
ORNL is managed by UT-Battelle LLC for the US Department of Energy

AI For Science At Scale – Part III
(Training LLMs with Hundreds of Billions of Parameters)

Sajal Dash
Research Scientist, HPC and AI

Analytics and AI Methods at Scale (AAIMS), NCCS

dashs@ornl.gov

2

A Story where Goliath Wins

2017: Attention is all you need
[Google]

2020: Language Models are Few-Shot Learners
[OpenAI]

3

Model Size Exploded with Time

GPT-4 (1T)

4

What Do You Need to Train a Trillion Parameter Model?

• How to distribute the training workload across hundreds of
MI250X GPUs?

• How to take advantage of the existing software developed
targeting NVIDIA gpus?

Compute:
120*P^2 ~ 120 Million ExaFlops

Memory:
20P ~ 20 Terabytes

Modern GPUs:
A100 – 80GB Memory, 312Teraflops

5

Outline

• Distributed training of LLMs

• Preparing a training software stack for Frontier

• Finding best distributed training strategies

• Training up to a Trillion parameter model on Frontier (for a few
iterations)

• Training LLMs on OLCF resources

66

Transformer Model Architecture

BERT

GPT

7

Forward Pass

X Y Z

Weights to update: WK , WQ, WV, W1, W2

8

Training DL Models with Large Data

Batch 1

Batch 1.3

Batch 1.2

Batch 1.1

Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour

https://arxiv.org/pdf/1706.02677.pdf

9

Frontier Node Architecture

10

Inside a Transformer Layer

WK
[dxd]

WQ
[dxd]

WV
[dxd]

WK [dx4d]

WK
[4dxd]

4d^2 4d^2 + 4d^2 = 8d^2

Number of parameters
One layer: 12d^2
L layers: 12Ld^2

WO
[dxd]

Attention FFN

11

How to Grow a Transformer Model?

• Number of parameters 12Ld^2 can be think of a volume
– With L (#Layers), the model grows linearly
– With d (hidden dimension), model grows quadratically

L

d

d

1212

Memory Requirement During Training an LLM

Number of parameters: 12Ld^2

Adam Optimizer uses two extra parameters
 (mean and variance)

Same as number of parameters

Batch-size x output-nodes?

13

Model Parallelism: Why and How

• Models (or Memory needed for their training)
are too big to fit in a single GPU

• So, we need to break the model into pieces

• What’s broken needs to be rebuilt from the
pieces

• It’s like Kintsugi, but with a more practical
concern such as price of gold (comm.
Latency)

Kintsugi

14

Tensor Parallelism

• Model is too large to fit in a GPU’s memory

• We slice the model tensors along a suitable dimension (row or
column), and the GPU memory is large enough to fit one slice.

• Unlike sharded data parallelism, this is not data parallelism, the
same data gets evaluated by different part of the same layer,
and the output gets combined.

1515

Tensor Parallelism (TP=4)
L11 L21 L31 L41

L12 L22 L32 L42

L13 L23 L33 L43

L14 L24 L34 L44

L1 L2 L3 L4

L11

L12

L13

L14

L21

L22

L23

L24

L31

L32

L33

L34

L41

L42

L43

L44

GPU1

GPU3

GPU2

GPU4

16

Self-Attention

17

Feed Forward Network (FFN)

18

Limitations of Tensor Parallelism

• Requires frequent AllReduce communication after every
layer

• Intermediate outputs get AllReduced

• Tensor Parallel (TP) size is limited by the number of GPUs in a
node (6 for Summit, 8 for Frontier)

• For TP > 6/8 the communication requires crossing node
boundary through 25+25GB/s ethernet cable

19

Lessons Learnt From Tensor Parallelism

2020

Pipeline Parallelism (PP = 2)

L1 L2 L3 L4

GPU1 GPU2

21

Pipeline Parallelism (Gpipe)

22

Pipeline Parallelism
Bubble size ~ (#Pipeline stages) / (#Microbatches)

