% University of
WE] BRISTOL

Performance Portability for
Next-Generation Heterogeneous
Systems

Dr Tom Deakin
Lecturer in Advanced Computer Systems
University of Bristol

Nov’'23 Top500 Rank Accelerator

Supercomputer Fugaku

Accelerator
7
%
%
o
7
%
%
%
%
%

C tateny Thougnput

“Complex” cores More “simple” cores

Instruction Level Parallelism Very wide SIMD

Deep cache hierarchy Fast context switching

NUMA Programable memory hierarchy
Wide SIMD Latest memory technology

In-core accelerators

AMD MI300A

NVIDIA Grace-Hopper

CPU LPDDR5X
<512 GB

¢y
-« x » 5RACE

16x PCle-5

‘ 512 GB/s »
=)

CPU LPDDR5X
<512 GB

NVLINK C2C
900 GB/s

(=)
L
&
G
L=
[C)
=

Images belong to their respective owners

Data: TOP500 November 2023
Updated version of chart from: doi.org/10.1109/P3HP(C56579.2022.00006

B None

B NVIDIA GPU
B AMD GPU

B Intel GPU

O Other

Tension between migrating to next system
(which may be GPUs), and keeping running
on current system

Performance, Portability, and
Productivity

“A code is performance portable if it can
achieve a similar fraction of peak hardware
performance on a range of different target

architectures”.

Problem
Application
Platform

Efficiency

More details in doi.org/10.1109/P3HPC51967.2020.00007

H
1 11, V1 ©

— e;(a,p) # 0
Pla,p, H) fg;i e;(a,p) o

0 otherwise

From Pennycook, Sewall and Lee: doi.org/10.1016/j.future.2017.08.007

2020

BabelStream Triad array size=2**25

Cascade Lake
Skylake
Knights Landing
Rome

Power 9
ThunderX?2
Graviton 2
A64FX

P100

V100

A100

Turing
Radeon VII
MI50

IrisPro Gen9

100

i

80

lells
il

60

40

20

From doi.org/10.1109/P3HPC51967.2020.00006

2024

MI100 PVC1550

H100

G6'€9
S
3 609
]
o
)
= 8¢ 9
(@]
2
&8 0LV9
Z
T6°C9
1 1 1
76'6L
0€08
0008
7008
| | | | | | | | | | |
0v'06
L9°68
ZL'06
7806
9606
0,68
1 1 1 1 1 1 1 1 1
O O OO O O O o o
H w SO O~ O IN < M

(3ead |ed13240843 JO %) Yipimpueg

Figure from forthcoming publication

MiniBUDE 2024
p Faster than HIP
Slower than HIP

[ROCm] HIP
[ROCm] Kokkos
{igﬁg} 8E::§t 30 Explicit Models
XNACK=0
[AdaptiveCpp] SYCL
[ICPX] SYCL
[ROCm] Thrust
AdaptiveC StdPar
| " [Icgii StdPar USM Models
XNACK=0
[rocStdPar@ITP] StdPar
[AdaptiveCpp] StdPar USM Models
[ICPX] StdPar XNACK=0
[rocStdPar@ITP] StdPar UTPX=MIRROR
[AdaptiveCpp] StdPar USM Models
[ICPX] StdPar XNACK=0
[rocStdPar@ITP] StdPar UTPX=ADVISE
[AdaptiveCpp] StdPar USM Models
[ICPX] StdPar XNACK=0
[rocStdPar@ITP] StdPar UTPX=DEVICE
[AdaptiveCpp] StdPar
[ICPX] StdPar USM Models
[rocStdPar@HMM] StdPar 0.8 XNACK=1
[rocStdPar@ITP] StdPar 0.89
I I I
0.0 0.5 1.0 1.5

HIP-normalised runtime (HIP/x, HIP=1), higher is better
From doi.org/10.48550/arXiv.2401.02680

xC R

elHiFrame

@ Spack

For more details, see doi.org/10.1145/3624062.3624133
and https://github.com/ukri-excalibur/excalibur-tests

This work was supported by the Engineering and Physical Sciences Research
Logos belong to their respective owners Council as part of EXCALIBUR Hardware & Enabling Software [EP/X031829/1]

1.0 - - 1.0
9 o
£ 0.8 - - 0.8 3
QL g g
S 4
o)}
5 0.6 1 - 0.6 3
S ®
© S
£ 047 - 0.4
ey s 2
< =
0.2 1 m - 0.2 ‘2
0.0 ” m ~—- 0.0
—e— Unportable
DIELF O —&— Single Target
o D|F —¥— Multi-Target
) B I F —4— Consistent (30%)
h BN EIF B '| —& consistent (70%)
(.5 '.: '.E I,) ~— Inconsistent
1 4 5 6 7 8 9 10
Platform

From https://intel.github.io/p3-analysis-library
Based on doi.org/10.1109/MCSE.2021.3097276

