
1

ORNL IS MANAGED BY UT-BATTELLE LLC
FOR THE US DEPARTMENT OF ENERGY

Julia for Science
Tutorial. Part I

Ju ne 19 , 2025

William F Godoy, Philip W Fackler
and Pedro Valero-Lara
Advanced Computing Systems Research Section,
Computer Science and Mathematics Division

2

What to expect

• Day 1:

• Intro to Julia

• Intro to Parallel Programming in Julia

• Intro to JACC (performance portability)

• Day 2:

• Running on OLCF systems (Odo and
JupyterHub)

• Julia for HPC: JACC, MPI.jl, ADIOS2.jl

Future events:

• Tutorials at JuliaCon, ICPP, eScience

• SC25 Tutorial and BoF submissions, after
SC24 events

https://pde-on-gpu.vaw.ethz.ch/lecture7

https://scientificcoder.com/my-target-audience

https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience

3

A bit about:
Oak Ridge National Laboratory

• US Department of Energy Office of Science Lab
• Budget $2.4 billion
• 7K staff
• More than 100 disciplines
• 3,200 facility users and visiting scientists
• User facilities

– Oak Ridge Leadership Computing (OLCF)
– Building Technologies Research and Integration Center (BTRIC)
– Carbon Fiber Technology Facility (CFTF)
– Center for Nanophase Materials Sciences (CNMS)
– Center for Structural Molecular Biology (CSMB)
– High Flux Isotope Reactor (HFIR)
– Manufacturing Demonstration Facility (MDF)
– National Transportation Research Center (NTRC)
– Spallation Neutron Source (SNS)

Science
70%

Energy
15%

National
Security

15%

Funding by DOE mission
FY22: $2.4B

Great place for a scientific career!

4

Immediate “scientific” (Fortran-like) access to LLVM

julia> function add(x,y)
 return x+y
 end

julia> @code_llvm add(2,3)
; @ REPL[1]:1 within `add`
define i64 @julia_add_132(i64
signext %0, i64 signext %1) #0 {
top:
; @ REPL[1]:2 within `add`
; ┌ @ int.jl:87 within `+`

 %2 = add i64 %1, %0
; └
 ret i64 %2

}

https://godbolt.org/

https://godbolt.org/

5

1. What is Julia trying to do?

2. How is it done today and what are the limits?

3. What is new in your approach and why do you think it will be successful?

4. Who cares? And what difference will it make?

5. What are the risks?

• Close gaps between productivity (Python, R) and performance (C++,
Fortran) and portability for science

A Heilmeier Catechism for Julia

• Python: slow and fragmented, C++: complex, Fortran -> LANL report
• Complicated ecosystems (packaging, CMake, libraries, etc.)
• Computing is hard outside x86-64 CPU/NVIDIA GPU

• Julia is LLVM + rich open-source ecosystem + community for science
• Investments in industry, e.g. JuliaHub, Boeing, General Atomics,

academia and government

• Scientists would use one ecosystem = lower costs, accessible
hardware (CPU/GPU), more focus on science

• Sustainability and “critical-mass” in 10, 20, 30 years…
• More popular options: e.g. Mojo, Python+X: JAX, PyTorch?

Slow

Fast

HardEasy

https://scientificcoder.com/my-target-audience

https://juliadatascience.io/

Shipman, Galen M. Randles, Timothy C.

https://doi.org/10.2172/1970284
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience
https://juliadatascience.io/

6

Landscape of computing: The Tower of Babel

• Scientific software is divided by:

o Performance languages: C, C++, Fortran

o High-level productivity languages: Python, Matlab, R

• Plethora of programming models for heterogeneous
computing . Standard, vendor-specific, third party

• Major shift: vendor compiler convergence around LLVM

• Slowdown in Moore's Law cadence puts more focus on
massively parallel, vectorized computing: Arm CPUs,

NVIDIA/AMD/Intel GPU, AI accelerators, TPUs, etc.

