
ORNL is managed by UT-Battelle LLC for the US Department of Energy

The Frontier Programming Environment at
OLCF

Wael Elwasif

Frontier Programming Environment Task Lead
Oak Ridge Leadership Computing Facility

Oak Ridge National Laboratory

Overview

3

Contributors to Frontier Programming Environment

Vendor-Provided

• Cray Programming Environment (CPE)

– Includes Cray compiler for C, C++, and
Fortran plus GCC compiler. All the Cray
profiling, tuning, and debugging tools.
OpenMP and Cray MPI optimized for AMD
GPU direct.

• AMD ROCm programming environment

– Includes LLVM compiler to generate optimized
code for both the AMD Trento CPU and
MI250X GPU.

– Support: C, C++, and Fortran and have GPU
offload support. HIP, a CUDA-like direct GPU
programming model (with CUDA to HIP
conversion utilities).

Other Sources

• ECP

– LLVM enhancements: Flang (Fortran front-
end), OpenMP, OpenACC

– Kokkos and RAJA

– HIP LZ (HIP support for Aurora)

– OpenMPI, HPCToolkit, PAPI enhancements

– …

• ALCF + OLCF

– Pilot implementation of DPC++/SYCL for
Frontier

• OLCF

– GCC enhancements to better support
OpenACC, OpenMP, Fortran on Summit and
Frontier

4

Programming Environment

• Compilers Offered

– Cray PE (C/C++ LLVM-based; Cray Fortran)

– AMD ROCm (LLVM-based)

– GCC

• Programming Languages & Models Supported (in which compilers)

– C, C++, Fortran (all)

– OpenACC (Cray Fortran OpenACC 2.0+ & GCC 2.6 substantially complete, 2.7 planned)

– OpenMP (all) 5.0-5.2 in progress – most priority features complete, details vary

– HIP (Cray, AMD)

– Kokkos/RAJA (all)

• Transition Paths

– CUDA: semi-automatic translation to HIP : hipify-perl, hipify-clang

– CUDA Fortran: HIP kernels called from Fortran (a more portable approach)
o CUDA Fortran kernels need to be translated to C++/HIP (manual process)
o Fortran bindings to HIP and ROCm libraries and HIP runtime available through AMD’s hipfort project

Items in green are also
available on Summit

https://github.com/ROCmSoftwarePlatform/hipfort

5

Programming Tools

Debuggers and Correctness Tools

Tool

System-Level Tools

Linaro DDT forge/22.1.1

Cray CCDB cray-ccdb/4.12.13 (D)

Cray ATP atp/3.14.16 (D)

STAT cray-stat/4.11.13 (D)

Node-Level Tools

ROCgdb rocm/X.Y.Z

Cray GDB4HPC gdb4hpc/4.14.6 (D)

Performance Tools

Tool

System-Level Tools

Linaro MAP/Performance Reports forge/22.1.1

CrayPat/Apprentice2 (HPE) perftools[-lite]

Reveal (HPE) perftools[-lite]

TAU

HPCToolkit ums ums023 hpctoolkit/2023.03

Score-P / VAMPIR vampir/10.3.0

Node-Level Tools

PAPI papi/6.0.0.17

AMD rocprof & libraries rocm/X.Y.Z

AMD Ominperf omniperf

AMD Omnitrace omnitrace

Items in green are also
available on Summit

6

Scientific Libraries and Tools

Functionality CPU GPU Notes

BLAS Cray LibSci, AMD BLIS, Cray LibSci_ACC, AMD

roc/hipBLAS, AMD rocAMD ROCm

Tensile, MAGMA

MAGMA is open source software

led by the UTK Innovative

Computing Laboratory

LAPACK Cray LibSci, AMD

libFlame, PLASMA

Cray LibSci_ACC, AMD

roc/hipSolver, MAGMA

ScaLAPACK Cray LibSci ECP SLATE, Cray LibSci_ACC

Sparse AMD roc/hipSparse, AMD

rocALUTION

Mixed-precision

iterative refinement

Cray IRT, MAGMA MAGMA

FFTW or similar Cray, AMD, ECP FFTX,

FFT-ECP

AMD rocFFT, ECP FFTX, FFT-ECP FFT-ECP focuses on 3D FFTs

PETSc, Trilinos,

HYPRE, SUNDIALS,

SuperLU, ….

