
1

ADIOS 2: A Framework for
Extreme Scale I/O and In Situ Processing

Norbert Podhorszki

Workflow Systems Group

Computer Science and Mathematics Division

Oak Ridge National Laboratory

2

Scott Klasky

Norbert Podhorszki

Qing Liu

Karsten Schwan

Jay Lofstead

Mark Ainsworth

C.S. Chang

Ana Gainaru

Hasan Abbasi

Rick Archibald

Chuck Atkins

Vicente Bolea

Phillipe Bonnet

Michael Bussmann

Jieyang Chen

Hank Childs

Jong Choi

Michael Churchill

Nathan Cummings

Shaun de Witt

Philip Davis

Ciprian Docan

Greg Eisenhauer

Stephane Ethier

Ian Foster

Dmitry Ganyushin

Kai Germaschewski

Berk Geveci

William Godoy

Qian Gong

Junmin Gu

Jon. Hollocombe

Kevin Huck

Axel Huebl

Toby James

Chen Jin

Mark Kim

Brad King

James Kress

S.H. Ku

Ralph Kube

Tahsin Kurc

Xin Liang

Zhihong Lin

Jeremy Logan

Thomas Maier

Kshitij Mehta

Ken Moreland

Todd Munson

Manish Parashar

Franz Pöschel

Dave Pugmire

Anand Rangarajan

Sanjay Ranka

Stefanie Reuter

Caitlin Ross

Nagiza Samatova

Ari Shoshani

Eric Suchyta

Fred Suter

Keichi Takahashi

William Tang

Roselyne Tchoua

Nick Thompson

Seiji Tsutsumi

Ozan Tugluk

Lipeng Wan

Ruonan Wang

Xinying Wang

Ben Whitney

Andreas Wicenec

Matthew Wolf

John Wu

Bing Xie

Fan Zhang

Fang Zheng

Collaborators: Apps, Workflow, Data Management, Reduction, Viz

3

• ADIOS tutorial: https://tinyurl.com/adios-sc2023

• ADIOS documentation: https://adios2.readthedocs.io/en/latest/index.html

• ADIOS source code: https://github.com/ornladios/ADIOS2

• Written in C++, wrappers for Fortran, Python, Matlab, C

• Contains command-line utilities (bpls, adios2_reorganize ..)

• Examples in C++, Fortran and Python

• Online help:

• ADIOS2 GitHub Issues:
https://github.com/ornladios/ADIOS2/issues

ADIOS Useful Information and Common tools

https://tinyurl.com/adios-sc2023
https://adios2.readthedocs.io/en/latest/index.html
https://github.com/ornladios/ADIOS2
https://github.com/ornladios/ADIOS2/issues

4

• Introduction

• ADIOS2 concepts (and python read API)

• Application storage I/O success stories

• GPU-Aware IO

• Data reduction with MGARD

• In situ processing

• Application in situ success stories

• Visualization schema and ParaView

• Building ADIOS2 on Frontier

Outline

5

Every application has a maximum frequency by which data (timesteps) would need to be
written, and maximum amount of data (variables) at every step, to calculate everything the
scientist wants with best possible accuracy.

Limitations:

• Writing cost of this much data

• Storage cost of this much data

• Inability to process all that much data

Copying strategies

• Write less frequently (decimation) – loss of accuracy

• Write less amount of data per timestep - missing data

• Incorporate extra calculations for known Quantities of Interest and write those instead
(inline in situ data reduction) – slower execution time, scalability issues

• Lossy compression – losing control of accuracy

Motivation

6

Our copying strategies

• Write fast, Read fast

• Lossy compression

• with user control of accuracy

• on GPU to do it fast

• In situ analysis

• Add extra calculations for known Quantities of Interest asynchronously on extra
nodes and write those instead (in transit in situ data reduction)

Motivation

7

Vision
• Create an easy-to-use, high performance I/O abstraction

to allow for on-line/off-line memory/file data subscription service

• Create a sustainable solution to work with multi-tier storage

and memory systems for self-describing data-streams

Details
• Declarative, publish/subscribe API separated from

the I/O strategy

• Multiple implementations (engines) provide

functionality and performance

• Rigorous testing ensures portability

• GPU-aware to reduce data movement

• https://github.com/ornladios/ADIOS2

Godoy, W. F., Klasky, S. ,et al. (2020). ADIOS-2: The adaptable input output system. a framework for high-performance data
management. SoftwareX, 12, 100561.