• AI (industry) + traditional HPC requires powerful

reproducible programming abstractions for computation,
communication and data

• Choosing a programming model is not always a technical
decision

https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/

https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/
https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/
https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/
https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/
https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/
https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/
https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/
https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/
https://www.nextplatform.com/2020/04/28/programming-in-the-parallel-universe/

7

LLVM: a game changer https://llvm.org/ C. Lattner and V. Adve, "LLVM: a compilation

framework for lifelong program analysis &

transformation," International Symposium on

Code Generation and Optimization, 2004. CGO

2004., 2004, pp. 75-86,

https://doi.org/10.1109/CGO.2004.1281665 .

http://www.aosabook.org/en/llvm.html

LLVM Typed Static Single Assignment (SSA) Intermediate Representation (IR) aka LLVM-IR:

https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages

%57 = call %"Array(Int32)"* @"*Array(Int32)@Array(T)::unsafe_build:Array(Int32)"(i32 610, i32 2), !dbg !89

https://llvm.org/
https://doi.org/10.1109/CGO.2004.1281665
http://www.aosabook.org/en/llvm.html
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages
https://patshaughnessy.net/2022/2/19/llvm-ir-the-esperanto-of-computer-languages

8

LLVM: Vendor and programming model adoption

Intel

ARM

NVIDIA

Apple

AMD

https://csmd.ornl.gov/project/clacc

https://openmp.llvm.org

LLVM Commits

https://www.ornl.gov/project

/proteas-tune

https://www.intel.com/content/www/us/en/developer/articles/technical/adoption-of-llvm-complete-icx.html
https://www.arm.com/company/news/2014/04/arm-compiler-builds-on-open-source-llvm-technology
https://blog.llvm.org/2011/12/nvidia-cuda-41-compiler-now-built-on.html
https://developer.apple.com/swift/
https://www.amd.com/en/press-releases/2020-06-22-amd-epyc-processor-adoption-expands-new-supercomputing-and-high
https://csmd.ornl.gov/project/clacc
https://openmp.llvm.org/
https://www.phoronix.com/scan.php?page=news_item&px=LLVM-Record-Growth-2021
https://www.ornl.gov/project/proteas-tune
https://www.ornl.gov/project/proteas-tune
https://www.ornl.gov/project/proteas-tune
https://www.ornl.gov/project/proteas-tune

9

Rethink how we do Computing

• Programming productivity is always a challenge

• Barrier to entry from idea to portable performance

• Integrate AI (industry)+HPC (government)

• How to leverage legacy codes?

“Can a machine translate a

sufficiently rich mathematical

language into a sufficiently

economical program at a

sufficiently low cost to make the
whole affair feasible?”-----------------

---------- Backus on Fortran (1980)

• Scientific programming is HARD (specially on our

Leadership Computing Facilities, LCFs)

• Software is our “specialized science equipment” for

science that needs to be stewarded and advanced

Key question: “What novel approaches to software design and implementation can be developed to provide

performance portability for applications across radically diverse computing architectures?” from Reimagining
Codesign for Advanced Scientific Computing: Unlocking Transformational Opportunities for Future Computing Systems for Science. DOE
Report https://doi.org/10.2172/1822198

https://doi.org/10.2172/1822198

10

Julia's value proposition for science
• Designed for “scientific computing” (Fortran-like) and “data science”

(Python-like) with performant kernel code via LLVM compilation

• Lightweight interoperability with existing Fortran and C libraries
• Julia is a unifying workflow language with a coordinated ecosystem

Slow

Fast

HardEasy

https://juliadatascience.io/

https://pde-on-gpu.vaw.ethz.ch/lecture7
https://quantumzeitgeist.com/learning-the-
julia-programming-language-for-free/https://developer.nvidia.com/blog/gpu-

computing-julia-programming-language/

“Julia does not replace Python, but the costly workflow
process around Fortran+Python+X, C+X, Python+X or
Fortran+X (e.g. GPUs, simulation + data analysis)”
where X = { conda, pip, pybind11, Cython, Python, C, Fortran,

C++, OpenMP, OpenACC, CUDA, HIP, CMake, numpy, scipy,

Matplotlib, Jupyter, …}

LLVM
Rich data science

ecosystem

Pkg.jl

https://juliadatascience.io/
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://pde-on-gpu.vaw.ethz.ch/lecture7
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://quantumzeitgeist.com/learning-the-julia-programming-language-for-free/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/
https://developer.nvidia.com/blog/gpu-computing-julia-programming-language/

