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Models We Will Cover

Focusing on brief overview of each and how to compile on 
Crusher:

• Kokkos

• OpenMP Offload

• HIP

Follow along with examples: 
https://github.com/olcf/frontier_gpu_programming_models_examples

=

https://github.com/olcf/frontier_gpu_programming_models_examples
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HIP
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What is HIP?
• AMD’s API for GPU programming. 

• Gives low level control (relative to other models I will talk about) to write 
code for computing on GPUs

• Almost 1 to 1 replacement of CUDA (cudaAbcCall -> hipAbcCall)
– Includes replacements for some CUDA libraries like cufft (hipfft) and cublas (hipblas)
– Some CUDA calls not supported, because they are deprecated or not yet 

implemented for HIP

• Existing tools (hipify-perl, hipify-clang) for converting your CUDA code to 
HIP

• Uses .hip file extension (can use the .cpp file extension too, just let your 
build system know)
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Example: parallelizing a for loop

int a[N];
for(int i = 0; i<N; i++) {
  a[i] = i+2;
}

__global__ void fill_array(int *a) {
  int i = blockDim.x * blockIdx.x +
        threadIdx.x;
  a[i] = i + 2;
}
...
int *a;
hipMalloc(&a, N*sizeof(int));
fill_array<<<dim3(N/256), dim3(256), 
0, hipStreamDefault>>>(a);

This is if you were writing your own HIP kernel. There are also a lot of prebuilt functionality in libraries 
like hipblas and hipfft. You may not need to write that matrix multiplication routine by hand!
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Things to Note
• For PrgEnv-cray and PrgEnv-gnu, make sure you also load amd-mixed to 

get the HIP libraries. Not needed for PrgEnv-amd.

• Load craype-accel-amd-gfx90a for PrgEnv-cray and PrgEnv-amd if using 
the CC compiler wrapper for compiling HIP

• No native Fortran API. You have to write your GPU code in C++ and 
import it to Fortran through ISO_C_binding
– AMD also provides hipfort library with a bunch of those bindings made for you

• For CMake:
– Can use project(myproj LANGUAGES HIP)
– Can only default ROCm clang compiler used in `hip-lang-config.cmake`. CC won’t 

work. (Can get around this by setting .cpp file extension for hip files and use CC by 
using the legacy cmake steps )

– Make sure to set –DCMAKE_HIP_ARCHITECTURES=”gfx90a”

https://rocm.docs.amd.com/en/latest/understand/cmake_packages.html
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Resources
• Documentation: https://rocm.docs.amd.com/en/latest/
• Basic tutorial if you have no CUDA knowledge (work in progress)
– https://github.com/olcf-tutorials/HIP_from_scratch
• HIP Training Series (currently ongoing, sign up now!): https://www.olcf.ornl.gov/hip-training-series/
• HIP Tutorial if you're already familiar with CUDA 
– olcf page: https://www.olcf.ornl.gov/calendar/hip-for-cuda-programmers/
– repo: https://github.com/olcf/HIP_for_CUDA_programmers 
• hipfort (HIP bindings for fortran)
– https://github.com/ROCmSoftwarePlatform/hipfort
– talk on hipfort: https://www.olcf.ornl.gov/calendar/hip-for-cuda-programmers/ (see Presentation 

and Repository section)
• hipify (tool to convert cuda code to hip)
– https://github.com/ROCm-Developer-Tools/HIPIFY (already available in the amd-mixed and amd 

modules)
• HIP-CUDA API support table 
– https://github.com/ROCm-Developer-Tools/HIPIFY#cuda-apis
• Cuda training series (most of the knowledge still applies for HIP)
– https://www.olcf.ornl.gov/cuda-training-series/
• CMake for ROCm documentation: 
https://rocm.docs.amd.com/en/latest/understand/cmake_packages.html

https://github.com/olcf-tutorials/HIP_from_scratch
https://www.olcf.ornl.gov/hip-training-series/
https://www.olcf.ornl.gov/calendar/hip-for-cuda-programmers/
https://github.com/olcf/HIP_for_CUDA_programmers
https://github.com/ROCmSoftwarePlatform/hipfort
https://www.olcf.ornl.gov/calendar/hip-for-cuda-programmers/
https://github.com/ROCm-Developer-Tools/HIPIFY
https://github.com/ROCm-Developer-Tools/HIPIFY
https://www.olcf.ornl.gov/cuda-training-series/
https://rocm.docs.amd.com/en/latest/understand/cmake_packages.html
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HIP Training Series

• Teach HIP from basics, how to convert from CUDA, profiling 
and debugging

• Open to current Frontier and Perlmutter users

• 1 hour lecture, 1 hour hands on. All will be recorded.

