
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Python on Frontier

Jamie Finney

HPC Software Support Engineer

Oak Ridge Leadership Computing Facility – OLCF
Oak Ridge National Laboratory – ORNL

August 24, 2023

Overview

• What To Expect

• Virtual Environments Overview

• Cray-Python

• Miniconda

• Best Practices

3

What To Expect On Frontier

• X86 Architecture
– Easier to install from pre-compiled binaries
– Source installs are “easier”
– Works with conda/mamba and pip

• Should work better with Slurm, similar to Andes

• GPU workflow is now the biggest hurdle with the switch to AMD
– Won’t be covered today

• No OLCF-provided Anaconda module

Virtual Environments

• Overview and Options

5

Virtual Environments

• What are they?
– Isolated directory trees that help manage various packages or different

versions of Python

• Why are they beneficial?
– Dependencies of one package might clash with dependencies of

another
– Allows installation of new packages without modifying the “base”

environment
– Unique environments can be used on a per-project basis

• We will only discuss Python 3 today

6

Virtual Environment Options

• Native option: venv
– Included with every installation
– Extends managing your current installation

• Anaconda distribution: conda
– Highly customizable environments
– Large repository of supported packages
– Not only for Python

• Pyenv, pipenv, Poetry, etc
– Won’t be covered today

7

Options on Frontier

Two main options:

1. Use the cray-python module
- Supports venv syntax
- Comes with pre-installed packages like numpy, scipy, mpi4py tuned for

Cray machines

2. Install your own Miniconda
- Supports conda syntax
- Similar workflow to what is used on Andes and Summit

8

Cray-Python module

• Pros:
– Works out of the box
– No installation needed
– Pre-installed libraries tuned for Cray

• Cons:
– Extremely minimal
– Highly dependent on pip
– Restricted to version of module
– Can’t switch between different Python

versions easily using venv

User-Installed Miniconda

• Pros:
– Can manage multiple Python versions
– “Easy” to install dependencies based on your

current environment
– Highly customizable
– Similar workflow across OLCF systems

• Cons:
– Must install yourself
– Can clash with loaded modules if not careful
– Highly dependent on pre-compiled librares

(can still use pip)

Comparison

Cray-Python Module

• Overview and Examples

10

Cray-python module
• Availability:

• Module version matches Python version:

11

Cray-python module: Using Virtual Environments

To create a virtual environment:

This creates a set of directories at the specified location, which will contain
everything unique to that virtual environment

12

Cray-python module: Using Virtual Environments

To activate the environment:

To deactivate:

13

Cray-python module: Using Virtual Environments

Using a shebang line :

14

Cray-python module: Installing new packages

15

Cray-python module: Workflow Example

16

Cray-python module: Workflow Example

17

Cray-python module: Workflow Example

18

Cray-python module: Workflow Example

19

Cray-python module: Workflow Example

20

Cray-python module: Example

21

Cray-Python: Documentation

• See Python on OLCF Systems:
– https://docs.olcf.ornl.gov/software/python/index.html

• Official Python venv documentation:
– https://docs.python.org/3/tutorial/venv.html

https://docs.olcf.ornl.gov/software/python/index.html
https://docs.python.org/3/tutorial/venv.html

Miniconda

• Installation and usage

23

Miniconda

• What is Miniconda?
– A free minimal installer for conda. It is a small bootstrap version of Anaconda that

includes only conda, Python, the packages they both depend on, and a small
number of other useful packages (like pip, zlib, and a few others).

• If your workflow better suits conda environments, you can install your own
Miniconda: https://docs.conda.io/en/main/miniconda.html
– Also, please submit a ticket to help@olcf.ornl.gov saying that conda is better for your

workflow

https://docs.conda.io/en/main/miniconda.html
mailto:help@olcf.orgl.gov

24

Miniconda: Installation

• -p specifies the prefix path for where to install miniconda

• -u updates any current installations at the “-p” location (not
necessary if you didn’t do a “mkdir” beforehand)

25

Miniconda: Installation
• While running the installer you will be prompted with:

• If “yes”, your `~/.bashrc` (or equivalent shell configuration file) will be updated
with:

26

Miniconda: Installation Warning
• Warning: By default, this will always initialize conda upon login, which clashes

with other Python installations (e.g., if you use the anaconda modules on other
OLCF systems). It is MUCH SAFER to say “no” and to just export the PATH manually
when on Frontier to avoid clashing:

• Note: If your `.bashrc` is already modified (from other OLCF modules), then it will
NOT modify your `.bashrc`

• Highly recommend this (only needs to be run once):

27

Miniconda: Using Conda Environments
• Create an environment:

• Activate a base environment first (if conda not started):

• Activate/Deactivate an environment (with conda started):

28

Miniconda: Using Conda Environments

• Install packages using default channel:

• Install package using explicit channel name (ie conda-forge):

29

Miniconda: Installation

30

Miniconda: Installation

31

Miniconda: Installation

32

Miniconda: Installation

33

Miniconda: Example

34

Miniconda: Example

35

Miniconda: Example

36

Miniconda: Example

37

Miniconda: Example

38

Miniconda: Documentation Links

• See our Conda Basics guide with a quick-reference list here:
– https://docs.olcf.ornl.gov/software/python/conda_basics.html#condaquick

• Conda’s official user guide:
– https://docs.conda.io/projects/conda/en/latest/user-guide/index.html

https://docs.olcf.ornl.gov/software/python/conda_basics.html
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html

Best Practices

40

Best Practices
• Most default environment locations are at $HOME on NFS, be careful storing things

in $MEMBERWORK or $PROJWORK because it might get purged.
– For collaboration, use “Project Home”:

• Make note of your pip cache location by running:
– May need to clean it from time-to-time.

• Similarly, clean your conda cache occasionally:

• Explicitly use “python3” instead of the “python” alias

41

Best Practices

• In general, most python packages assume use of GCC
– Recommended to use PrgEnv-gnu , especially when building from source

• Deactivate virtual environments first before switching PrgEnv modules

• Deactivate virtual environments before entering batch/interactive jobs
– Some deactivation syntax won’t work properly if entering a job already activated
– Always better to enter any form of job with a fresh login shell and module environment

• When submitting a batch job that uses virtual environments:
– Activate all your modules / your virtual env in the batch script.

Use at CLI: In batch script:

42

Best Practices

• Similar to Andes and Summit, it’s always recommended to “clone” the base
environment before trying to install packages.
– For venv:

– Cloning with conda (does not really apply to Crusher/Frontier):

43

Best Practices

• To “export”/“import” your current environment:
– For venv:

– For conda:

Questions?

