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• ADIOS tutorial: https://tinyurl.com/adios-sc2023

• ADIOS documentation: https://adios2.readthedocs.io/en/latest/index.html

• ADIOS source code: https://github.com/ornladios/ADIOS2

• Written in C++, wrappers for Fortran, Python, Matlab, C

• Contains command-line utilities (bpls, adios2_reorganize ..)

• Examples in C++, Fortran and Python

• Online help: 

• ADIOS2 GitHub Issues:
https://github.com/ornladios/ADIOS2/issues

ADIOS Useful Information and Common tools

https://tinyurl.com/adios-sc2023
https://adios2.readthedocs.io/en/latest/index.html
https://github.com/ornladios/ADIOS2
https://github.com/ornladios/ADIOS2/issues
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• Introduction

• ADIOS2 concepts (and python read API)

• Application storage I/O success stories

• GPU-Aware IO

• Data reduction with MGARD

• In situ processing

• Application in situ success stories

• Visualization schema and ParaView

• Building ADIOS2 on Frontier

Outline
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Every application has a maximum frequency by which data (timesteps) would need to be 
written, and maximum amount of data (variables) at every step, to calculate everything the 
scientist wants with best possible accuracy. 

Limitations:

• Writing cost of this much data

• Storage cost of this much data

• Inability to process all that much data

Copying strategies

• Write less frequently (decimation) – loss of accuracy

• Write less amount of data per timestep - missing data

• Incorporate extra calculations for known Quantities of Interest and write those instead 
(inline in situ data reduction) – slower execution time, scalability issues

• Lossy compression – losing control of accuracy

Motivation
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Our copying strategies

• Write fast, Read fast

• Lossy compression 

• with user control of accuracy

• on GPU to do it fast

• In situ analysis

• Add extra calculations for known Quantities of Interest asynchronously on extra 
nodes and write those instead (in transit in situ data reduction)

Motivation
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Vision
• Create an easy-to-use, high performance I/O abstraction

to allow for on-line/off-line memory/file data subscription service

• Create a sustainable solution to work with multi-tier storage

and memory systems for self-describing data-streams

Details
• Declarative, publish/subscribe API separated from

the I/O strategy

• Multiple implementations (engines) provide

functionality and performance 

• Rigorous testing ensures portability

• GPU-aware to reduce data movement

• https://github.com/ornladios/ADIOS2

Godoy, W. F., Klasky, S. ,et al. (2020). ADIOS-2: The adaptable input output system. a framework for high-performance data 
management. SoftwareX, 12, 100561. 

Host memory space Host Buffer Storage
ADIOS 
Buffer

Device 
Buffer

POSIX writeApplication ADIOS

GPU memory space

Host memory space Storage
ADIOS 
Buffer

Device 
Buffer

GPU memory space Variable
Pointer

Without GPU aware

With       GPU aware

ADIOS: high-performance publisher/subscriber I/O framework:

https://github.com/ornladios/ADIOS2
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ADIOS Concepts



9

double   BOUT_VERSION scalar = 5.2

double   Bxy {68, 20} = 1 / 1

string    Bxy/cell_location attr = "CELL_CENTRE"

string    Bxy/direction_y attr = "Standard"

string    Bxy/direction_z attr = "Average"

string    Bxy/source        attr = "Coordinates"

double   G1           {68, 20} = 0 / 0

double   G2           {68, 20} = 0 / 0

double   G3           {68, 20} = 0 / 0

double   J            {68, 20} = 1 / 1

int32_t  MXG          scalar = 2

int32_t  iteration    143*scalar = -1 / 141

…

double   n            143*{68, 20, 64} = 

-0.185305 / 0.0961174

double   dx           {68, 20} = 0.2 / 0.2

double   dy {68, 20} = 1 / 1

double   dz {68, 20} = 0.2 / 0.2

double   g11          {68, 20} = 1 / 1

int32_t  nx scalar = 68

int32_t  ny scalar = 16

int32_t  nz scalar = 64

double   phi          143*{68, 20, 64} = 

-0.139167 / 0.0899946

string   run_id scalar = 

"cfc9cd3d-3ec1-4238-8fa0-f75f97a9c949"

double   t            143*scalar = 0 / 142

Self-describing Scientific Data

BOUT++ hasegawa-wakatani-3d example, partial list of variables

143 output steps of a 3D array of double type and 

68x20x64 dimensions, named n

global min = -3.76192 max = 4.05582
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double   n                    143*{68, 20, 64} = -3.76192 / 4.05582

