

ACE: Advanced Computing Ecosystem Testbed

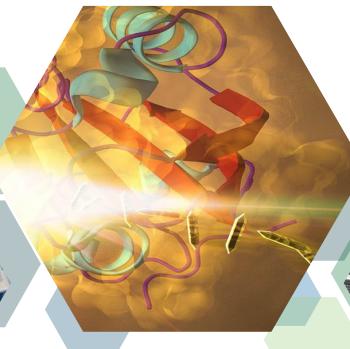
Test. Validate. Evolve.

A flexible, cutting-edge high-performance compute and data testbed for exploring the future of computing — without compromising production.

WHAT IS ACE?

The Advanced Computing Ecosystem Testbed (ACE) is an open-access, centralized environment for testing and developing emerging technologies in HPC, quantum computing, cloud computing, AI and machine learning. ACE offers researchers and system architects a safe, sandboxed space to rapidly prototype, evaluate, and refine experimental computing and data methods and technologies.

ACE supports the Department of Energy's American Science Cloud and Integrated Research Infrastructure by providing a bridge that seamlessly connects DOE's world-class research tools across the national labs.


CORE CAPABILITIES

- Non-Disruptive Testbed** – Explore new ideas without impacting production systems
- Support Small-team Projects** – Ideal for small teams doing early-stage R&D
- HPC-Capable Resources** – Test real workloads on powerful, flexible systems
- Accelerate Productization** – Shortens path from concept to production-readiness
- AI/ML Ready** – Build, train, and optimize AI and machine learning models
- Streaming Infrastructure** – Enable high-throughput, low-latency pipelines
- Quantum Integration** – Develop hybrid HPC + quantum workflows
- Heterogeneous Architectures** – CPU, GPU, and emerging accelerators supported

ACE AT-A-GLANCE

Access	Open to researchers, collaborators, and vendors
Use Models	Rapid prototyping, innovative R&D, system integration
Compute Hardware	CPU/GPU clusters
Networking & I/O	High-speed, low-latency, optimized for data movement
Software Stack	Full HPC/AI/quantum ecosystem + streaming tools
Artificial Intelligence	Flexible platform for AI training and research on next-gen GPUs
Workflows & Data	User and project storage options for collaborative data management

COMPUTE

- **Defiant**
20 CPU-only nodes, 2 GPU nodes featuring 8 H200 GPUs each (16 total), Infiniband for MPI & Filesystem traffic, high-speed Ethernet for data streaming
- **Wombat**
AArch64 testbed with multiple node configurations
Fujitsu A64fx CPU, EDR IB (8 nodes)
Ampere Computing Altra CPU, 2 NVidia Ampere GPUs, 2 BlueField-2 DPUs (6 nodes)
8 Grace Hopper nodes with Bluefield-3 DPUs
- **Holly**
Single Supermicro server with 8 Nvidia H100 GPUs
- **Quokka**
16 nodes with Xeon CPUs
- **Quoll**
3 Quantum Brilliance nodes with 2 qubits each

STORAGE

- **Polis – Lustre**
3.6 PB
Primarily spinning disk with some flash, connected to Defiant
- **VastData – NFS**
~600 TB
NFS-over-RDMA storage appliance
Flash, connected to the IB fabric
- **DAOS – Object Storage**
8 servers with ~30 TB flash each and dual NDR200

Website: <https://www.olcf.ornl.gov/olcf-resources/compute-systems/wombat/>

ORNL contact information

Sarp Oral
oralhs@ornl.gov