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Contributors to Frontier Programming Environment

Vendor-Provided

• Cray Programming Environment (CPE)

– Includes Cray compiler for C, C++, and 
Fortran plus GCC compiler. All the Cray 
profiling, tuning, and debugging tools. 
OpenMP and Cray MPI optimized for AMD 
GPU direct. 

• AMD ROCm programming environment

– Includes LLVM compiler to generate optimized 
code for both the AMD Trento CPU and 
MI250X GPU. 

– Support: C, C++, and Fortran and have GPU 
offload support. HIP, a CUDA-like direct GPU 
programming model (with CUDA to HIP 
conversion utilities).

Other Sources

• ECP

– LLVM enhancements: Flang (Fortran front-
end), OpenMP, OpenACC

– Kokkos and RAJA

– HIP LZ (HIP support for Aurora)

– OpenMPI, HPCToolkit, PAPI enhancements

– …

• ALCF + OLCF

– Pilot implementation of DPC++/SYCL for 
Frontier

• OLCF

– GCC enhancements to better support 
OpenACC, OpenMP, Fortran on Summit and 
Frontier
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Programming Environment

• Compilers Offered

– Cray PE (C/C++ LLVM-based; Cray Fortran)

– AMD ROCm (LLVM-based)

– GCC

• Programming Languages & Models Supported (in which compilers)

– C, C++, Fortran (all)

– OpenACC (Cray Fortran OpenACC 2.0+ & GCC 2.6 substantially complete, 2.7 planned)

– OpenMP (all) 5.0-5.2 in progress – most priority features complete, details vary

– HIP (Cray, AMD)

– Kokkos/RAJA (all) 

• Transition Paths

– CUDA: semi-automatic translation to HIP : hipify-perl, hipify-clang

– CUDA Fortran: HIP kernels called from Fortran (a more portable approach)
o CUDA Fortran kernels need to be translated to C++/HIP (manual process)
o Fortran bindings to HIP and ROCm libraries and HIP runtime available through AMD’s hipfort project

Items in green are also 
available on Summit

https://github.com/ROCmSoftwarePlatform/hipfort
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Programming Tools

Debuggers and Correctness Tools

Tool

System-Level Tools

Linaro DDT                   forge/22.1.1

Cray CCDB                cray-ccdb/4.12.13 (D)

Cray ATP                    atp/3.14.16 (D)

STAT                           cray-stat/4.11.13 (D)

Node-Level Tools

ROCgdb rocm/X.Y.Z 

Cray GDB4HPC          gdb4hpc/4.14.6  (D)

Performance Tools

Tool

System-Level Tools

Linaro MAP/Performance Reports   forge/22.1.1

CrayPat/Apprentice2 (HPE)          perftools[-lite]

Reveal (HPE)                                perftools[-lite]

TAU

HPCToolkit ums ums023 hpctoolkit/2023.03

Score-P / VAMPIR                         vampir/10.3.0

Node-Level Tools

PAPI                                               papi/6.0.0.17

AMD rocprof & libraries                  rocm/X.Y.Z

AMD Ominperf omniperf

AMD Omnitrace omnitrace

Items in green are also 
available on Summit
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Scientific Libraries and Tools

Functionality CPU GPU Notes

BLAS Cray LibSci, AMD BLIS, Cray LibSci_ACC, AMD 

roc/hipBLAS, AMD rocAMD ROCm

Tensile, MAGMA

MAGMA is open source software 

led by the UTK Innovative 

Computing Laboratory

LAPACK Cray LibSci, AMD 

libFlame, PLASMA

Cray LibSci_ACC, AMD 

roc/hipSolver, MAGMA

ScaLAPACK Cray LibSci ECP SLATE, Cray LibSci_ACC

Sparse AMD roc/hipSparse, AMD 

rocALUTION

Mixed-precision 

iterative refinement

Cray IRT, MAGMA MAGMA

FFTW or similar Cray, AMD, ECP FFTX, 

FFT-ECP

AMD rocFFT, ECP FFTX, FFT-ECP FFT-ECP focuses on 3D FFTs

PETSc, Trilinos, 

HYPRE, SUNDIALS, 

SuperLU, ….

Spack recipes from ECP E4S 

xSDK

Functionality in green is 
also available on Summit
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Useful Documentation Links

• HPE Cray Programming Environment
– https://cpe.ext.hpe.com/docs/

• AMD ROCm docs

– https://rocm.docs.amd.com/en/latest/

• AMD lab notes

– https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-readme/#amd-lab-notes

https://cpe.ext.hpe.com/docs/
https://rocm.docs.amd.com/en/latest/
https://gpuopen.com/learn/amd-lab-notes/amd-lab-notes-readme/#amd-lab-notes


Digging a Little Deeper
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For C/C++ Codes

• Multiple compilers available

– AMD

– HPE (Cray)

– LLVM

• But they’re all based on LLVM

– HPE and AMD are among the many organizations contributing to the 
development of LLVM

– Most work is “upstreamed” (contributed to the core LLVM source)

o But not everything is accepted (immediately), or may be held back as proprietary

– Capabilities (and bugs) are likely to be generally similar at any point in time…

– But not identical (optimizations) !
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Upstream LLVM @ OLCF

• Summit:

– OLCF deployed modules (with offloading): latest llvm/14.0.0

– Periodic main snapshots :
module use /sw/summit/modulefiles/ums/stf010/Core
module load llvm/17.0.0-latest # Also from specific dates

• Frontier:

– Periodic main snapshots (maintained by the ECP SOLLVE project)
module load ums ums012
module load llvm/17.0.0-20230809 # Also from other dates
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For Fortran Codes

• One useful compiler available at present

– HPE/Cray 

o Not based on LLVM

• AMD provides a Fortran implementation, but we don’t recommend it

– It is based on “classic Flang”, in the LLVM ecosystem

– Support for both the latest language standards and OpenMP offload are 
limited

• There is extensive work underway in the LLVM community on Flang, 
but it will be some time before it is production quality
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But What About GCC?

