training 

Allows large 
model training 

Can hide latency 
with smaller 
bubbles
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Outline

• Distributed training of LLMs

• Preparing a training software stack for Frontier

• Finding best distributed training strategies

• Training up to a Trillion parameter model on Frontier (for a few 
iterations)

• Training LLMs on OLCF resources
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Preparing AI Software Stack for Frontier

• PyTorch – initially from source code and using ROCM compiler

• ROCM implementations of libraries like APEX, FlashAttention

• DeepSpeed without JIT compilation

• Utilize PyTorch’s cpp_extention and cuda_extension for 
modifying cuda kernels to hip kernels
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3D Parallelism using Megatron-DeepSpeed

• Megatron-DeepSpeed is a state-of-the-art training framework 
developed by Microsoft and NVIDIA

• It supports 3D+ parallelism (Tensor, Pipeline, Data, Sharded 
Data)

• We ported this Framework to Frontier through hipify and 
combining with ROCM specific packages
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Porting Megatron-DeepSpeed to Frontier

• https://github.com/sajal-vt/Megatron-DeepSpeed-
ORNL/tree/frontier-sd

https://github.com/sajal-vt/Megatron-DeepSpeed-ORNL/tree/frontier-sd
https://github.com/sajal-vt/Megatron-DeepSpeed-ORNL/tree/frontier-sd
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Outline

• Distributed training of LLMs

• Preparing a training software stack for Frontier

• Finding best distributed training strategies

• Training a Trillion parameter model on Frontier (for a few 
iterations)

• Training LLMs on OLCF resources
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3D Parallelism

• A Combination of Tensor, Pipeline, and Data Parallelism

• Determine how many GPUs (world-size) you need to fit the 
model

• Factorize world-size into TP (tensor parallel size) and PP (pipeline 
parallel size)
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Hybrid (TP=4, PP=2)

Node 1 Node 2

L11 L21 L31 L41

L12 L22 L32 L42

L13 L23 L33 L43

L14 L24 L34 L44

L1 L2 L3 L4

L11

L12

L13

L14

L21

L22

L23

L24

L31

L32

L33

L34

L41

L42

L43

L44

GPU1

GPU3

GPU2

GPU4

GPU5

GPU7

GPU6

GPU8
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Best practices with parallelism paradigms

• Tensor Parallelism
–  Keep it within the node (TP < 8)

• Pipeline Parallelism 
– Use large number of micro-batches (But that can increase the global 

batch-size)

• Data Parallelism
– Can’t use too much data parallelism. A large global batch size will 

make the model divergence.
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Hyperparameter Search using DeepHyper

Search Object with 
Bayesian Optimizer

Node queue

Job (nodes, 
parameters)

params

Create and 
Launch 

Slurm job

params
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Searching a 3D Parallelism Strategy using DeepHyper
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Outline

• Distributed training of LLMs

• Preparing a training software stack for Frontier

• Finding best distributed training strategies

• Training a Trillion parameter model on Frontier (for a few 
iterations)

• Training LLMs on OLCF resources
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“Best” Strategy to Train 175B and 1T Models
Disclaimers: 
1. We didn’t train any model till completion. We only trained for 10 iterations 

and less than 2 hours.
2. We don’t have any completely trained models
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Weak Scaling Performance
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Strong Scaling Performance
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Power Consumption

22B Model training

175B Model training

Seconds

Seconds



44

Energy Budget against Model Size (~P^2)

• We used rocm-smi to measure GPU level energy consumption

• Idle GPU power is approximately 90 Watts.

• Taking iteration time, consumed tokens per iterations, average active 
power, and total number of MI250X GPU cards, we can estimate how 
much energy each model training will require.

• For 22B, 175B, and 1T parameter model, the estimated energy 
consumption is 284 Gigajoules, 17.65 Terajoules, and 662 
Terajoules.
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To Read About the Work…

• Arxiv Link: https://arxiv.org/abs/2312.12705

• Accepted at ISC HPC, 2024

https://arxiv.org/abs/2312.12705
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Outline

• Distributed training of LLMs

• Preparing a training software stack for Frontier

• Finding best distributed training strategies

• Training up to a Trillion parameter model on Frontier (for a few 
iterations)

• Training LLMs on OLCF resources
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Getting OLCF Allocation

• https://www.olcf.ornl.gov/for-users/documents-forms/olcf-
directors-discretion-project-application/

https://www.olcf.ornl.gov/for-users/documents-forms/olcf-directors-discretion-project-application/
https://www.olcf.ornl.gov/for-users/documents-forms/olcf-directors-discretion-project-application/
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OLCF Tutorials on Distributed Training of Deep Learning 
Models
• Part I: Introduction and Data Parallel Training
– https://www.olcf.ornl.gov/calendar/ai-for-science-at-scale-intro/

• Part II: Model Parallelism
– https://www.olcf.ornl.gov/calendar/ai-training-series-ai-for-science-at-

scale-part-2/

https://www.olcf.ornl.gov/calendar/ai-for-science-at-scale-intro/
https://www.olcf.ornl.gov/calendar/ai-training-series-ai-for-science-at-scale-part-2/
https://www.olcf.ornl.gov/calendar/ai-training-series-ai-for-science-at-scale-part-2/
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Hands On

• Training Large LLMs
– Train a 22B model on 2 nodes
– Train a 175B model on 16 nodes
– Train a 1T model on 128 nodes

• Finding the best training strategies using DeepHyper
– Find the best strategy for training a 22B model
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Training Large LLMs

• git clone git@github.com:sajal-vt/Megatron-DeepSpeed-
ORNL.git

• git fetch

• git branch –v –a

• git switch FA2

• sbatch –reservation=ai launch_gpt22b_bf16.slurm

• sbatch --reservation=ai launch_gpt175b_bf16.slurm

• sbatch --reservation=ai launch_gpt1T_bf16.slurm

mailto:git@github.com:sajal-vt/Megatron-DeepSpeed-ORNL.git
mailto:git@github.com:sajal-vt/Megatron-DeepSpeed-ORNL.git
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Finding the best training strategies using DeepHyper

• git clone git@github.com:sajal-vt/Megatron-DeepSpeed-
ORNL.git

• git fetch

• git branch –v –a

• git switch frontier-sd

• sbatch --reservation=ai launch_dh.frontier

mailto:git@github.com:sajal-vt/Megatron-DeepSpeed-ORNL.git
mailto:git@github.com:sajal-vt/Megatron-DeepSpeed-ORNL.git