…

step 142:

block 0: [ 0:17,  0: 9,  0:63] = -2.06509 / 2.97009

block 1: [18:33,  0: 9,  0:63] = -0.337289 / 1.85048

block 2: [34:49,  0: 9,  0:63] = -1.71457 / 0.40956

block 3: [50:67,  0: 9,  0:63] = -3.25034 / 2.24025

block 4: [ 0:17, 10:19,  0:63] = -2.06509 / 2.97009

block 5: [18:33, 10:19,  0:63] = -0.405136 / 1.66294

block 6: [34:49, 10:19,  0:63] = -1.70201 / 0.395594

block 7: [50:67, 10:19,  0:63] = -3.25034 / 2.24025

Self-describing Scientific Data

BOUT++ hasegawa-wakatani-3d example, partial list of variables

Data is stored in 8 blocks, which usually means
8 MPI tasks, each writing a piece.
Obviously, a toy example ;-)
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• N-dimensional array

• Shape

• Has a type (int32, double, etc.)

• Type

• Blocks of data are written into the array

• Start (offset)

• Count (size of block)

Global Array: data produced by multiple processes

gndx

(offx,offy)

ndx

gn
d

y

n
d

y

(0,0)

Shape = {gndx, gndy}

Count = {ndx, ndy}

Start = {offx, offy}
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• These are valid global arrays

• One process can contribute 
more than one block

• Some process may not write 
anything at all

• Holes can be left in the global 
array

• Overlapping of blocks is 
allowed

Global Array: data produced by multiple processes

Read returns “nothing” for those cells.
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• Internal decomposition of global 
array can change in next step

• Global size of array can change 
in next step

• Only can read step-by-step 
though 

• Not multiple steps in a single 
read request

Global Array: Shape and decomposition can change

• JoinedArray is convenient to output tables in parallel 
without calculating offsets in global space

• e.g. particles, atom tables

• See docs, Basics/Internal Components/Shapes
https://adios2.readthedocs.io/en/latest/components/components.html#shapes

https://adios2.readthedocs.io/en/latest/components/components.html#shapes
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• Step

• Producer outputs a set of variables and attributes at once 

• This is an ADIOS Step

• Producer iterates over computation and output steps 

• Producer outputs multiple steps of data 

• e.g. into multiple, separate files, or into a single file

• e.g. steps are transferred over network 

• Consumer processes step(s) of data

• e.g. one by one, as they arrive

• e.g. all at once, reading everything from a file

• post-processing only, not able to process in situ this way

ADIOS basic concepts

Step is a Transaction between 

producer and its consumers
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• Step is not necessarily tied to the application timesteps

• a Step can be constructed over time 

• Entire content of a Step is either completely written or not at all

• A new Step can be very different from the previous step

• may contain a completely different set of variables

• array sizes can change

• array decomposition can change

• Consumer is guaranteed to have access to entire content of Step as long as it wants it

• Entire content of a Step must fit into the producer’s memory as a copy

• well, there are ways around this for storage I/O

ADIOS Steps: Rules and constraints
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ADIOS Python API

examples/
hello/helloWorld/hello-world.py
examples/hello/bpReader/bpReaderHeatMap2D.py

examples/hello/sstWriter/sstWriter.py
examples/hello/sstReader/sstReader.py

simulations/gray-scott-struct/plot/gsplot.py
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Sequential python script:

import numpy

import adios2

T = numpy.array(...)