• On this slide “GCC” refers to the whole suite, including gfortran

– With support for offloading using OpenMP/OpenACC

• OLCF is working with Siemens to implement OpenMP in GCC

• OLCF will provide recent release and development versions of GCC on Frontier

• For various reasons, you should not expect gcc-generated executables to be 
performant for offload at this time

– Results will vary

– We are interested in improving the performance of gcc.  If you have a troublesome case, 
reach out to me.  (No guarantees, however)

• GCC is also available on Summit
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GCC+offloading

• Summit:

– OLCF deployed modules (with offloading): latest gcc/12.1.0

– Periodic development snapshots :
module use /sw/summit/modulefiles/ums/stf010/Core
module load gcc/13.2.1-20230727 # Also from other dates

• Crusher:

– Periodic development snapshots 
module use /sw/crusher/ums/compilers/modulefiles
module load gcc/13.2.1-20230727 # Also from other dates

• Frontier :

– TBD
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For HIP (and CUDA) Codes

• HIP runs today on AMD and NVIDIA GPUs

• An ECP project is working on supporting HIP on 
Intel GPUs 

• Recommend a one-time translation of CUDA codes 
to HIP and make the HIP version primary from then on

• Both Cray and AMD compilers support HIP

– They both use the underlying AMD compiler & runtime

• More on HIP available in the OLCF Training Archive

• HIP is also available on Summit

- AMD provides tools to translate CUDA to HIP
- hipify-perl and hipify-clang
- Not fully automatic

- hipfort
- https://github.com/ROCmSoftwarePlatfor

m/hipfort

- Fortran bindings to HIP 

and ROCm libraries and HIP runtime

- Build depends on ROCm version & 

Fortran compiler used

- Related: SYCLomatic - Intel tool to translate 

CUDA to Sycl

- https://github.com/oneapi-src/SYCLomatic

- Intel® DPC++ Compatibility Tool

- Not fully automatic

https://docs.olcf.ornl.gov/training/training_archive.html
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/ROCmSoftwarePlatform/hipfort
https://github.com/oneapi-src/SYCLomatic
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For OpenMP Codes

• OpenMP is very much a work in progress in the LLVM community

– Most of 5.0 is implemented

– Parts of 5.1, 5.2 are implemented

• We (DOE labs, including ORNL/OLCF) are trying to help prioritize the order of 
implementation based on what users tell us they need/want

– So if you could really use features that aren’t available yet, please let us know!

• HPE/Cray and AMD compilers use different OpenMP runtimes

• Remember that Cray Fortran is not based on LLVM

• OpenMP implementation in GCC is also a work in progress

• More on OpenMP available in the OLCF Training Archive

https://docs.olcf.ornl.gov/training/training_archive.html
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For OpenACC Codes
• Cray Fortran supports OpenACC 2.0+

– "CCE supports full OpenACC 2.0 and partial
OpenACC 2.x/3.x for Fortran (OpenACC is not
supported for C and C++)"

– Work is underway to 3.2 (latest) 

o but no timeline has been given

• OLCF provides OpenACC support via GCC

– 2.6 currently supported --- 2.7 planned

– 3.x not currently planned – let us know if there are 
particular features that you could really use

– Don’t expect this to be performant at present

– Not currently on Frontier

• Work is also underway in the LLVM community on OpenACC : clacc

– C/C++ only – supported by the ECP PROTEAS-TUNE project

– Development snapshot UMS modules : module load ums ums025 clacc

$> man intro_openacc

CCE OpenACC 2.x/3.x features – CCE/16:

• atttach/detach behavior and clauses
• default(present) clause

• Implied present-or behavior for copy, copyin, 

copyout, and create data clauses

• if_present clause on acc update
• if clause on acc wait
• async and wait clauses on acc data
• acc_attach and acc_attach_asyncAPIs 

• finalize clause on exit data
• no_create clause on structured data and 

compute constructs
• if clause on host_data
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What about SYCL?

• OLCF and ALCF have partnered with Codeplay on a pilot implementation of the Intel DPC++ 
compiler for AMD GPUs

– ALCF has also partnered with NERSC on NVIDIA support

• Pilot implementation is complete

– ~“50%” level of support

– Tested with a small set of benchmarks and mini-apps

– Crusher:  module load ums ums015 dpcpp

– Frontier:  coming soon

• Seeking interested users to try out the pilot implementation

– Provide feedback

– Shake out issues

– Provide motivation to complete the port
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Help Us Help You…

• If you have a liaison, work with them

• If you encounter an issue, file a ticket with OLCF – otherwise the 
facility won’t (necessarily) know about it, and can’t track it

– Summit, Frontier…

• Take advantage of training events like this one

– Preparing for Frontier series in the OLCF Training Archive

• OLCF office hours: https://docs.olcf.ornl.gov/#olcf-office-hours

https://docs.olcf.ornl.gov/training/training_archive.html
https://docs.olcf.ornl.gov/#olcf-office-hours
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