• Currently five sessions, with possibly more in the future.

• Includes info on using HIP on Nvidia GPUs, and how to do 
portable build scripts for HIP code for Nvidia and AMD 

• https://www.olcf.ornl.gov/hip-training-series/



99 Open slide master to edit

OpenMP Offload
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What is OpenMP?
• OpenMP is the standard for thread based parallelism on shared 

memory systems

• Code looks like normal serial code, with directives annotating 
the code to give hints on how to parallelize.

int a[N];
#pragma omp parallel for
for(int i = 0; i<N; i++) {
  a[i] = i+2;
}
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What is OpenMP Offload?
• Offload was introduced in OpenMP 4.0 standard
– New directives to offload data and computation to devices like GPUs

• Directives specified as comments in Fortran, and #pragma in C
– Supported compilers will determine how to parallelize the code based 

on your directives
– If compiler doesn’t support, it will fallback to compiling for normal serial.

• Offload will take care of transferring data from host to device, 
perform compute on device, and transfer data back to host. 
– Based on the directives you specify



1212 Open slide master to edit

Example: parallelizing a for loop

int a[N];
for(int i = 0; i<N; i++) {
  a[i] = i+2;
}

int a[N];
#pragma omp target teams distribute parallel for
for(int i = 0; i<N; i++) {
  a[i] = i+2;
}

// fortran would look like
!$omp target teams distribute parallel do 
<do loop>
!$omp target teams distribute parallel do 
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Things to Note

• GCC currently doesn't support offloading for MI250X 
accelerators yet. Only Cray and AMD.

• Clang based compilers (Cray, AMD) don't support loop 
directives yet. 

• When compiling with hipcc for the examples, you get "loop not 
vectorized" warnings from the LLVM optimizer because hipcc 
add –O3 by default
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Resources

OpenMP offload tutorial series from OLCF (includes Summit instructions):
• https://github.com/olcf/openmp-offload
• https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-1/
• https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-2/
• https://www.olcf.ornl.gov/calendar/preparing-for-frontier-openmp-part3/

text tutorial: https://enccs.github.io/openmp-gpu/

https://github.com/olcf/openmp-offload
https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-1/
https://www.olcf.ornl.gov/calendar/introduction-to-openmp-offload-part-2/
https://www.olcf.ornl.gov/calendar/preparing-for-frontier-openmp-part3/
https://enccs.github.io/openmp-gpu/
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Kokkos
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What is Kokkos?
• C++ library for offloading onto various backends (CUDA, OpenMP, HIP, 

potentially others)

• Unlike others, not part of the compiler. You manage the source (or 
module load it)

• Aims to be descriptive, not prescriptive
– Less fine grained control, but fewer footguns
– maps work to resources

• Many different backends supported, including HIP for GPU and OpenMP 
on CPU (as well as serial)

• Influences and is influenced by the C++ standard

• Primarily developed by Sandia, a number of applications written

• RAJA is similar : https://raja.readthedocs.io/en/develop/index.html



1717 Open slide master to edit

Example: parallelizing a for loop

int a[N];
for(int i = 0; i<N; i++) {
a[i] = i + 2;
}

// defaults to allocating and
// running on GPU if
// compiled for GPU
Kokkos::View<double*> a( “a”, N );
Kokkos::parallel_for(“label”, N,
  KOKKOS_LAMBDA(int i) {
    a( i ) = i + 2;
  }
);
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Things to Note

• For PrgEnv-cray and PrgEnv-gnu, make sure you also load amd-
mixed to get the HIP libraries. Not needed for PrgEnv-amd.
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Resources

• Tutorial repo: https://github.com/kokkos/kokkos-tutorials

• Condensed short tutorial video: https://www.youtube.com/watch?v=6Ts6k2Nas5w 
(slides: https://github.com/kokkos/kokkos-tutorials/tree/main/Intro-Short)

• Long tutorial (slides also in the github) modules 1-8: https://github.com/kokkos/kokkos-
tutorials/wiki/Kokkos-Lecture-Series

• main documentation: https://kokkos.github.io/kokkos-core-wiki/index.html

• Kokkos source code on Github: https://github.com/kokkos/kokkos

https://github.com/kokkos/kokkos-tutorials
https://www.youtube.com/watch?v=6Ts6k2Nas5w
https://github.com/kokkos/kokkos-tutorials/tree/main/Intro-Short
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://github.com/kokkos/kokkos-tutorials/wiki/Kokkos-Lecture-Series
https://kokkos.github.io/kokkos-core-wiki/index.html
https://github.com/kokkos/kokkos
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Questions? 

• Email help@olcf.ornl.gov