Python common

Parallel python with MPI:

from mpi4py import MPI

import numpy

import adios2

T = numpy.array(...)
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adios2.Stream(path, mode [, comm])  

adios2.FileReader(path [, comm])

Examples:

fr = adios2.Stream("data.bp", "r")

fr = adios2.FileReader("data.bp", comm)

ad = adios2.Adios("adios2.xml", comm)

io = ad.declare_io("myIO")

fr = adios2.Stream(io, "data.bp", "r")

fr.close()

Python Read API: Open/close a file/stream

Using external XML 
configuration 

mode: "r", "w", "rra"
mode here is "rra"
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vars_info = fr.available_variables()

for name, info in vars_info.items():

print("variable_name: " + name)

for key, value in info.items():

print("\t" + key + ": " + value)

print("\n")

Python Read API: List variables

variable_name: T
Type: double
AvailableStepsCount: 2
Max: 200
SingleValue: false
Min: 0
Shape: 10, 16

variable_name: dT
Type: double
AvailableStepsCount: 2
Max: 1.83797
SingleValue: false
Min: -1.78584
Shape: 10, 16
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fr.read(name[, start, count, blockid, step_selection])

Examples:

data = fr.read("T")

>>> data.shape

(10, 16)

data = fr.read("T", [0,0], [10,16])

>>> data.shape

(10, 16)

data = fr.read("T", [0,0], [10,16], step_selection=[0, 2])

>>> data.shape

(2, 10, 16)

Python Read API: Read data from file -- Random access

variable_name: T
Type: double
AvailableStepsCount: 2
Max: 200
SingleValue: false
Min: 0
Shape: 10, 16

Only for "rra" mode (FileReader)
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fr.read(path[, start, count])

Examples:

with adios2.Stream("values.bp", "r") as fr:

for _ in fr.steps():

data = fr.read("T")

print("Shape: ", data.shape)

... 

Shape:  (10, 16) 

Shape:  (10, 16)

Python Read API: Read data from file/stream

variable_name: T
Type: double
AvailableStepsCount: 2
Max: 200
SingleValue: false
Min: 0
Shape: 10, 16
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Scientific Achievement
• Most detailed 3-D model of Earth’s interior showing the entire globe 

from the surface to the core–mantle boundary, a depth of 1,800 miles

Significance and Impact

• Updated (transversely isotropic) global seismic model GLAD-M25 
where no approximations were used to simulate how seismic waves 
travel through the Earth. The data sizes required for processing are 
challenging even for leadership computer

• 7.5 PB of data is produced in a single workflow step

• Which is fully processed later in another step

Improvement by appending steps
• 3200 nodes ensemble run, 19200 GPUs
• 50 tasks at once
• 5.2 TB per task in 133 steps
• 260 TB total per 50 tasks
• 7.5 PB per 1500 tasks (total run)

Seismic Tomography Workflow (PBs of data/run)

Lei, Wenjie, et al. "Global adjoint tomography—model GLAD-M25." Geophysical Journal International 223.1 (2020): 1-21.

Map views at 250 km depth of vertically polarized 
shear wave speed perturbations in GLAD-M15 (2017) 
and GLAD-M25 (2020) in the Indian Ocean. New 
features have emerged in GLAD-M25, such as the 
Reunion, Marion, Kerguelen, Maldives, Seychelles, 
Cocos and Crozet hotspots.

50 tasks, 133 steps, 3200 nodes Time

No I/O 94s

BP3, one file per step 235s

BP4 one dataset per job
133x reduction in # of files 

156s

PI: Jeroen Tromp, Princeton
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XGC, WarpX, S3D on Frontier
Tier Capacity 

(PB)
Read BW 

(TB/s)
Write BW 

(TB/s)

Node-Local 33 75 38

Metadata 10 0.8 .5

Performance 11.5 10 10

Capacity 679 5.5 4.6

ADIOS Performance on Frontier

WarpX 70GB – 360TB
XGC-ITER 2.1 – 69 TB
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• HydraGNN is a graph convolutional neural network developed at ORNL

• Part of AI LDRD for predicting molecular properties

• Uses ADIOS for efficient storage and retrieval of a large volume of training data

