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Introduction

• Ideally, AI models can replace or approximate computationally intensive physics-based components

• In reality, surrogate models often struggle to generalize beyond the range of data they were trained on

• Surrogate models are often poor at predicting rare or extreme events, as these are underrepresented in 

the training data

• ODEs/PDEs can be solved with AI, but there is no guarantee it will always work as expected

• Physics-Informed Neural Networks (PINNs) may be a good option but difficult convergence and 

approximation due to unbalanced gradients

• Given these limitations, how can we use AI to improve traditional HPC applications? Some ideas:

• Synthetic data generation, parametrization, estimation, threshold definition, decision making, dimensionality 

reduction, etc.

• AI is very useful as an auxiliary component to scientific applications, not as a full replacement 
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Projectile Motion: DNN

DNN trained on angles 15-75 degrees behaves ok, but not for 14.5 degrees
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Projectile Motion: PINN

PINN use a more complex loss function, including laws of physics governing the phenomenon

Trained on angles 15-75 degrees behaves great, but still not perfect for out of training cases

New techniques on PINNs improved a lot the result, but not a silver bullet
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Generative vs. Discriminative Models

• Generative models aim to learn the joint probability distribution, P(X,Y), where: X is the input data (features) and Y is 

the output labels (targets)

• Model how the data is generated, compute P(Y|X) for classification and P(X), the probability of input data needed to generate new 

synthetic samples

• Examples: VAE, GANs, Normalizing Flows, Diffusion Models, Bayesian generative models, etc.

• Discriminative models focus on learning the conditional probability distribution, P(Y∣X) directly

• Optimized to distinguish between different classes/outputs given the input features. Directly find decision boundaries

• Examples: SVMs, DNNs, Decision Trees, Random Forests, etc.

• Generative models are more appropriate when the goal is to understand the underlying data distribution, generate 

new data, or simulate complex systems in a probabilistic way 

• Discriminative models are often the best choice for surrogate modeling in HPC when the goal is to make predictions

(e.g., regression or classification) about system behavior based on input data
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Case n. 1: save storage space with a generative model

In weather and climate modelling, storing the huge amount of data produced by the models is usually the 

main limitation. The performance of post-processing tasks is limited by IO traffic and memory availability

Idea: train a generative model to replace an entire dataset stored on disk

Proposed approach: use a Conditional Variation Auto Encoder (CVAE) to generate new samples of 

temperatures for a particular city, by providing the month and day of the year as condition

This is a probabilistic approach, so the distribution modelled by the CVAE should be very close to the real 

distribution

• Probabilistic Forecasting using Deep Generative Models – Fanfarillo et al. - https://arxiv.org/pdf/1909.11865

• Generative deep learning for probabilistic streamflow forecasting: Conditional variational auto-encoder - MS Jahangir et al. -

https://www.sciencedirect.com/science/article/abs/pii/S0022169423014403 

• Deep generative models in energy system applications: Review, challenges, and future directions – Zhang et al. -

https://www.sciencedirect.com/science/article/abs/pii/S0306261924024437

https://arxiv.org/pdf/1909.11865
https://www.sciencedirect.com/science/article/abs/pii/S0022169423014403
https://www.sciencedirect.com/science/article/abs/pii/S0306261924024437
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Conditional Variational Autoencoder

An extension of the Variational Autoencoder (VAE) that generates data conditioned on additional information 

(e.g., labels or attributes). Combines deep neural networks with probabilistic modeling to capture complex 

data distributions

• Encoder Network: learns a conditional distribution of latent variables given the input data and condition

• Latent Space: encodes underlying features of the data in a continuous, multidimensional space

• Decoder Network: reconstructs or generates data from latent variables conditioned on the same attributes

X X’

Input Encoder Latent space Decoder Output
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Generate synthetic data as a dataset surrogate

Synthetic data can be generated using:

• the decoder used during training

• random samples from a Normal distribution with dimension == latent dimension

Idea: replacing an entire dataset (or part of it) by using just the weights of the decoder to generate the data 

needed.

Some quantities that can be generated synthetically:

• sea surface temperature

• highest temperature

The condition in the CVAE can be the day and month of interest

Training requires tuning of loss function, balancing KL divergence and reconstruction loss 

Alternative approach: use a Normalizing Flow
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Case n. 2: use AI for efficient model parametrization

• Scientific applications rely on “set and forget” parameters to model certain phenomenon (e.g., snow 

density)

• An approach that dynamically sets said parameters for each case can provide much better accuracy

• There are many possible ways to select “good” parameters for each case, a particular effective way is to 

rely on Reinforcement Learning (RL) techniques

• In a reinforcement learning setting, usually (but not necessarily) a neural network is used to model what 

the optimal next action should be (policy) or what the values of the possible actions are and select the 

best

• Use RL to dynamically select the parameters modelling snow density at each time step
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Snow Density Modelling

• Use a simple formula involving three factors: temperature, wind speed, and humidity

• Each factor weighted by fixed parameters: alpha_T, alpha_u, alpha_h

• Problem is to guess these three parameters for optimal accuracy



11 |

[Public]

Case n. 3: Source-term estimation problem

• A source-term estimation problem is about finding the location and strength of something that is being 

released or emitted into an environment. Source could be a chemical, gas, pollutant, etc.

• In a scientific context, source-term estimation typically involves using measurements (e.g., sensors 

detecting the substance) and a mathematical model of how the substance spreads (e.g., how gas flows in 

the air). The goal is to work backward from the measurements to identify the source

• This is an inverse problem, where we start from the effects and try to find out the cause

• In a traditional way, inverse problems can be solved by running multiple simulations of where the source 

might be and assess whether the effects are consistent with the observations

• AI is very effective in solving these kind of problems

• We will use a heat diffusion problem as an example (video)



12 |

[Public]

Conclusions

• AI can be used to enhance traditional HPC application but not a full replacement

• Good to make (optimal) decisions, parametrization, generate synthetic data, approximate functions

• Replace small parts of app with AI, understand if inputs may change and how AI will deal with it

• There is no single model/approach that works well for a certain problem (CVAE vs. NF vs. GANs)

• PINNs are a valid option but not a silver bullet

• Interpretability is important, covered on next talk

• Think out of the box (and in CS terms) on where AI can really improve the performance of your app!
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