11
11

Julia Brief Walkthrough

❑ History: started at MIT in the early 2010s (predates

Python Numba)

https://julialang.org/blog/2022/02/10years/

❑ JuliaHub (formerly Julia Computing) and MIT are

major contributors: https://info.juliahub.com/case-
studies

❑ First stable release v1.0 in 2018, v1.11 as of 2025

https://julialang.org/

❑ Open-source GitHub-hosted packages and
ecosystem with MIT permissive license:

https://github.com/JuliaLang/julia

❑ Community: annual JuliaCon summer conference:
https://juliacon.org/2025/

95% of Julia packages in the registry had some form of CI
(youtube.com/watch?v=9YWwiFbaRx8)

https://julialang.org/blog/2022/02/10years/
https://info.juliahub.com/case-studies
https://info.juliahub.com/case-studies
https://info.juliahub.com/case-studies
https://julialang.org/
https://github.com/JuliaLang/julia
https://juliacon.org/2024/
http://youtube.com/watch?v=9YWwiFbaRx8

12
12

Julia Brief Walkthrough

❑ Reproducibility is in the core of

the language:

 - Interactive: Jupyter, Pluto.jl

 - Packaging Pkg.jl

 - Environment Project.toml

 - Testing Test.jl

❑ Just-in-time or Ahead-of-time

compilation with
PackageCompiler.jl (juliac is WIP)

❑ Powerful metaprogramming for

code instrumentation: @profile,

@time, @testset, @test,
@code_llvm, @code_native,

@inbounds,

❑ Interoperability is key: @ccall,

@cxx, PyCall, CxxWrap.jl

https://github.com/ornl-training/julia-basics

https://github.com/fonsp/Pluto.jl
https://github.com/JuliaLang/Pkg.jl
https://pkgdocs.julialang.org/v1/toml-files/
https://docs.julialang.org/en/v1/stdlib/Test/
https://github.com/JuliaLang/PackageCompiler.jl
https://github.com/JuliaPy/PyCall.jl
https://github.com/JuliaInterop/CxxWrap.jl
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics

13
13

When Python is not enough…and it’s a fragmented world

https://pyreadiness.org/3.13/

https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-

india-tutorial/main/img/history-of-bindings-2.svg

Making Python “faster”

https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg
https://raw.githubusercontent.com/jpivarski-talks/2023-05-01-hsf-india-tutorial/main/img/history-of-bindings-2.svg

14

Why NOT Julia??

• Existing large investments in other languages

• Long-term ROI: Package support? Stable not standard

• Ecosystem is not mature: Tooling? (HPC)

• Out of scope for my application needs

• I’m simply more comfortable in another language

https://julialang.org/

15

JACC roadmap
• JACC.experimental

o A separate JACC module to
explore new ideas

• JACC Proxies

o Compare JACC in science
workloads (LULESH,
XSBench, BabelStream,
Hartree-Fock)

• JACC.BLAS

– BLAS library on top of JACC

• JACC.multi

– Support for multi-device

• JACC.auto

– Support for auto-tuning

• Task-based – JACC.async

– DAGGER.jl, IRIS - R&D100

https://github.com/JuliaORNL/JACC.jl

Presented at SC24 WACCPD

JACC: SC24 Best Poster Finalist (6/120)

SC24 AI4Science using Julia

Best ORNL CS intern

poster by Kelly Tang

SC24: Julia for HPC 1st Tutorial

and 3rd BoF w/ MIT and LBNL

https://github.com/JuliaORNL/JACC.jl
https://sc24.conference-program.com/presentation/?id=tut130&sess=sess433
https://sc24.conference-program.com/presentation/?id=tut130&sess=sess433
https://sc24.conference-program.com/presentation/?id=tut130&sess=sess433
https://sc24.conference-program.com/presentation/?id=bof136&sess=sess648
https://sc24.conference-program.com/presentation/?id=bof136&sess=sess648
https://sc24.conference-program.com/presentation/?id=bof136&sess=sess648

16

OK, but this is HPC, What about performance??

