
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Michael Sandoval
HPC Engineer - User Assistance Group
Oak Ridge Leadership Computing Facility (OLCF)
Oak Ridge National Laboratory (ORNL)

February 28, 2024

Python on Frontier

22

Overview

• What to Expect on Frontier

• Virtual Environments
– What are they and how do they work?
– Options on Frontier

• Cray-python
• Miniforge3 (new Conda module!!)

• Using cray-python

• Using Miniforge

• General Best Practices

33

Moving to Frontier: What to Expect

The big takeaway….

• No more Power architecture, x86 is back!
– Easier to install from pre-compiled binaries
– Source installs are “easier”
– Plays nice with conda/mamba and pip

• Should play nicer with Slurm (see: Andes)

• GPU workflow is now the biggest hurdle with the switch to AMD
– Won’t be talking about this today

• New conda module! (Miniforge)

44

Virtual Environments

• What are they?
– Isolated directory trees that help you manage

various packages or different versions of
Python

• Why are they beneficial?
– Dependencies of one package might clash

with dependencies of another package
– Allows you to install new packages without

modifying a “base” installation
– Unique environments can be used on a per-

project basis

• We will only be discussing Python3
approaches Image credit: https://xkcd.com/1987/

Managing Python gets complicated sometimes….

55

What about on Frontier?

Two main options:

1. Use the cray-python module
– Supports venv syntax
– Comes with pre-installed packages like numpy, scipy, mpi4py

tuned for Cray machines

2. Use the python/3.10-miniforge3 module
– https://github.com/conda-forge/miniforge
– Essentially just miniconda, but uses conda-forge by default
– Supports conda and mamba syntax
– Similar workflow to what is used on Andes, Summit
– Summit now has this module (Andes in unchanged)

https://github.com/conda-forge/miniforge

66

Comparing the options on Frontier

• cray-python module
– Pros:

• Pre-installed libraries tuned for Cray
machines

– Cons:
• Extremely minimal
• Highly dependent on pip
• Restricted to version of module
• Can’t switch between different Python

versions that easily using venv

• Miniforge (Conda/Mamba)
– Pros:

• Let’s you manage multiple Python
versions, not just environments

• ”Easy” to install dependencies based
on your current environment

• Highly customizable
• Similar workflow across other OLCF

systems
• Easy to move to the burst buffer

– Cons:
• Highly dependent on pre-compiled

binaries (but can still use pip)
• Not specifically tuned for Cray

machines unless you build from source

Personally, I highly recommend using the
Miniforge module instead of cray-python
because you can do all of what cray-python can
do and more using Miniforge (even if you don’t
end up using it for conda and just use pip)

77

The cray-python Module

• Loading the modules: module load cray-python

• Create virtual environments by doing:
python3 -m venv /path/to/my_env

• This creates a set of directories at the specified location, which will
contain everything unique to that virtual environment

• How to activate and deactivate the environment:
– From the command line: source /path/to/my_env/bin/activate
– From the command line: deactivate
– Using a shebang line : #!/path/to/my_env/bin/python3

• After activating, you can then install new packages using pip

88

The Miniforge Module

• Miniforge is just miniconda but targets the conda-forge channel by default
– Bonus: has mamba pre-installed
– Does *not* come with pre-installed packes like NumPy, Scipy, etc. in the base environment

• Loading the module: module load python/3.10-miniforge3

• Create Environments:
conda create -n my_env python=…
conda create -p /path/to/my_env python=…

• Activate/Deactivate Environments:
source activate /path/to/my_env
source deactivate

• Install packages (can use default channel or explicit channel name):
conda install package_name or conda install -c conda-forge package_name

99

More Conda Info

• See our Conda Basics guide with a quick-reference list here:
https://docs.olcf.ornl.gov/software/python/conda_basics.html#conda-
quick

• Conda’s official user guide:
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html

https://docs.olcf.ornl.gov/software/python/conda_basics.html
https://docs.olcf.ornl.gov/software/python/conda_basics.html
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html

1010

Environment Locations
• Most default environment locations are at $HOME on NFS, but those typically initialize and

run much slower on Frontier

• Environments stored / created on Orion perform faster than NFS, but still are relatively
slow to initialize for complex environments and when running at scale

• Use the burst buffer (NVMe) instead!
– https://docs.olcf.ornl.gov/software/python/sbcast_conda.html
– Not necessary for everyone, but highly recommended for large node counts or users running

into performance problems
– If you use PyTorch, may consider this

• TLDR: NVMe > Orion >> NFS

• For collaboration, you can use Project shared areas like: /ccs/proj/<proj_id>
or /lustre/orion/proj-shared

• Although faster, be careful storing things in $MEMBERWORK or $PROJWORK (Orion) because
it might get purged.

https://docs.olcf.ornl.gov/software/python/sbcast_conda.html

1111

Best Practices - I

• Make note of your pip cache location by running: pip cache info
– May need to clean it from time-to-time with: pip cache purge

• Similarly, clean your conda cache occasionally: conda clean -a

• Explicitly use “python3” (or “python2”) instead of the “python” alias
– Better yet, explicitly put the full path to your Python installation

• In general, most python packages assume use of GCC
– Recommended to use PrgEnv-gnu , especially when building from source

1212

Best Practices - II

• Deactivate virtual environments first before switching PrgEnv modules

• Deactivate virtual environments before entering batch/interactive jobs
– Some deactivation syntax won’t work properly if entering a job already activated
– Always better to enter any form of job with a fresh login shell and module

environment

• When submitting a batch job that uses virtual environments, it’s good to
submit like so:
sbatch --export=NONE submit.sl
This means you’ll have to activate all your modules / your virtual env in the batch script
Must use this at top of batch script if using –export=NONE: unset SLURM_EXPORT_ENV

1313

Best Practices - III

• To “export”/“import” your current environment:
– For venv:

python3 -m pip freeze > requirements.txt
python3 -m pip install -r requirements.txt

– For conda:
conda env export > environment.yml
conda env create -f environment.yml

• For unbuffered input, either enable that setting w/ SLURM or use the `-u`
Python flag like so: python3 –u script.py

1414

1515

1616

Additional Resources

• PyTorch on Frontier guide/seminar coming soon!
– https://www.olcf.ornl.gov/calendar/pytorch-on-frontier/

• Our OLCF Python docs:
https://docs.olcf.ornl.gov/software/python/index.html

• Official Python docs:
https://docs.python.org/3/library/venv.html

• Official Conda docs:
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html

• Submit a ticket to help@olcf.ornl.gov

• Questions?

https://www.olcf.ornl.gov/calendar/pytorch-on-frontier/
https://docs.olcf.ornl.gov/software/python/index.html
https://docs.python.org/3/library/venv.html
https://docs.conda.io/projects/conda/en/latest/user-guide/index.html
mailto:help@olcf.ornl.gov