Host memory space Host Buffer Storage
ADIOS
Buffer

Device
Buffer

POSIX writeApplication ADIOS

GPU memory space

Host memory space Storage
ADIOS
Buffer

Device
Buffer

GPU memory space Variable
Pointer

Without GPU aware

With GPU aware

ADIOS: high-performance publisher/subscriber I/O framework:

https://github.com/ornladios/ADIOS2

8

ADIOS Concepts

9

double BOUT_VERSION scalar = 5.2

double Bxy {68, 20} = 1 / 1

string Bxy/cell_location attr = "CELL_CENTRE"

string Bxy/direction_y attr = "Standard"

string Bxy/direction_z attr = "Average"

string Bxy/source attr = "Coordinates"

double G1 {68, 20} = 0 / 0

double G2 {68, 20} = 0 / 0

double G3 {68, 20} = 0 / 0

double J {68, 20} = 1 / 1

int32_t MXG scalar = 2

int32_t iteration 143*scalar = -1 / 141

…

double n 143*{68, 20, 64} =

-0.185305 / 0.0961174

double dx {68, 20} = 0.2 / 0.2

double dy {68, 20} = 1 / 1

double dz {68, 20} = 0.2 / 0.2

double g11 {68, 20} = 1 / 1

int32_t nx scalar = 68

int32_t ny scalar = 16

int32_t nz scalar = 64

double phi 143*{68, 20, 64} =

-0.139167 / 0.0899946

string run_id scalar =

"cfc9cd3d-3ec1-4238-8fa0-f75f97a9c949"

double t 143*scalar = 0 / 142

Self-describing Scientific Data

BOUT++ hasegawa-wakatani-3d example, partial list of variables

143 output steps of a 3D array of double type and

68x20x64 dimensions, named n

global min = -3.76192 max = 4.05582

10

double n 143*{68, 20, 64} = -3.76192 / 4.05582

…

step 142:

block 0: [0:17, 0: 9, 0:63] = -2.06509 / 2.97009

block 1: [18:33, 0: 9, 0:63] = -0.337289 / 1.85048

block 2: [34:49, 0: 9, 0:63] = -1.71457 / 0.40956

block 3: [50:67, 0: 9, 0:63] = -3.25034 / 2.24025

block 4: [0:17, 10:19, 0:63] = -2.06509 / 2.97009

block 5: [18:33, 10:19, 0:63] = -0.405136 / 1.66294

block 6: [34:49, 10:19, 0:63] = -1.70201 / 0.395594

block 7: [50:67, 10:19, 0:63] = -3.25034 / 2.24025

Self-describing Scientific Data

BOUT++ hasegawa-wakatani-3d example, partial list of variables

Data is stored in 8 blocks, which usually means
8 MPI tasks, each writing a piece.
Obviously, a toy example ;-)

11

• N-dimensional array

• Shape

• Has a type (int32, double, etc.)

• Type

• Blocks of data are written into the array

• Start (offset)

• Count (size of block)

Global Array: data produced by multiple processes

gndx

(offx,offy)

ndx

gn
d

y

n
d

y

(0,0)

Shape = {gndx, gndy}

Count = {ndx, ndy}

Start = {offx, offy}

12

• These are valid global arrays

• One process can contribute
more than one block

• Some process may not write
anything at all

• Holes can be left in the global
array

• Overlapping of blocks is
allowed

Global Array: data produced by multiple processes

Read returns “nothing” for those cells.

13

• Internal decomposition of global
array can change in next step

• Global size of array can change
in next step

• Only can read step-by-step
though

• Not multiple steps in a single
read request

Global Array: Shape and decomposition can change

• JoinedArray is convenient to output tables in parallel
without calculating offsets in global space

• e.g. particles, atom tables

• See docs, Basics/Internal Components/Shapes
https://adios2.readthedocs.io/en/latest/components/components.html#shapes

https://adios2.readthedocs.io/en/latest/components/components.html#shapes

14

• Step

• Producer outputs a set of variables and attributes at once

• This is an ADIOS Step

• Producer iterates over computation and output steps

• Producer outputs multiple steps of data

• e.g. into multiple, separate files, or into a single file

• e.g. steps are transferred over network

• Consumer processes step(s) of data

• e.g. one by one, as they arrive

• e.g. all at once, reading everything from a file

• post-processing only, not able to process in situ this way

ADIOS basic concepts

Step is a Transaction between

producer and its consumers

15

• Step is not necessarily tied to the application timesteps

• a Step can be constructed over time

• Entire content of a Step is either completely written or not at all

• A new Step can be very different from the previous step

• may contain a completely different set of variables

• array sizes can change

• array decomposition can change

• Consumer is guaranteed to have access to entire content of Step as long as it wants it

• Entire content of a Step must fit into the producer’s memory as a copy

• well, there are ways around this for storage I/O

ADIOS Steps: Rules and constraints

16

ADIOS Python API

examples/
hello/helloWorld/hello-world.py
examples/hello/bpReader/bpReaderHeatMap2D.py

examples/hello/sstWriter/sstWriter.py
examples/hello/sstReader/sstReader.py

simulations/gray-scott-struct/plot/gsplot.py

17

Sequential python script:

import numpy

import adios2

T = numpy.array(...)