Julia as a unifying end-to-end
workflow language on the
Frontier exascale system. SC
WORKS 2023

Evaluating performance and
portability of high-level
programming models: Julia,
Python/Numba, and Kokkos on
exascale nodes. IPDPS HIPS 2023

SC24 WACCPD

https://dblp.org/db/conf/sc/sc2023w.html#GodoyVALGSV23
https://dblp.org/db/conf/sc/sc2023w.html#GodoyVALGSV23
https://dblp.org/db/conf/sc/sc2023w.html#GodoyVALGSV23
https://dblp.org/db/conf/ipps/ipdps2023w.html#GodoyVDTJSMTVC23
https://dblp.org/db/conf/ipps/ipdps2023w.html#GodoyVDTJSMTVC23
https://doi.org/10.1109/SCW63240.2024.00245

17

LBM Prototype in Julia
Boltzmann Lattice Advanced Simulation Tool

• Lattice: D3Q19

• Mesh: 256x256x256

• Streaming algorithm: Esoteric Pull

• Test case: Taylor Green Vortex

https://cerfacs.fr/

https://cerfacs.fr/

18

Ongoing JACC efforts: facilities

• Integrated Research Infrastructure: provide an accessible performance portable ecosystem

• CPU only workflows -> CPU/GPU on HPC systems Best Paper at SC24 XLOOP

https://wordpress.cels.anl.gov/xloop-2024/awards/
https://wordpress.cels.anl.gov/xloop-2024/awards/

19

Where to get started?
• Pick a gentle tutorial: https://techytok.com/from-zero-to-julia/

• https://github.com/ornl-training/julia-basics (training by WF Godoy & Philip Fackler) OLCF
Tutorial: https://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/01-Solver.html

• Use VS Code as the official IDE + debugger

• JuliaCon talks are available on YouTube

• https://discourse.julialang.org/ Stackoverflow might be outdated,
https://julialang.slack.com/

• Julia docs and standard library: https://docs.julialang.org/en/v1/

• Learn: Project.toml, Testing.jl @testset @test, Pluto.jl , CUDA.jl/AMDGPU.jl , JACC.jl,
KernelAbstractions.jl, LinearAlgebra.jl , Makie.jl , Plots.jl and Flux.jl (AI/ML), how to build a
sysimage with PackageCompiler.jl

• Pick problems you care about! Let us know if you’re interested in a hackathon.

• Patience and community reliance: learning a language is a big investment.

19
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html

https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://techytok.com/from-zero-to-julia/
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://github.com/ornl-training/julia-basics
https://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/01-Solver.html
https://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/01-Solver.html
https://juliaornl.github.io/TutorialJuliaHPC/applications/GrayScott/01-Solver.html
https://discourse.julialang.org/
https://discourse.julialang.org/
https://julialang.slack.com/
https://docs.julialang.org/en/v1/
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html
https://williamfgc.github.io/programming/scientific-computing/2020/07/22/first-project-julia-language.html

20

S4PST: Stewardship of Programming Systems and Tools
(2024-2029)

PI: Keita Teranishi (ORNL), Co-PIs: Pedro Valero-Lara, William F Godoy

8 National Laboratories:

• Oak Ridge National Laboratory

• Argonne National Laboratory

• Lawrence Livermore National Laboratory

• Lawrence Berkeley National Laboratory

• Sandia National Laboratories

• Brookhaven National Laboratory

• Los Alamos National Laboratory

• SLAC National Accelerator Laboratory

University Partners:

• University of Delaware

• Massachusetts Institute of Technology

Collaborations:

• Louisiana State University

• Pacific Northwest National Laboratory

• Carnegie Mellon University

• University of Tennessee, Knoxville

• Stanford University

• Other 6 NSSGT projects

20
Future
HPC

Expert

21

Consortium for the Advancement of
Scientific Software (CASS)

Software Catalog

https://pesoproject.org

Scientific software
ecosystem benefits
(technical and community)

100,000+
Lines of code replaced with

high-quality libraries and tools

10,000+
Community members via

ecosystem collaborations

1,000+
Code teams share ecosystem

costs and benefits

100+
Speedup using advanced

devices like GPUs

10+
Reduction in build times via

Spack build caches

1
Source code base for all

computing systems

CASS and its member organizations work with our software
product teams to improve the quality, sustainability, and
interoperability of the software products in our ecosystem

https://cass.community

The CASS software catalog covers a range of freely
available libraries supporting leading-edge computational
science and engineering research on high-performance
computers. Most products available via Spack in the E4S
distribution.