23

Pipeline Bubble vs #Microbatches

• Increasing the #Microbatches will reduce the bubble

• But that will result in large global batch size, hurting the
convergence

24

Bubble vs #pipeline-stages

• Reducing the #pipeline-stages reduces bubble

• Then, we cannot use too many GPUs

2525

Sharded Data Parallelism

• The model is too big to fit in a single GPU’s memory
• One GPU has enough memory to fit a fraction of the model
• Slice the model with horizontal lines and place one horizontal

slice in one GPU
• But, when a layer is being evaluated, each GPU should have

the copy of that layer
• The GPU has enough memory to fit one full layer on top of its

slice

2626

L11 L21 L31 L41

L12 L22 L32 L42

L13 L23 L33 L43

L14 L24 L34 L44

L1 L2 L3 L4

L11

L12

L13

L14

L21

L22

L23

L24

L31

L32

L33

L34

L41

L42

L43

L44

GPU1

GPU3

GPU2

GPU4

2727

L1
2

L2
2

L3
2

L4
2

L1
3

L2
3

L3
3

L4
3

L1
4

L2
4

L3
4

L4
4

GPU
0

GPU2GPU1 GPU3

L1
1

L2
1

L3
1

L4
1

L1
2

L2
2

L3
2

L4
2

L1
3

L2
3

L3
3

L4
3

L1
4

L2
4

L3
4

L4
4

GPU
0

GPU2GPU1 GPU3

L1
1

L2
1

L3
1

L4
1

L1
1

L1
2

L1
3

L1
4

L1
1

L1
2

L1
3

L1
4

L1
1

L1
2

L1
3

L1
4

L1
1

L1
2

L1
3

L1
4

AllGather Layer 1 Pieces

Forward Pass on Layer 1

Delete AllGathered Pieces of
Layer 1

28

Data vs. Sharded vs. Tensor vs. Pipeline Parallelism

Data Parallelism Sharded Data
Parallelism

Tensor Parallelism Pipeline
Parallelism

Dimension of
distribution

Full Model gets
replicated

Horizontal Slices +
one layer
replicated

Horizontal Slices Vertical slices

Model/Output Output Model Output Output
Communicati
on frequency

Least frequent Most frequent Most frequent Intermediate

Communicati
on volume

Large volume Small Small Small

Limitation High-volume
communication

Frequent low-
volume
communication

Frequent low-
volume
communication

Bubbles from
insufficient overlap

Advantage Necessary for
consuming large data

Allows large
model training

Allows large
model training

Can hide latency
with smaller
bubbles

29

Outline

• Distributed training of LLMs

• Preparing a training software stack for Frontier

• Finding best distributed training strategies

• Training up to a Trillion parameter model on Frontier (for a few
iterations)

• Training LLMs on OLCF resources

30

Preparing AI Software Stack for Frontier

• PyTorch – initially from source code and using ROCM compiler

• ROCM implementations of libraries like APEX, FlashAttention

• DeepSpeed without JIT compilation

• Utilize PyTorch’s cpp_extention and cuda_extension for
modifying cuda kernels to hip kernels

31

3D Parallelism using Megatron-DeepSpeed

• Megatron-DeepSpeed is a state-of-the-art training framework
developed by Microsoft and NVIDIA

• It supports 3D+ parallelism (Tensor, Pipeline, Data, Sharded
Data)

• We ported this Framework to Frontier through hipify and
combining with ROCM specific packages

32

Porting Megatron-DeepSpeed to Frontier

• https://github.com/sajal-vt/Megatron-DeepSpeed-
ORNL/tree/frontier-sd

https://github.com/sajal-vt/Megatron-DeepSpeed-ORNL/tree/frontier-sd
https://github.com/sajal-vt/Megatron-DeepSpeed-ORNL/tree/frontier-sd

33

Outline

• Distributed training of LLMs

• Preparing a training software stack for Frontier

• Finding best distributed training strategies

• Training a Trillion parameter model on Frontier (for a few
iterations)

• Training LLMs on OLCF resources

34

3D Parallelism

• A Combination of Tensor, Pipeline, and Data Parallelism

• Determine how many GPUs (world-size) you need to fit the
model

• Factorize world-size into TP (tensor parallel size) and PP (pipeline
parallel size)

3535

Hybrid (TP=4, PP=2)

Node 1 Node 2

L11 L21 L31 L41

L12 L22 L32 L42

L13 L23 L33 L43

L14 L24 L34 L44

L1 L2 L3 L4

L11

L12

L13

L14

L21

L22

L23

L24

L31

L32

L33

L34

L41

L42

L43

L44

GPU1

GPU3

GPU2

GPU4

GPU5

GPU7

GPU6

GPU8

36

Best practices with parallelism paradigms

• Tensor Parallelism
– Keep it within the node (TP < 8)

• Pipeline Parallelism
– Use large number of micro-batches (But that can increase the global

batch-size)

• Data Parallelism
– Can’t use too much data parallelism. A large global batch size will

make the model divergence.