Python common

Parallel python with MPI:

from mpi4py import MPI

import numpy

import adios2

T = numpy.array(...)

18

adios2.Stream(path, mode [, comm])

adios2.FileReader(path [, comm])

Examples:

fr = adios2.Stream("data.bp", "r")

fr = adios2.FileReader("data.bp", comm)

ad = adios2.Adios("adios2.xml", comm)

io = ad.declare_io("myIO")

fr = adios2.Stream(io, "data.bp", "r")

fr.close()

Python Read API: Open/close a file/stream

Using external XML
configuration

mode: "r", "w", "rra"
mode here is "rra"

19

vars_info = fr.available_variables()

for name, info in vars_info.items():

print("variable_name: " + name)

for key, value in info.items():

print("\t" + key + ": " + value)

print("\n")

Python Read API: List variables

variable_name: T
Type: double
AvailableStepsCount: 2
Max: 200
SingleValue: false
Min: 0
Shape: 10, 16

variable_name: dT
Type: double
AvailableStepsCount: 2
Max: 1.83797
SingleValue: false
Min: -1.78584
Shape: 10, 16

20

fr.read(name[, start, count, blockid, step_selection])

Examples:

data = fr.read("T")

>>> data.shape

(10, 16)

data = fr.read("T", [0,0], [10,16])

>>> data.shape

(10, 16)

data = fr.read("T", [0,0], [10,16], step_selection=[0, 2])

>>> data.shape

(2, 10, 16)

Python Read API: Read data from file -- Random access

variable_name: T
Type: double
AvailableStepsCount: 2
Max: 200
SingleValue: false
Min: 0
Shape: 10, 16

Only for "rra" mode (FileReader)

21

fr.read(path[, start, count])

Examples:

with adios2.Stream("values.bp", "r") as fr:

for _ in fr.steps():

data = fr.read("T")

print("Shape: ", data.shape)

...

Shape: (10, 16)

Shape: (10, 16)

Python Read API: Read data from file/stream

variable_name: T
Type: double
AvailableStepsCount: 2
Max: 200
SingleValue: false
Min: 0
Shape: 10, 16

22

Scientific Achievement
• Most detailed 3-D model of Earth’s interior showing the entire globe

from the surface to the core–mantle boundary, a depth of 1,800 miles

Significance and Impact

• Updated (transversely isotropic) global seismic model GLAD-M25
where no approximations were used to simulate how seismic waves
travel through the Earth. The data sizes required for processing are
challenging even for leadership computer

• 7.5 PB of data is produced in a single workflow step

• Which is fully processed later in another step

Improvement by appending steps
• 3200 nodes ensemble run, 19200 GPUs
• 50 tasks at once
• 5.2 TB per task in 133 steps
• 260 TB total per 50 tasks
• 7.5 PB per 1500 tasks (total run)

Seismic Tomography Workflow (PBs of data/run)

Lei, Wenjie, et al. "Global adjoint tomography—model GLAD-M25." Geophysical Journal International 223.1 (2020): 1-21.

Map views at 250 km depth of vertically polarized
shear wave speed perturbations in GLAD-M15 (2017)
and GLAD-M25 (2020) in the Indian Ocean. New
features have emerged in GLAD-M25, such as the
Reunion, Marion, Kerguelen, Maldives, Seychelles,
Cocos and Crozet hotspots.