• Recent run used over 154 million molecules stored in 5 ADIOS datasets (5+ Terabytes total)

• More than 8 Terabytes/sec obtained during the parallel read step

Managing large data and I/O for HydraGNN

Publication in progress. Slide credit: Kshitij Mehta, Jong Y Choi, Max Lupo Pasini

Parallel reading Aggregate bandwidth

https://github.com/ORNL/HydraGNN
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• WarpX is a PIC code with Adaptive 
Mesh Refinement using AMReX

WarpX code

Wan, L., Huebl, A., Gu, J., Poeschel, F., Gainaru, A., Wang, R., ... & Klasky, S. (2021). Improving I/O performance for exascale
applications through online data layout reorganization. IEEE Transactions on Parallel and Distributed Systems, 33(4), 878-890.

WarpX write performance on Summit: weak scaling
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• User friendly On/Off option 

• No need to modify the user code

• Only data writing is async, metadata gathering and writing is still sync

• Don’t have too much experience with this yet

Asynchronous write to storage on Summit
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• On Frontier we don't see improvement over synchronous I/O

Async IO with WarpX on Perlmutter

On Perlmutter with the default Lustre setting. The rank
based aggregations achived 2 TB/sec with 1k nodes.
Turning on Asynchronous I/O mode improves this to 7
TB/sec. Default setup achieved 1 TB/sec.
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• Allow applications to give ADIOS GPU buffers

GPU-aware I/O

• Decrease number of 
copies of the data

• Transparent performance 
portability to different 
GPU architectures

• Allow ADIOS to use GPU 
direct to storage, 
compression on GPU, or 
other optimizations
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• Build ADIOS2 with CUDA support –D ADIOS2_USE_CUDA=ON

• The user provides a memory space associated with ADIOS2 variables

• If not set ADIOS2 will detect automatically the memory space

• ADIOS2 saves pointers to data and copies data to internal CPU buffers (in deferred 
or sync mode)

• Computes metadata for each Get/Put using CUDA kernels

API for GPU-aware I/O

adios2::Engine bpWriter;
...
auto data = io.DefineVariable<float>("data", shape, start, count);

bpWriter.Put(data, cpuData);

data.SetMemorySpace(adios2::MemorySpace::GPU);
bpWriter.Put(data, gpuData);

Overhead for detecting where buffers are allocated

CPU STD vector CUDA CPU buffer CUDA GPU buffer

5-6 μs 1-2 μs 1-2 μs

Results on I/O kernels and OpenPMD
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• No changes required in the source code

• Operator attached to a variable

• Memory space attached to a variable

• Internal logic

• Metadata is computed using the GPU backend

• The operator is applied on the GPU buffer and the 
compressed data is copied directly in the ADIOS buffer 

Compression with GPU-aware I/O

ADIOS variable

Put

Buffer

Memory Space

Compute metadata

Apply operatorGPU backend

auto var = io.DefineVariable<double>(”test", shape, start, count);

// define an operator
adios2::Operator varOp = 

adios.DefineOperator("mgardCompressor", adios2::ops::LossyMGARD);

//attach operator to variable
var.AddOperation(varOp, parameters);

var.SetMemorySpace(adios2::MemorySpace::GPU); // optional
bpWriter.Put(var, gpuSimData);

Operator

ADIOS2 buffer

Operators that support GPU buffers:
• MGARD, ZFP
• The operators need to be built with 

GPU enable
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XGC data compression on GPU

Cost of XGC f data compression in-place on GPU using MGARD. The GPU-Aware ADIOS is used for 
moving data between GPU and host memory for I/O purposes, allowing applications to seamlessly 
compress/decompress data directly on the GPU as part of I/O. This is a strong scaling test of a fixed 

amount of f data where MGARD achieves 13x reduction in file size. Reduction and writing is faster than 
writing the raw data, however, it still incurs some extra time to read and to reconstruct the data. 