A D D G |
B |[E| E H J
C |F| F

https://intel.github.io/p3-analysis-library

1.0 1

0.8

0.6

App P (dashed)/efficiency (solid)

3 4

From doi.org/10.1109/MCSE.2021.3097276

5

6

7 8 9 10 11 12 13 14 15
of platforms

JHUMUL

CPUO
CpU1
CPU2
CPU3
CpU4
CPUb
CPUGb

CUDA eff.
CUDA PP
OpenACC eff.
OpenACC PP
OpenCL eff.
OpenCL PP
Kokkos eff.
Kokkos PP
SYCL eff.
SYCL PP
OpenMP eff.
OpenMP PP

B GPUO
Il GPU1
B GPU2
GPU3
GPU4
GPU>S
GPUG6

CpPU7

2021

Specialisation?

OpenMP = OpenMP 1 + OpenMP 4/5 (+tasks) ?

#pragma omp parallel for

(
C[i]

1

Al

O; i < N; ++1) {
i] + B[i];

#pragma omp target enter data \
map (alloc: A[:N], B[:N], C[:N])

#pragma omp target

#pragma omp loop
(i =0; 1 < N; ++1i) {
C[i] = A[1] + B[1];

#pragma omp target exit data \
map (from: C[:N]) \
map (release: A[:N], B[:N])

Icelake
—@®— OpenMP —%— Kokkos
OpenMP Target —4@)— SYCL
1.0 A

>

@]

§ 0.8 ®

i

= 0.6

a

8

T

2 0.4—

B,

o,

< 0.2 A

0-0Te—1 3 0 2—e
»—3 2 0 T ¢
3 1 2 0
o3 2 1 ¢
1 2 3 4

of Compilers

0] Cray GCC LLVM

Intel

BabelStream
Milan
—@®— OpenMP —%#— Kokkos
OpenMP Target = —4@)— SYCL
1.0 4
0.8 - " #*\“
0.6 1
0.4
0.2 1
0.0
2 3 1 0 |—#¢
3 1 2 0
®—0 1 2 30
o3 2 4 ¢
1 2 3 4
of Compilers

Cray GCC El Intel
AMD LILVM

From doi.org/10.1109/P3HPC56579.2022.00006

Application Efficiency

2022

A64FX
—@®— OpenMP —%— Kokkos
OpenMP Target —4€p— SYCL
1.0 A
0.8 A
0.6 1 M @
0.4
0.2 A
00Te—Ts3 1 2 0 —e
1 3 2 0
3 2 1
o5 1 ®
1 2 3 4

==

of Compilers

Cray NVHPC LLVM
GCC

1.0 @

0.8 1

0.6 -

Can always construct
the PP=1, CC=0 by
combining the best
codes for each
platform into an
application

Falling CC indicates
that platform-specifia
code is being added,
or common code is
being removed. This
is commonly found
as codes are

O 4 - specialized.

0.2

Being on the PP = 0 axis

is anomalous, since at
least one platform is
failing

Rising PP results from performance
increasing in one more more platforms.
Broad or narrowly-focused
optimizations cause this.

Everyone wants to be

here: single source, best
performance everywhere

But not realistic.

uoneziundo

Specialization

ol

UOISSAI

Falling PP is rarely intentional.
New features in applications may
cause performance to drop in one
or more platforms.

Removing specialization
or adding common code
increases convergence;

this is typical of

introducing more and
higher-level abstractions.

0.0

0.0

|
0.2

T |
0.4 0.6

T
0.8

Code Convergence (1- Code Divergence)

From doi.org/10.1109/P3HPC56579.2022.00006

1.0

Device discovery and control
Data location and movement in discrete memory spaces

Expressing concurrent and parallel work

RAJV

& friends

OpenMl

Enabling HPC since 1997

{ PROGRAMMING
/{/ YOUR GPU WITH
S /) OPENMP

: Performance Portability for GPUs

Tom Deakin and Timothy G. Mattson

‘ IWOCL 2024
12th International workshop on open computing with OpenCL and SYCL

April 8-11, 2024 - Chicago, USA

iwocl.org

.- Full Program of Speakers
' and Registration

Supported by.the

_ 7" "a
KHR' NOS (SYCL,M OpenCL

GGGGG

ARCHER2 Usage: March-August 2022

B Fortran
B C++
B Python

0 Other

From doi.org/10.1109/PMBS56514.2022.00013

.
/

OPENMP o e

Prompt: A fight between parallel programming languages
Generated with Al on Microsoft Bing Image Creator - 6 December 2023 at 11:58 am

Develop with P3 in mind with Standard Parallelism

Use open-standards as confluent off-ramp to be
productive today

Express all concurrent work asynchronously
Build in tuning parameters
Test all compilers & runtimes, on all systems, all the time

Tell your vendor

https://hpc.tomdeakin.com