50 tasks, 133 steps, 3200 nodes Time

No I/O 94s

BP3, one file per step 235s

BP4 one dataset per job
133x reduction in # of files

156s

PI: Jeroen Tromp, Princeton

23

XGC, WarpX, S3D on Frontier
Tier Capacity

(PB)
Read BW

(TB/s)
Write BW

(TB/s)

Node-Local 33 75 38

Metadata 10 0.8 .5

Performance 11.5 10 10

Capacity 679 5.5 4.6

ADIOS Performance on Frontier

WarpX 70GB – 360TB
XGC-ITER 2.1 – 69 TB

24

• HydraGNN is a graph convolutional neural network developed at ORNL

• Part of AI LDRD for predicting molecular properties

• Uses ADIOS for efficient storage and retrieval of a large volume of training data

• Recent run used over 154 million molecules stored in 5 ADIOS datasets (5+ Terabytes total)

• More than 8 Terabytes/sec obtained during the parallel read step

Managing large data and I/O for HydraGNN

Publication in progress. Slide credit: Kshitij Mehta, Jong Y Choi, Max Lupo Pasini

Parallel reading Aggregate bandwidth

https://github.com/ORNL/HydraGNN

25

• WarpX is a PIC code with Adaptive
Mesh Refinement using AMReX

WarpX code

Wan, L., Huebl, A., Gu, J., Poeschel, F., Gainaru, A., Wang, R., ... & Klasky, S. (2021). Improving I/O performance for exascale
applications through online data layout reorganization. IEEE Transactions on Parallel and Distributed Systems, 33(4), 878-890.

WarpX write performance on Summit: weak scaling

26

• User friendly On/Off option

• No need to modify the user code

• Only data writing is async, metadata gathering and writing is still sync

• Don’t have too much experience with this yet

Asynchronous write to storage on Summit

27

• On Frontier we don't see improvement over synchronous I/O

Async IO with WarpX on Perlmutter

On Perlmutter with the default Lustre setting. The rank
based aggregations achived 2 TB/sec with 1k nodes.
Turning on Asynchronous I/O mode improves this to 7
TB/sec. Default setup achieved 1 TB/sec.

28

• Allow applications to give ADIOS GPU buffers

GPU-aware I/O

• Decrease number of
copies of the data

• Transparent performance
portability to different
GPU architectures

• Allow ADIOS to use GPU
direct to storage,
compression on GPU, or
other optimizations

29

• Build ADIOS2 with CUDA support –D ADIOS2_USE_CUDA=ON

• The user provides a memory space associated with ADIOS2 variables

• If not set ADIOS2 will detect automatically the memory space

• ADIOS2 saves pointers to data and copies data to internal CPU buffers (in deferred
or sync mode)

• Computes metadata for each Get/Put using CUDA kernels

API for GPU-aware I/O

adios2::Engine bpWriter;
...
auto data = io.DefineVariable<float>("data", shape, start, count);

bpWriter.Put(data, cpuData);

data.SetMemorySpace(adios2::MemorySpace::GPU);
bpWriter.Put(data, gpuData);

Overhead for detecting where buffers are allocated

CPU STD vector CUDA CPU buffer CUDA GPU buffer

5-6 μs 1-2 μs 1-2 μs

Results on I/O kernels and OpenPMD

30

• No changes required in the source code

• Operator attached to a variable

• Memory space attached to a variable

• Internal logic

• Metadata is computed using the GPU backend

• The operator is applied on the GPU buffer and the
compressed data is copied directly in the ADIOS buffer

Compression with GPU-aware I/O

ADIOS variable

Put

Buffer

Memory Space

Compute metadata

Apply operatorGPU backend

auto var = io.DefineVariable<double>(”test", shape, start, count);

// define an operator
adios2::Operator varOp =

adios.DefineOperator("mgardCompressor", adios2::ops::LossyMGARD);

//attach operator to variable
var.AddOperation(varOp, parameters);

var.SetMemorySpace(adios2::MemorySpace::GPU); // optional
bpWriter.Put(var, gpuSimData);

Operator

ADIOS2 buffer

Operators that support GPU buffers:
• MGARD, ZFP
• The operators need to be built with

GPU enable

31

XGC data compression on GPU

Cost of XGC f data compression in-place on GPU using MGARD. The GPU-Aware ADIOS is used for
moving data between GPU and host memory for I/O purposes, allowing applications to seamlessly
compress/decompress data directly on the GPU as part of I/O. This is a strong scaling test of a fixed

amount of f data where MGARD achieves 13x reduction in file size. Reduction and writing is faster than
writing the raw data, however, it still incurs some extra time to read and to reconstruct the data.