Spack recipes from ECP E4S

xSDK

Functionality in green is
also available on Summit

7

Useful Documentation Links

• HPE Cray Programming Environment
– https://cpe.ext.hpe.com/docs/

• AMD ROCm docs

– https://rocm.docs.amd.com/en/latest/

• AMD lab notes

– https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-readme/#amd-lab-notes

https://cpe.ext.hpe.com/docs/
https://rocm.docs.amd.com/en/latest/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-readme/#amd-lab-notes

Digging a Little Deeper

9

For C/C++ Codes

• Multiple compilers available

– AMD

– HPE (Cray)

– LLVM

• But they’re all based on LLVM

– HPE and AMD are among the many organizations contributing to the
development of LLVM

– Most work is “upstreamed” (contributed to the core LLVM source)

o But not everything is accepted (immediately), or may be held back as proprietary

– Capabilities (and bugs) are likely to be generally similar at any point in time…

– But not identical (optimizations) !

10

Upstream LLVM @ OLCF

• Summit:

– OLCF deployed modules (with offloading): latest llvm/14.0.0

– Periodic main snapshots :
module use /sw/summit/modulefiles/ums/stf010/Core
module load llvm/17.0.0-latest # Also from specific dates

• Frontier:

– Periodic main snapshots (maintained by the ECP SOLLVE project)
module load ums ums012
module load llvm/17.0.0-20230809 # Also from other dates

11

For Fortran Codes

• One useful compiler available at present

– HPE/Cray

o Not based on LLVM

• AMD provides a Fortran implementation, but we don’t recommend it

– It is based on “classic Flang”, in the LLVM ecosystem

– Support for both the latest language standards and OpenMP offload are
limited

• There is extensive work underway in the LLVM community on Flang,
but it will be some time before it is production quality

12

But What About GCC?

• On this slide “GCC” refers to the whole suite, including gfortran

– With support for offloading using OpenMP/OpenACC

• OLCF is working with Siemens to implement OpenMP in GCC

• OLCF will provide recent release and development versions of GCC on Frontier

• For various reasons, you should not expect gcc-generated executables to be
performant for offload at this time

– Results will vary

– We are interested in improving the performance of gcc. If you have a troublesome case,
reach out to me. (No guarantees, however)

• GCC is also available on Summit

13

GCC+offloading

• Summit:

– OLCF deployed modules (with offloading): latest gcc/12.1.0

– Periodic development snapshots :
module use /sw/summit/modulefiles/ums/stf010/Core
module load gcc/13.2.1-20230727 # Also from other dates

• Crusher:

– Periodic development snapshots
module use /sw/crusher/ums/compilers/modulefiles
module load gcc/13.2.1-20230727 # Also from other dates

• Frontier :

– TBD

14

For HIP (and CUDA) Codes

• HIP runs today on AMD and NVIDIA GPUs

• An ECP project is working on supporting HIP on
Intel GPUs

• Recommend a one-time translation of CUDA codes
to HIP and make the HIP version primary from then on

• Both Cray and AMD compilers support HIP

– They both use the underlying AMD compiler & runtime

• More on HIP available in the OLCF Training Archive

• HIP is also available on Summit

- AMD provides tools to translate CUDA to HIP
- hipify-perl and hipify-clang
- Not fully automatic