Norbert Podhorszki, Scott Klasky, Ana Gainaru, Qian Gong, Jieyang Chen, Sanjay Ranka. The Benefits of Data Reduction for Fusion Datasets. 
Poster at ICDDPS-4 conference, Apr 2023, Okinawa, Japan
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MGARD impact of Temporal Frequency on Climate Feature Tracking

• Compression on high-temporal resolution space helps to resolve temporal features

• We ran E3SM and output the data every hour (compared to every 6 hours) and show that 
we can reduce the size by 23X while using MGARD → instead of output every 6 hours we 
can output every hour and have more accurate cyclone and atmospheric river 
prediction (using the TEMPEST EXTREME code), while reducing the output by 4X

¼ the storage footprint than 6-hourly data, 19.5X better prediction for AR, 1.8X for TC tracks
Gong, Q., et al. . Spatiotemporally adaptive compression for scientific dataset with feature preservation – a case study on simulation data with extreme climate 
events analysis, doi:10.1109/e-Science58273.2023.10254796
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Optimising the Processing and Storage of Radio Astronomy Data

Scientific Achievement
Square Kilometer Array (SKA), the world’s largest radio telescope, is anticipated to 
collect 710 PB data per year, placing significant strains on I/O and storage. Utilizing 
data from a precursor telescope, we investigate lossy compression methods using 
the MGARD and ADIOS2 libraries. We demonstrate the improvements in I/O and 
storage and quantify the impacts on science quality using lossy compressed data.

Significance and Impact
• The advancements in radio telescope present great opportunities for scientific 

discovery also introduce challenges in data management and processing.
• Our study demonstrates that error-controlled lossy compression can 

significantly reduce I/O and storage costs while ensuring data accuracy.
• We quantified the impact of lossy compression and found that the SKA data 

can be compressed by 15x without impacting the integrity of scientific results. 

Technical Approach
• The raw SKA data was calibrated into a visibility grid, a PSF grid, and a PCF grid, 

then processed by the cdeconvoler application to generate final images. 
• We compressed the calibrated data using various error bounds and 

investigated their impacts on the galaxy source after imaging process. We also 
evaluated the runtime acceleration and storage reduction achieved through 
compression. 

On the left are images produced by cdeconvoler using the grid data compressed 

by MGARD at different error bounds. On the right are absolute residuals between 

the images produced using lossy compressed and uncompressed equivalent. 

Errors in data compressed by a relative error bound <1e-4 or an absolute error 

bound <1e-3 are not detectible – less than 1σ of the source spectral.

Alexander Williamson, et al., “Optimising the Processing and Storage of Radio Astronomy Data,” 
Cray User Group Conference (CUG 2024)
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Online and Scalable Data Compression Pipeline With Guarantees on Quantities of Interest
Scientific Achievement
This study presents a high-performance pipeline capable of compressing data
in concurrent with simulation, at merely 0.5% of additional computational
cost, while ensuring the compression-incurred error on quantities of interest
(QoIs) to be less than 10-8 at a compression ratio of 150X.

Significance and Impact
• The imbalanced growth among computing, networking, and storage

capabilities necessitate the creation of compression techniques that can
greatly reduce the data while accurately preserving derived QoIs.

• This study created a fast and scalable pipeline that allows concurrent
execution of data compression in parallel with simulation and I/O through
code coupling and staging. The approach allows compression, including
the writing of required compression data, for the previous time step to be
completed while the simulation proceeds with the current time step.

• Using XGC -- a fusion code producing hundreds of terabytes per simulation
cycle -- as an example, this study demonstrates a highly parallel, scalable,
and practical solution for applying on-the-fly data compression while
guarantees the accuracy of QoIs that are critical to fusion

Technical Approach
• The study integrates a state-of-the-art compressor, MGARD, with post-

processing for great data compression and error controls capabilities.
• By using staging nodes, the proposed method pipelines compression and

simulation across timestep data which reduces computational overhead.