Norbert Podhorszki, Scott Klasky, Ana Gainaru, Qian Gong, Jieyang Chen, Sanjay Ranka. The Benefits of Data Reduction for Fusion Datasets.
Poster at ICDDPS-4 conference, Apr 2023, Okinawa, Japan

32

MGARD impact of Temporal Frequency on Climate Feature Tracking

• Compression on high-temporal resolution space helps to resolve temporal features

• We ran E3SM and output the data every hour (compared to every 6 hours) and show that
we can reduce the size by 23X while using MGARD → instead of output every 6 hours we
can output every hour and have more accurate cyclone and atmospheric river
prediction (using the TEMPEST EXTREME code), while reducing the output by 4X

¼ the storage footprint than 6-hourly data, 19.5X better prediction for AR, 1.8X for TC tracks
Gong, Q., et al. . Spatiotemporally adaptive compression for scientific dataset with feature preservation – a case study on simulation data with extreme climate
events analysis, doi:10.1109/e-Science58273.2023.10254796

33

Optimising the Processing and Storage of Radio Astronomy Data

Scientific Achievement
Square Kilometer Array (SKA), the world’s largest radio telescope, is anticipated to
collect 710 PB data per year, placing significant strains on I/O and storage. Utilizing
data from a precursor telescope, we investigate lossy compression methods using
the MGARD and ADIOS2 libraries. We demonstrate the improvements in I/O and
storage and quantify the impacts on science quality using lossy compressed data.

Significance and Impact
• The advancements in radio telescope present great opportunities for scientific

discovery also introduce challenges in data management and processing.
• Our study demonstrates that error-controlled lossy compression can

significantly reduce I/O and storage costs while ensuring data accuracy.
• We quantified the impact of lossy compression and found that the SKA data

can be compressed by 15x without impacting the integrity of scientific results.

Technical Approach
• The raw SKA data was calibrated into a visibility grid, a PSF grid, and a PCF grid,

then processed by the cdeconvoler application to generate final images.
• We compressed the calibrated data using various error bounds and

investigated their impacts on the galaxy source after imaging process. We also
evaluated the runtime acceleration and storage reduction achieved through
compression.

On the left are images produced by cdeconvoler using the grid data compressed

by MGARD at different error bounds. On the right are absolute residuals between

the images produced using lossy compressed and uncompressed equivalent.

Errors in data compressed by a relative error bound <1e-4 or an absolute error

bound <1e-3 are not detectible – less than 1σ of the source spectral.

Alexander Williamson, et al., “Optimising the Processing and Storage of Radio Astronomy Data,”
Cray User Group Conference (CUG 2024)

34

Online and Scalable Data Compression Pipeline With Guarantees on Quantities of Interest
Scientific Achievement
This study presents a high-performance pipeline capable of compressing data
in concurrent with simulation, at merely 0.5% of additional computational
cost, while ensuring the compression-incurred error on quantities of interest
(QoIs) to be less than 10-8 at a compression ratio of 150X.

Significance and Impact
• The imbalanced growth among computing, networking, and storage

capabilities necessitate the creation of compression techniques that can
greatly reduce the data while accurately preserving derived QoIs.

• This study created a fast and scalable pipeline that allows concurrent
execution of data compression in parallel with simulation and I/O through
code coupling and staging. The approach allows compression, including
the writing of required compression data, for the previous time step to be
completed while the simulation proceeds with the current time step.

• Using XGC -- a fusion code producing hundreds of terabytes per simulation
cycle -- as an example, this study demonstrates a highly parallel, scalable,
and practical solution for applying on-the-fly data compression while
guarantees the accuracy of QoIs that are critical to fusion

Technical Approach
• The study integrates a state-of-the-art compressor, MGARD, with post-

processing for great data compression and error controls capabilities.
• By using staging nodes, the proposed method pipelines compression and

simulation across timestep data which reduces computational overhead.

Data compression pipeline

Achieved errors in four XGC QoIs across 165 timesteps

errors in T// and T⟂ are overlapping

Tania Banerjee, et al., “Online and Scalable Data Compression Pipeline with Guarantees on Quantities of Interest,”
IEEE 19th International Conference on e-Science (2023). DOI: 10.1109/e-Science58273.2023.10254934

35

Transfer mechanisms

• File based (BP4, BP5)

• Network based on the
same resource (SST, SSC)

• RDMA (libfabric, UCX)

• MPI (one sided, two
sided)

• TCP/ RUDP

• Memory references

• WAN data transfer
(DataMan,SST)

• Streams – TCP, RUDP,
RoCE

Staging Options

Gainaru, A., Klasky, S., et al., 2022, Understanding the Impact of Data Staging for Coupled Scientific Workflows,
IEEE transactions on parallel and distributed systems. 2022.