37

Hyperparameter Search using DeepHyper

Search Object with
Bayesian Optimizer

Node queue

Job (nodes,
parameters)

params

Create and
Launch

Slurm job

params

38

Searching a 3D Parallelism Strategy using DeepHyper

39

Outline

• Distributed training of LLMs

• Preparing a training software stack for Frontier

• Finding best distributed training strategies

• Training a Trillion parameter model on Frontier (for a few
iterations)

• Training LLMs on OLCF resources

40

“Best” Strategy to Train 175B and 1T Models
Disclaimers:
1. We didn’t train any model till completion. We only trained for 10 iterations

and less than 2 hours.
2. We don’t have any completely trained models

41

Weak Scaling Performance

42

Strong Scaling Performance

43

Power Consumption

22B Model training

175B Model training

Seconds

Seconds

44

Energy Budget against Model Size (~P^2)

• We used rocm-smi to measure GPU level energy consumption

• Idle GPU power is approximately 90 Watts.

• Taking iteration time, consumed tokens per iterations, average active
power, and total number of MI250X GPU cards, we can estimate how
much energy each model training will require.

• For 22B, 175B, and 1T parameter model, the estimated energy
consumption is 284 Gigajoules, 17.65 Terajoules, and 662
Terajoules.

45

To Read About the Work…

• Arxiv Link: https://arxiv.org/abs/2312.12705

• Accepted at ISC HPC, 2024

https://arxiv.org/abs/2312.12705

46

Outline

• Distributed training of LLMs

• Preparing a training software stack for Frontier

• Finding best distributed training strategies

• Training up to a Trillion parameter model on Frontier (for a few
iterations)

• Training LLMs on OLCF resources

47

Getting OLCF Allocation

• https://www.olcf.ornl.gov/for-users/documents-forms/olcf-
directors-discretion-project-application/

https://www.olcf.ornl.gov/for-users/documents-forms/olcf-directors-discretion-project-application/
https://www.olcf.ornl.gov/for-users/documents-forms/olcf-directors-discretion-project-application/

48

OLCF Tutorials on Distributed Training of Deep Learning
Models
• Part I: Introduction and Data Parallel Training
– https://www.olcf.ornl.gov/calendar/ai-for-science-at-scale-intro/

• Part II: Model Parallelism
– https://www.olcf.ornl.gov/calendar/ai-training-series-ai-for-science-at-

scale-part-2/

https://www.olcf.ornl.gov/calendar/ai-for-science-at-scale-intro/
https://www.olcf.ornl.gov/calendar/ai-training-series-ai-for-science-at-scale-part-2/
https://www.olcf.ornl.gov/calendar/ai-training-series-ai-for-science-at-scale-part-2/

50

Hands On

• Training Large LLMs
– Train a 22B model on 2 nodes
– Train a 175B model on 16 nodes
– Train a 1T model on 128 nodes

• Finding the best training strategies using DeepHyper
– Find the best strategy for training a 22B model

51

Training Large LLMs

• git clone git@github.com:sajal-vt/Megatron-DeepSpeed-
ORNL.git

• git fetch

• git branch –v –a

• git switch FA2

• sbatch –reservation=ai launch_gpt22b_bf16.slurm

• sbatch --reservation=ai launch_gpt175b_bf16.slurm

• sbatch --reservation=ai launch_gpt1T_bf16.slurm

mailto:git@github.com:sajal-vt/Megatron-DeepSpeed-ORNL.git
mailto:git@github.com:sajal-vt/Megatron-DeepSpeed-ORNL.git

52

Finding the best training strategies using DeepHyper

• git clone git@github.com:sajal-vt/Megatron-DeepSpeed-
ORNL.git

• git fetch

• git branch –v –a

• git switch frontier-sd

• sbatch --reservation=ai launch_dh.frontier

mailto:git@github.com:sajal-vt/Megatron-DeepSpeed-ORNL.git
mailto:git@github.com:sajal-vt/Megatron-DeepSpeed-ORNL.git