Data compression pipeline

Achieved errors in four XGC QoIs across 165 timesteps 

errors in T// and T⟂ are overlapping

Tania Banerjee, et al., “Online and Scalable Data Compression Pipeline with Guarantees on Quantities of Interest,” 
IEEE 19th International Conference on e-Science (2023). DOI: 10.1109/e-Science58273.2023.10254934
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Transfer mechanisms

• File based (BP4, BP5)

• Network based on the 
same resource (SST, SSC)

• RDMA (libfabric, UCX)

• MPI (one sided, two 
sided)

• TCP/ RUDP

• Memory references

• WAN data transfer 
(DataMan,SST)

• Streams – TCP, RUDP, 
RoCE

Staging Options 

Gainaru, A., Klasky, S., et al., 2022, Understanding the Impact of Data Staging for Coupled Scientific Workflows, 
IEEE transactions on parallel and distributed systems. 2022.

Placement options

• Same core (inline code)

• Different cores/same node

• Different nodes

• Different resource (LAN)

• Different resource (WAN)

• Hybrid (mixture of options)

Scheduling options

• Fully synchronous

• Fully asynchronous

• Hybrid

Refactoring options

• Prioritize which data gets 
moved first

Storage options

• ADIOS-BP5

• HDF5
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• Tracer particle analysis enables understanding of the 
transport characteristics spanning the pedestal and 
scrape-off layer

• It is costly to perform and is communication-heavy

• Asynchronously stage data to the tracer particle analysis 
running on additional nodes

• Coupled data size: f0(95 GB) + E_rho/pot_rho(1.4GB)

• Reduced 36% of the XGC iteration time by 
using asynchronous services (only 0.4% time-overhead for 
coupling data)

Staging use case: off-load non-scaling code part

Full-f coupling performance 
on Summit with ADIOS using 
4/1024 extra nodes

Adios Coupling 
Write: 0.19

Adios Coupling 
Read: 0.16

0

10

20
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XGC+Analysis XGC Analysis

No coupling Coupling with ADIOS

Ti
m

e 
(s

ec
)

XGC full-f tracer analysis coupling

MAIN DIAG ADIOS DIAG ADIOS

Full-f particle analysis coupling

Choi, J. Y., Chang, C. S., Dominski, J., Klasky, Churchill, M., S., Merlo, G., Suchyta, 
E., ... & Wood, C. “Coupling exascale multiphysics applications: Methods and lessons 
learned”. IEEE e-Science, 2018.
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• We examine a complex workflow using XGC on Summit, with three in situ 
analysis for new scientific discovery

• We execute XGC along with three analysis routines (Poincaré surface plot, 
Head Load calculation, Diffusion Calculation)

• The overhead was 0.1% 1/1024 nodes

Hybrid Analysis of Fusion Data for Online Understanding of 
Complex Science on Extreme Scale Computers

Suchyta, E., Klasky, S. , et al., Hybrid Analysis of Fusion Data for online understanding of complex science on extreme scale
computers, Cluster 2023.
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• Different physics solved in different physical regions of detector 
(spatial coupling)

• Core simulation: GENE
Edge simulation: XGC
Separate teams, separate codes

• Recently demonstrated first-ever successful kinetic coupling of this kind

• Data Generated by one coupled simulation is predicted to be
> 10 PB/day on Summit

High-Fidelity Whole Device  Modeling of Fusion Plasmas PI: Amitava Bhattacharjee, PPPL,
C. S. Chang, PPPL

Core-edge
coupling

Dominski, J., et al. "Spatial coupling of gyrokinetic simulations, a generalized scheme based on first-principles." Physics of Plasmas 28.2 (2021): 022301.
Merlo, G., et al. "First coupled GENE–XGC microturbulence simulations." Physics of Plasmas 28.1 (2021): 012303.
Cheng, Junyi, et al. "Spatial core-edge coupling of the particle-in-cell gyrokinetic codes GEM and XGC." Physics of Plasmas 27.12 (2020): 122510.