Placement options

• Same core (inline code)

• Different cores/same node

• Different nodes

• Different resource (LAN)

• Different resource (WAN)

• Hybrid (mixture of options)

Scheduling options

• Fully synchronous

• Fully asynchronous

• Hybrid

Refactoring options

• Prioritize which data gets
moved first

Storage options

• ADIOS-BP5

• HDF5

36

• Tracer particle analysis enables understanding of the
transport characteristics spanning the pedestal and
scrape-off layer

• It is costly to perform and is communication-heavy

• Asynchronously stage data to the tracer particle analysis
running on additional nodes

• Coupled data size: f0(95 GB) + E_rho/pot_rho(1.4GB)

• Reduced 36% of the XGC iteration time by
using asynchronous services (only 0.4% time-overhead for
coupling data)

Staging use case: off-load non-scaling code part

Full-f coupling performance
on Summit with ADIOS using
4/1024 extra nodes

Adios Coupling
Write: 0.19

Adios Coupling
Read: 0.16

0

10

20

30

40

50

60

70

80

90

XGC+Analysis XGC Analysis

No coupling Coupling with ADIOS

Ti
m

e
(s

ec
)

XGC full-f tracer analysis coupling

MAIN DIAG ADIOS DIAG ADIOS

Full-f particle analysis coupling

Choi, J. Y., Chang, C. S., Dominski, J., Klasky, Churchill, M., S., Merlo, G., Suchyta,
E., ... & Wood, C. “Coupling exascale multiphysics applications: Methods and lessons
learned”. IEEE e-Science, 2018.

37

• We examine a complex workflow using XGC on Summit, with three in situ
analysis for new scientific discovery

• We execute XGC along with three analysis routines (Poincaré surface plot,
Head Load calculation, Diffusion Calculation)

• The overhead was 0.1% 1/1024 nodes

Hybrid Analysis of Fusion Data for Online Understanding of
Complex Science on Extreme Scale Computers

Suchyta, E., Klasky, S. , et al., Hybrid Analysis of Fusion Data for online understanding of complex science on extreme scale
computers, Cluster 2023.

38

• Different physics solved in different physical regions of detector
(spatial coupling)

• Core simulation: GENE
Edge simulation: XGC
Separate teams, separate codes

• Recently demonstrated first-ever successful kinetic coupling of this kind

• Data Generated by one coupled simulation is predicted to be
> 10 PB/day on Summit

High-Fidelity Whole Device Modeling of Fusion Plasmas PI: Amitava Bhattacharjee, PPPL,
C. S. Chang, PPPL

Core-edge
coupling

Dominski, J., et al. "Spatial coupling of gyrokinetic simulations, a generalized scheme based on first-principles." Physics of Plasmas 28.2 (2021): 022301.
Merlo, G., et al. "First coupled GENE–XGC microturbulence simulations." Physics of Plasmas 28.1 (2021): 012303.
Cheng, Junyi, et al. "Spatial core-edge coupling of the particle-in-cell gyrokinetic codes GEM and XGC." Physics of Plasmas 27.12 (2020): 122510.

From FY21 WDMApp Review

39

DeepDriveMD: enhancing the scalability for streaming AI runs

A. Brace et al., "Coupling streaming AI and HPC ensembles to achieve 100–1000× faster biomolecular simulations," 2022 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), Lyon, France, 2022, pp. 806-816, doi:
10.1109/IPDPS53621.2022.00083.

• DeepDriveMD-S: streaming implementation with ADIOS-BP

• Continual learning loop enabled by ADIOS constructs

• Streaming application of ML/AI

• Streaming runs have better resource utilization for protein
folding simulations than static file system-based runs

• At least 2 orders of magnitude (100x) acceleration in sampling
conformational states related to protein folding

• Faster time-to-solution enabled by streaming runs

Select N

simulation

restart points

Simulation N

Simulation 1

Simulation 2

Aggregator 1

Aggregator 2

Aggregator M

Model 1

Model 2

Agent

Model K

Model weightsPositions/Velocities

ADIOS BP

[1... M]

MD Aggregators

ML Training

ADIOS Stream

File System I/O

1 2

3
4

5

Continual

Learning Loop

Elapsed time (hours)

DeepDriveMD-S

DeepDriveMD-F

40

• We originally helped PIConGPU to achieve I/O performance on the OLCF Titan system

• Allowed their code to get >10X I/O performance improvement

• Next, we utilized staging to increase the I/O bandwidth on Summit

• Now we are working on more in situ techniques for AI, Digital Twins on Frontier

Accelerator Physics: PIConGPU

!

Titan Summit Frontier
5.6 GB / node data output every step

41

• Fides is a visualization schema

• Fides maps ADIOS data arrays to VTK-M
datasets, enabling viz using shared and
distributed-memory parallel algorithms

• Catalyst provides in situ data analysis
and visualization capabilities for
ParaView

• Interactive visualization in a GUI – post
processing

• Batch visualization – post processing on
compute nodes

• In situ (inline) interactive visualization in a
GUI

• In situ (inline) batch visualization

• In situ (in transit) batch visualization

Visualization services with Paraview/Catalyst/FIDES/VTK-M/ADIOS

Pugmire, D. , et al. “Fides: a general purpose data model library for streaming data.” ISC 202, Springer International Publishing, 2021.