Current CASS members: CORSA, FASTMath,
PESO, RAPIDS, S4PST, STEP, COLABS, SWAS

Current funding: DOE/ASCR
NGSST and SciDAC programs

Engage with us:
• Learn about the impacts of CASS software
• Join our announcement mailing list
• Participate in our working groups
• Reach out to a member organization responsible for specific areas

of the software ecosystem of interest
• Become a CASS member. We welcome projects and organizations

with similar scientific software stewardship missions

https://pesoproject.org/
https://pesoproject.org/
https://cass.community/
https://cass.community/software/
https://spack.io/
https://e4s.io/
https://cass.community/about/#current-members-and-leadership
https://cass.community/about/#sponsors-and-funding
https://www.energy.gov/science/ascr/advanced-scientific-computing-research
https://www.scidac.gov/
https://cass.community/impacts/
http://eepurl.com/iRiSnY
https://cass.community/working-groups/
https://cass.community/about/#current-members-and-leadership
https://cass.community/about/

22Thanks to the audience!

ORNL:

- Philip Fackler (here today)
- Pedro Valero-Lara
- Steven E Hahn

- Keita Teranishi
- Jeffrey S Vetter
- Rafael Ferreira da Silva

- Steven E. Hahn
- Corinna Thomas

DOE and External Collaborations:
- Suzanne Parete-Koon (NCCS)

- Helen He (NERSC)
- Johannes Blaschke (NERSC)

- Mose Giordano (UCL, UK)
- Rabab Alomairy, Julian Samaroo, Alan Edelman (MIT)
- Patrick Diehl, Kipton Barros (ANL)

- ORNL Workshop presenters

Summary

Sponsors:
ASCR Competitive Portfolios: MAGMA/Fairbanks project
ASCR NGSST PESO and S4PST projects
ASCR Facilities: OLCF
Past: The ASCR Bluestone Project and ECP PROTEAS-TUNE

Julia Community If you are ready to explore Julia, there is a community
https://scientificcoder.com/my-target-audience

• We explore the value proposition of Julia for our

needs: modern science language on top of LLVM

• Q: What’s Julia’s place in the DOE?

• Heterogenous targets, HPC, Quantum,
Energy Efficiency, AI, LLMs?

Acknowledgements

This research used resources of the Oak Ridge Leadership
Computing Facility and the Experimental Computing Laboratory at
the Oak Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725.

https://pesoproject.org/
https://s4pst.org/
https://csmd.ornl.gov/Bluestone
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience
https://scientificcoder.com/my-target-audience

23

We will be back at 3:20 pm EDT

	Slide 1: Julia for Science Tutorial. Part I
	Slide 2: What to expect
	Slide 3: A bit about: Oak Ridge National Laboratory
	Slide 4: Immediate “scientific” (Fortran-like) access to LLVM
	Slide 5: A Heilmeier Catechism for Julia
	Slide 6: Landscape of computing: The Tower of Babel
	Slide 7: LLVM: a game changer
	Slide 8: LLVM: Vendor and programming model adoption
	Slide 9: Rethink how we do Computing
	Slide 10: Julia's value proposition for science
	Slide 11: Julia Brief Walkthrough
	Slide 12: Julia Brief Walkthrough
	Slide 13: When Python is not enough…and it’s a fragmented world
	Slide 14: Why NOT Julia??
	Slide 15: JACC roadmap
	Slide 16: OK, but this is HPC, What about performance??
	Slide 17: LBM Prototype in Julia Boltzmann Lattice Advanced Simulation Tool
	Slide 18: Ongoing JACC efforts: facilities
	Slide 19: Where to get started?
	Slide 20: S4PST: Stewardship of Programming Systems and Tools (2024-2029)
	Slide 21: Consortium for the Advancement of Scientific Software (CASS)
	Slide 22: Thanks to the audience!
	Slide 23: We will be back at 3:20 pm EDT