From FY21 WDMApp Review
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DeepDriveMD: enhancing the scalability for streaming AI runs 

A. Brace et al., "Coupling streaming AI and HPC ensembles to achieve 100–1000× faster biomolecular simulations," 2022 IEEE 
International Parallel and Distributed Processing Symposium (IPDPS), Lyon, France, 2022, pp. 806-816, doi: 
10.1109/IPDPS53621.2022.00083.

• DeepDriveMD-S: streaming implementation with ADIOS-BP

• Continual learning loop enabled by ADIOS constructs 

• Streaming application of ML/AI

• Streaming runs have better resource utilization for protein 
folding simulations than static file system-based runs

• At least 2 orders of magnitude (100x) acceleration in sampling 
conformational states related to protein folding

• Faster time-to-solution enabled by streaming runs

Select N 

simulation

restart points

Simulation N

Simulation 1

Simulation 2

Aggregator 1

Aggregator 2

Aggregator M

Model 1

Model 2

Agent

Model K

Model weightsPositions/Velocities

ADIOS BP

[1... M]

MD Aggregators

ML Training

ADIOS Stream

File System I/O

1 2

3
4

5

Continual

Learning Loop

Elapsed time (hours)

DeepDriveMD-S

DeepDriveMD-F
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• We originally helped PIConGPU to achieve I/O performance on the OLCF Titan system

• Allowed their code to get >10X I/O performance improvement

• Next, we utilized staging to increase the I/O bandwidth on Summit

• Now we are working on more in situ techniques for AI, Digital Twins on Frontier

Accelerator Physics: PIConGPU

!

Titan Summit Frontier
5.6 GB / node data output every step
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• Fides is a visualization schema

• Fides maps ADIOS data arrays to VTK-M 
datasets, enabling viz using shared and 
distributed-memory parallel algorithms

• Catalyst provides in situ data analysis 
and visualization capabilities for 
ParaView

• Interactive visualization in a GUI – post 
processing

• Batch visualization – post processing on 
compute nodes

• In situ (inline) interactive visualization in a 
GUI

• In situ (inline) batch visualization 

• In situ (in transit) batch visualization

Visualization services with Paraview/Catalyst/FIDES/VTK-M/ADIOS

Pugmire, D. , et al. “Fides: a general purpose data model library for streaming data.” ISC 202, Springer International Publishing, 2021.

2K ranks

Simulation Vis service

Post hoc In situ (inline)

Simulation Vis service

In transit

Vis serviceSimulation

SST, SSC staging and BP5 
through file system

ParaViewADIOSInSituEngineBP5, HDF5

Using the same application that outputs data using ADIOS

https://fides.readthedocs.io

https://fides.readthedocs.io/
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Building applications with ADIOS
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https://adios2.readthedocs.io/en/latest/setting_up/setting_up.html

• Frontier environment

• Get ADIOS source

• Build and install

Build ADIOS2 on Frontier

$ wget https://github.com/ornladios/ADIOS2/archive/refs/tags/v2.10.1.tar.gz
$ tar xf v2.10.1.tar.gz
$ cd ADIOS2-2.10.1
$ mkdir build

$ module load PrgEnv-XXXX 
$ module load cray-python # or your favorite Python environment
$ module load cmake

$ cmake -DCMAKE_INSTALL_PREFIX=<adios_install_path>  -S . -B build 
$ cmake --build build -j 8   
$ cmake --install build

Load more modules or use 
-DCMAKE_PREFIX_PATH="<path1>;<path2>;…"  to point to extra libraries 

Remember <adios_install_path>

https://adios2.readthedocs.io/en/latest/setting_up/setting_up.html
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• Check what is supported in ADIOS