2K ranks

Simulation Vis service

Post hoc In situ (inline)

Simulation Vis service

In transit

Vis serviceSimulation

SST, SSC staging and BP5
through file system

ParaViewADIOSInSituEngineBP5, HDF5

Using the same application that outputs data using ADIOS

https://fides.readthedocs.io

https://fides.readthedocs.io/

45

Building applications with ADIOS

46

https://adios2.readthedocs.io/en/latest/setting_up/setting_up.html

• Frontier environment

• Get ADIOS source

• Build and install

Build ADIOS2 on Frontier

$ wget https://github.com/ornladios/ADIOS2/archive/refs/tags/v2.10.1.tar.gz
$ tar xf v2.10.1.tar.gz
$ cd ADIOS2-2.10.1
$ mkdir build

$ module load PrgEnv-XXXX
$ module load cray-python # or your favorite Python environment
$ module load cmake

$ cmake -DCMAKE_INSTALL_PREFIX=<adios_install_path> -S . -B build
$ cmake --build build -j 8
$ cmake --install build

Load more modules or use
-DCMAKE_PREFIX_PATH="<path1>;<path2>;…" to point to extra libraries

Remember <adios_install_path>

https://adios2.readthedocs.io/en/latest/setting_up/setting_up.html

47

• Check what is supported in ADIOS

Frontier

$ <adios_install_path>/bin/bpls -Vv
blps: ADIOS file introspection utility

Build configuration:
ADIOS version: 2.10.1
C++ Compiler: GNU 12.2.0 Clang 17.0.3 (CrayPrgEnv) Clang 17.0.0 (CrayPrgEnv)
Target OS: Linux-5.14.21-150400.24.46_12.0.83-cray_shasta_c
Target Arch: x86_64
Available engines = 11: BP3, BP4, BP5, HDF5, SST, SSC, Inline, MHS,
ParaViewADIOSInSituEngine, Null, Skeleton
Available operators = 4: BZip2, Blosc, ZFP, PNG
Available features = 18: DATAMAN, HDF5, HDF5_VOL, MHS, SST, MPI, PYTHON, BLOSC2, BZIP2,
PNG, ZFP, O_DIRECT, SODIUM, CATALYST, SYSVSHMEM, ZEROMQ, PROFILING, ENDIAN_REVERSE

48

See ADIOS2 source: scripts/build_scripts/build-adios2-kokkos-crusher.sh for guidance

Frontier environment

• Get Kokkos source

• Build and install

Build ADIOS2 on Frontier with GPU support using Kokkos

$ wget https://github.com/kokkos/kokkos/archive/refs/tags/4.3.01.tar.gz
$ tar xf 4.3.01.tar.gz
$ cd kokkos-4.3.01
$ mkdir build

$ module load rocm
$ module load craype-accel-amd-gfx90a

$ cmake -DCMAKE_BUILD_TYPE=Release -DCMAKE_CXX_COMPILER=hipcc -DKokkos_ENABLE_SERIAL=ON -
DKokkos_ARCH_ZEN3=ON -DKokkos_ENABLE_HIP=ON -DKokkos_ARCH_VEGA90A=ON -DCMAKE_CXX_STANDARD=17 -
DCMAKE_CXX_EXTENSIONS=OFF -DCMAKE_POSITION_INDEPENDENT_CODE=TRUE -DBUILD_SHARED_LIBS=ON -
DCMAKE_INSTALL_PREFIX=<kokkos_install_path> -S . -B build
$ cmake --build build -j 8
$ cmake --install build

Add
-DCMAKE_PREFIX_PATH="<kokkos_install_path>" -DADIOS2_USE_Kokkos=ON

to the ADIOS configuration

49

• CMake

• Use MPI_C and ADIOS2 packages

• Configure application by adding ADIOS installation to search path

• Available ADIOS2 targets: cxx11 c, fortran, cxx11_mpi, c_mpi, fortran_mpi

Compile ADIOS2 codes

CMakeLists.txt:
project(gray-scott C CXX)
find_package(MPI REQUIRED)
find_package(ADIOS2 REQUIRED)
add_definitions(-DOMPI_SKIP_MPICXX -DMPICH_SKIP_MPICXX)
...
target_link_libraries(gray-scott adios2::cxx11_mpi MPI::MPI_C)