- hipfort
- https://github.com/ROCmSoftwarePlatfor

m/hipfort

- Fortran bindings to HIP

and ROCm libraries and HIP runtime

- Build depends on ROCm version &

Fortran compiler used

- Related: SYCLomatic - Intel tool to translate

CUDA to Sycl

- https://github.com/oneapi-src/SYCLomatic

- Intel® DPC++ Compatibility Tool

- Not fully automatic

https://docs.olcf.ornl.gov/training/training_archive.html
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/oneapi-src/SYCLomatic

15

For OpenMP Codes

• OpenMP is very much a work in progress in the LLVM community

– Most of 5.0 is implemented

– Parts of 5.1, 5.2 are implemented

• We (DOE labs, including ORNL/OLCF) are trying to help prioritize the order of
implementation based on what users tell us they need/want

– So if you could really use features that aren’t available yet, please let us know!

• HPE/Cray and AMD compilers use different OpenMP runtimes

• Remember that Cray Fortran is not based on LLVM

• OpenMP implementation in GCC is also a work in progress

• More on OpenMP available in the OLCF Training Archive

https://docs.olcf.ornl.gov/training/training_archive.html

16

For OpenACC Codes
• Cray Fortran supports OpenACC 2.0+

– "CCE supports full OpenACC 2.0 and partial
OpenACC 2.x/3.x for Fortran (OpenACC is not
supported for C and C++)"

– Work is underway to 3.2 (latest)

o but no timeline has been given

• OLCF provides OpenACC support via GCC

– 2.6 currently supported --- 2.7 planned

– 3.x not currently planned – let us know if there are
particular features that you could really use

– Don’t expect this to be performant at present

– Not currently on Frontier

• Work is also underway in the LLVM community on OpenACC : clacc

– C/C++ only – supported by the ECP PROTEAS-TUNE project

– Development snapshot UMS modules : module load ums ums025 clacc

$> man intro_openacc

CCE OpenACC 2.x/3.x features – CCE/16:

• atttach/detach behavior and clauses
• default(present) clause

• Implied present-or behavior for copy, copyin,

copyout, and create data clauses

• if_present clause on acc update
• if clause on acc wait
• async and wait clauses on acc data
• acc_attach and acc_attach_asyncAPIs

• finalize clause on exit data
• no_create clause on structured data and

compute constructs
• if clause on host_data

17

What about SYCL?

• OLCF and ALCF have partnered with Codeplay on a pilot implementation of the Intel DPC++
compiler for AMD GPUs

– ALCF has also partnered with NERSC on NVIDIA support

• Pilot implementation is complete

– ~“50%” level of support

– Tested with a small set of benchmarks and mini-apps

– Crusher: module load ums ums015 dpcpp

– Frontier: coming soon

• Seeking interested users to try out the pilot implementation

– Provide feedback

– Shake out issues

– Provide motivation to complete the port

18

Help Us Help You…

• If you have a liaison, work with them

• If you encounter an issue, file a ticket with OLCF – otherwise the
facility won’t (necessarily) know about it, and can’t track it

– Summit, Frontier…

• Take advantage of training events like this one

– Preparing for Frontier series in the OLCF Training Archive

• OLCF office hours: https://docs.olcf.ornl.gov/#olcf-office-hours

https://docs.olcf.ornl.gov/training/training_archive.html
https://docs.olcf.ornl.gov/#olcf-office-hours

	Slide 1: The Frontier Programming Environment at OLCF
	Slide 2: Overview
	Slide 3: Contributors to Frontier Programming Environment
	Slide 4: Programming Environment
	Slide 5: Programming Tools
	Slide 6: Scientific Libraries and Tools
	Slide 7: Useful Documentation Links
	Slide 8: Digging a Little Deeper
	Slide 9: For C/C++ Codes
	Slide 10: Upstream LLVM @ OLCF
	Slide 11: For Fortran Codes
	Slide 12: But What About GCC?
	Slide 13: GCC+offloading
	Slide 14: For HIP (and CUDA) Codes
	Slide 15: For OpenMP Codes
	Slide 16: For OpenACC Codes
	Slide 17: What about SYCL?
	Slide 18: Help Us Help You…

