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C tateny  Thougnput

“Complex” cores More “simple” cores

Instruction Level Parallelism Very wide SIMD

Deep cache hierarchy Fast context switching

NUMA Programable memory hierarchy
Wide SIMD Latest memory technology

In-core accelerators
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Data: TOP500 November 2023
Updated version of chart from: doi.org/10.1109/P3HP(C56579.2022.00006
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Tension between migrating to next system
(which may be GPUs), and keeping running
on current system



Performance, Portability, and
Productivity



“A code is performance portable if it can
achieve a similar fraction of peak hardware
performance on a range of different target

architectures”.



Problem
Application
Platform

Efficiency

More details in doi.org/10.1109/P3HPC51967.2020.00007
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For more details, see doi.org/10.1145/3624062.3624133
and https://github.com/ukri-excalibur/excalibur-tests

This work was supported by the Engineering and Physical Sciences Research
Logos belong to their respective owners Council as part of EXCALIBUR Hardware & Enabling Software [EP/X031829/1]
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Specialisation?



OpenMP = OpenMP 1 + OpenMP 4/5 ( +tasks) ?

#pragma omp parallel for

(
C[i]

1

Al

O; i < N; ++1) {
i] + B[i];

#pragma omp target enter data \
map (alloc: A[:N], B[:N], C[:N])

#pragma omp target

#pragma omp loop
( i =0; 1 < N; ++1i) {
C[i] = A[1] + B[1];

#pragma omp target exit data \
map (from: C[:N]) \
map (release: A[:N], B[:N])
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Can always construct
the PP=1, CC=0 by
combining the best
codes for each
platform into an
application

Falling CC indicates
that platform-specifia
code is being added,
or common code is
being removed. This
is commonly found
as codes are

O 4 - specialized.

0.2

Being on the PP = 0 axis

is anomalous, since at
least one platform is
failing

Rising PP results from performance
increasing in one more more platforms.
Broad or narrowly-focused
optimizations cause this.

Everyone wants to be

here: single source, best
performance everywhere

But not realistic.

uoneziundo

Specialization
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Falling PP is rarely intentional.
New features in applications may
cause performance to drop in one
or more platforms.

Removing specialization
or adding common code
increases convergence;

this is typical of

introducing more and
higher-level abstractions.
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Device discovery and control
Data location and movement in discrete memory spaces

Expressing concurrent and parallel work
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OpenMl

Enabling HPC since 1997

{ PROGRAMMING
/{/ YOUR GPU WITH
S /) OPENMP

: Performance Portability for GPUs

Tom Deakin and Timothy G. Mattson




‘ IWOCL 2024
12th International workshop on open computing with OpenCL and SYCL

April 8-11, 2024 - Chicago, USA

iwocl.org
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ARCHER2 Usage: March-August 2022
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From doi.org/10.1109/PMBS56514.2022.00013
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Prompt: A fight between parallel programming languages
Generated with Al on Microsoft Bing Image Creator - 6 December 2023 at 11:58 am



Develop with P3 in mind with Standard Parallelism

Use open-standards as confluent off-ramp to be
productive today

Express all concurrent work asynchronously
Build in tuning parameters
Test all compilers & runtimes, on all systems, all the time

Tell your vendor

https://hpc.tomdeakin.com