cmake -DCMAKE_PREFIX_PATH=<adios_install_path> -S <source_dir> -B <build_dir>

50

• Makefile

• Add ADIOS2 library paths to LD_LIBRARY_PATH

• Use adios2_config tool to get compile and link options

• Codes that write and read

Compile ADIOS2 codes

ADIOS2_DIR = <adios_install_path>
ADIOS2_FINC=`${ADIOS2_DIR}/bin/adios2-config --fortran-flags`
ADIOS2_FLIB=`${ADIOS2_DIR}/bin/adios2-config --fortran-libs`

heatSimulation: heat_vars.F90 heat_transfer.F90 io_adios2.F90
${FC} -g -c -o heat_vars.o heat_vars.F90
${FC} -g -c -o heatSimulation.o heatSimulation.F90
${FC} -g -c -o io_adios2.o ${ADIOS2_FINC} io_adios2.F90
${FC} -g -o heatSimulation heatSimulation heat_vars.o io_adios2.o ${ADIOS2_FLIB}

51

ADIOS brings a programming interface and a framework of many solutions to the generic
problem of producing and consuming data

• The interface frees scientists from the limited scope of file-based data processing

• Being fully applicable to file-based data processing

• Scalable IO: number of processes, variables and steps; and amount of data

• Offering a bridge from their scientific workflows that work now to the future, where they
will extend their workflows with

• More efficient data processing

• Interactive visualization

• Code coupling

• On-the-fly AI training

• Combining experimental data with simulation data

Summary

	Begin
	Slide 1: ADIOS 2: A Framework for Extreme Scale I/O and In Situ Processing
	Slide 2: Collaborators: Apps, Workflow, Data Management, Reduction, Viz
	Slide 3: ADIOS Useful Information and Common tools
	Slide 4: Outline

	Intro - Vision
	Slide 5: Motivation
	Slide 6: Motivation
	Slide 7: ADIOS: high-performance publisher/subscriber I/O framework:

	ADIOS Concept+API
	Slide 8: ADIOS Concepts
	Slide 9: Self-describing Scientific Data
	Slide 10: Self-describing Scientific Data
	Slide 11: Global Array: data produced by multiple processes
	Slide 12: Global Array: data produced by multiple processes
	Slide 13: Global Array: Shape and decomposition can change
	Slide 14: ADIOS basic concepts
	Slide 15: ADIOS Steps: Rules and constraints
	Slide 16: ADIOS Python API
	Slide 17: Python common
	Slide 18: Python Read API: Open/close a file/stream
	Slide 19: Python Read API: List variables
	Slide 20: Python Read API: Read data from file -- Random access
	Slide 21: Python Read API: Read data from file/stream

	Application Storage I/O
	Slide 22: Seismic Tomography Workflow (PBs of data/run)
	Slide 23: XGC, WarpX, S3D on Frontier
	Slide 24: Managing large data and I/O for HydraGNN
	Slide 25: WarpX code

	Asynchronous IO
	Slide 26: Asynchronous write to storage on Summit
	Slide 27: Async IO with WarpX on Perlmutter

	GPU
	Slide 28: GPU-aware I/O
	Slide 29: API for GPU-aware I/O
	Slide 30: Compression with GPU-aware I/O
	Slide 31: XGC data compression on GPU

	Data Reduction
	Slide 32: MGARD impact of Temporal Frequency on Climate Feature Tracking
	Slide 33: Optimising the Processing and Storage of Radio Astronomy Data
	Slide 34: Online and Scalable Data Compression Pipeline With Guarantees on Quantities of Interest

	Application Staging I/O
	Slide 35: Staging Options
	Slide 36: Staging use case: off-load non-scaling code part
	Slide 37: Hybrid Analysis of Fusion Data for Online Understanding of Complex Science on Extreme Scale Computers
	Slide 38: High-Fidelity Whole Device Modeling of Fusion Plasmas
	Slide 39: DeepDriveMD: enhancing the scalability for streaming AI runs
	Slide 40: Accelerator Physics: PIConGPU

	Visualization
	Slide 41: Visualization services with Paraview/Catalyst/FIDES/VTK-M/ADIOS

	Building applications
	Slide 45: Building applications with ADIOS
	Slide 46: Build ADIOS2 on Frontier
	Slide 47: Frontier
	Slide 48: Build ADIOS2 on Frontier with GPU support using Kokkos
	Slide 49: Compile ADIOS2 codes
	Slide 50: Compile ADIOS2 codes

	Summary
	Slide 51: Summary