Frontier

$ <adios_install_path>/bin/bpls -Vv
blps: ADIOS file introspection utility

Build configuration:
ADIOS version: 2.10.1
C++ Compiler:  GNU 12.2.0       Clang 17.0.3 (CrayPrgEnv)     Clang 17.0.0 (CrayPrgEnv) 
Target OS:     Linux-5.14.21-150400.24.46_12.0.83-cray_shasta_c
Target Arch:   x86_64
Available engines = 11: BP3, BP4, BP5, HDF5, SST, SSC, Inline, MHS, 
ParaViewADIOSInSituEngine, Null, Skeleton
Available operators = 4: BZip2, Blosc, ZFP, PNG
Available features = 18: DATAMAN, HDF5, HDF5_VOL, MHS, SST, MPI, PYTHON, BLOSC2, BZIP2, 
PNG, ZFP, O_DIRECT, SODIUM, CATALYST, SYSVSHMEM, ZEROMQ, PROFILING, ENDIAN_REVERSE
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See ADIOS2 source: scripts/build_scripts/build-adios2-kokkos-crusher.sh for guidance

Frontier environment

• Get Kokkos source

• Build and install 

Build ADIOS2 on Frontier with GPU support using Kokkos

$ wget https://github.com/kokkos/kokkos/archive/refs/tags/4.3.01.tar.gz
$ tar xf 4.3.01.tar.gz
$ cd kokkos-4.3.01 
$ mkdir build

$ module load rocm
$ module load craype-accel-amd-gfx90a

$ cmake -DCMAKE_BUILD_TYPE=Release  -DCMAKE_CXX_COMPILER=hipcc -DKokkos_ENABLE_SERIAL=ON  -
DKokkos_ARCH_ZEN3=ON  -DKokkos_ENABLE_HIP=ON  -DKokkos_ARCH_VEGA90A=ON  -DCMAKE_CXX_STANDARD=17  -
DCMAKE_CXX_EXTENSIONS=OFF  -DCMAKE_POSITION_INDEPENDENT_CODE=TRUE -DBUILD_SHARED_LIBS=ON -
DCMAKE_INSTALL_PREFIX=<kokkos_install_path>  -S . -B build 
$ cmake --build build -j 8   
$ cmake --install build

Add
-DCMAKE_PREFIX_PATH="<kokkos_install_path>" -DADIOS2_USE_Kokkos=ON

to the ADIOS configuration 
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• CMake

• Use MPI_C and ADIOS2 packages

• Configure application by adding ADIOS installation to search path

• Available ADIOS2 targets: cxx11 c, fortran, cxx11_mpi, c_mpi, fortran_mpi

Compile ADIOS2 codes

CMakeLists.txt:
project(gray-scott C CXX)
find_package(MPI REQUIRED)
find_package(ADIOS2 REQUIRED)
add_definitions(-DOMPI_SKIP_MPICXX -DMPICH_SKIP_MPICXX)
...
target_link_libraries(gray-scott adios2::cxx11_mpi MPI::MPI_C)

cmake -DCMAKE_PREFIX_PATH=<adios_install_path> -S <source_dir> -B <build_dir>
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• Makefile

• Add ADIOS2 library paths to LD_LIBRARY_PATH

• Use adios2_config tool to get compile and link options

• Codes that write and read

Compile ADIOS2 codes

ADIOS2_DIR = <adios_install_path>
ADIOS2_FINC=`${ADIOS2_DIR}/bin/adios2-config --fortran-flags`
ADIOS2_FLIB=`${ADIOS2_DIR}/bin/adios2-config --fortran-libs`

heatSimulation: heat_vars.F90 heat_transfer.F90 io_adios2.F90 
${FC}   -g -c -o heat_vars.o heat_vars.F90 
${FC}   -g -c -o heatSimulation.o heatSimulation.F90 
${FC}   -g -c -o io_adios2.o ${ADIOS2_FINC} io_adios2.F90
${FC}   -g -o heatSimulation heatSimulation heat_vars.o io_adios2.o  ${ADIOS2_FLIB}
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ADIOS brings a programming interface and a framework of many solutions to the generic 
problem of producing and consuming data

• The interface frees scientists from the limited scope of file-based data processing 

• Being fully applicable to file-based data processing 

• Scalable IO: number of processes, variables and steps; and amount of data

• Offering a bridge from their scientific workflows that work now to the future, where they 
will extend their workflows with 

• More efficient data processing

• Interactive visualization

• Code coupling

• On-the-fly AI training

• Combining experimental data with simulation data

Summary
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