
ORNL is managed by UT-Battelle LLC for the US Department of Energy

An Overview of The Fortran Standard:
Fortran 2023 and Beyond

Reuben D. Budiardja
Acting Group Leader,
Advanced Computing for Nuclear, Particles, and Astrophysics
Oak Ridge Leadership Computing Facility
INCITS/Fortran Technical Committee Chair

2

Abstract

While it has been around for many decades, Fortran is still the preeminent
language suitable for scientific and numerical computation, making up a large
share of applications that are running in supercomputing facilities such as
OLCF. The latest Fortran standard, informally known as Fortran 2023, was just
recently released. In this talk, I will give an overview of the Fortran
standardization process, followed by a high-level summary of the new features
in Fortran 2023. I will also discuss future improvements being considered to
make Fortran an even more productive language in the era of heterogeneous
HPC.

3

Fortran Standardization Efforts

• Standards are published by International Organization for
Standardization (ISO); ISO JTC1/SC22/WG5 is the ISO working group for
Fortran
– consists of multiple “national bodies” (NB)

• INCITS is the U.S. standard NB, serving as Technical Advisory Group to the
JTC1
– INCITS/Fortran Technical Committee is responsible for the technical development of

the standards
https://www.incits.org/committees/pl22.3

– Formerly known as ANSI X3J3
• In practice, WG5 provides general directions & advice, while

INCITS/Fortran does the technical work
– Members outside the U.S. participate in INCITS/Fortran

https://j3-fortran.org/

https://www.incits.org/committees/pl22.3
https://j3-fortran.org/

4

Fortran Standardization Efforts

• Performance and numerical centric
– work hard such that feature specifications does not hamper optimization

• Continues evolution to accommodate hardware development in HPC
– while trying to avoid chasing passing fads

• Backward compatibility
– previous standards is proper subset of current standards

5

Fortran Standards Evolution
… and their compelling features in the exascale world

• FORTRAN 66
– The first standardized version by American Standard Association (now

ANSI) known as “USA Standard FORTRAN.”
– main program, subroutine, function, “intrinsic” data types

• FORTRAN 77
– Added significant features to address shortcomings of FORTRAN66
– Block if-statement
– do-loop extensions
– implicit statement

6

Fortran Standards Evolution (2)
… and their compelling features in the exascale world

• Fortran 90
– Notable name change from FORTRAN to Fortran
– The first version with an international (ISO) standard; one document

for both ISO and ANSI standard
– A major revision to the standards, including new features such as:

• free-form source
• modules
• generic procedures & operator overloading
• user-defined derived (structure) data types
• compile-time checking interfaces
• portable, user-specified numerical precision
• array operations with array syntax (sections or whole array)

–

Facilities for encapsulation,
composition, abstraction, &
polymorphism → managing
complexities for large programs.

my first introduction to the language

7

Fortran Standards Evolution (3)
… and their compelling features in the exascale world

• Fortran 95
– Minor revision: mostly clarifications and correcting defects
– forall statement and construct
– pure and elemental procedures
– pointer initialization and structure default initialization

8

Fortran Standards Evolution (4)
… and their compelling features in the exascale world

• Fortran 2003
– Another major revision, including new features such as:

• Object-oriented programming support: type extension, accessibility
control, dynamic type allocation, inheritance, type-bound procedures,
polymorphism

• Enhancements to derived type
• Procedure pointers

• C Interoperability

– By now all major compilers have implemented most if not all of Fortran 2003
standards

9

• Fortran 2008
– Relatively minor revision to the standard

• as decided by the committee to allow time for vendors to implement Fortran
2003 (and users to learn to use it)

– New features
• Coarrays (parallel programming for distributed & shared-memory architecture … more

on this later)

• Submodules - modularization of large modules, another layer of encapsulation

• Performance enhancement: do concurrent*, contiguous*
(a potential path for GPU programming directly from the base language more later)

• Enhancements to data objects, I/O, and execution control

Fortran Standards Evolution (5)
… and their compelling features in the exascale world

10

Fortran Standards Evolution (6)
… and their compelling features in the exascale world

• Fortran 2018
– Another minor revision with a few major enhancements:

• Further interoperability with C
• Enhancement to parallel features (coarrays)

• locality clause to do concurrent

11

Fortran - C Interoperability (Fortran 2003, 2018)

• Also known as “iso_c_binding” (for the Fortran module that provides entities
related to this feature).

• A standardized means to reference entities from/by C:
– calling C function from Fortran; calling Fortran subroutine / function from C
– defines what — and the conditions under which — entities are interoperable
– manipulations of Fortran data objects (e.g. allocatable arrays, pointers) from C

(or C-like) language (Fortran 2018)

• Probably one of the most useful feature in “heterogenous” world
– For e.g., providing bindings for libraries such as MPI, OpenMP, and GPU libraries (

HIP, HIPFort, CUDA, …)

• OLCF works with compiler vendors to ensure strong support for this feature

12

• Fortran 2023
– Published in October 2023

– ISO publication:
https://www.iso.org/standard/82170.html

– Committee’s “Interpretation Document”
https://j3-fortran.org/doc/year/24/24-007.pdf

The Current Standard: Fortran 2023
… and their compelling features in the exascale world

https://www.iso.org/standard/82170.html
https://j3-fortran.org/doc/year/24/24-007.pdf

13

Fortran 2023 New Features

• The Introduction section of the standard provides
the comprehensive list (with forward references)

• ~20 new features were added to the language +
smallish features + “fixes” & clarification (from
corrigenda, interpretation request, etc.)
– New features informally named “CC XX [titles / short

desc]”

• Only going to highlight some in this talk

• Excellent summary by John Reid at WG5:
– https://wg5-fortran.org/N2201-N2250/N2212.pdf

https://wg5-fortran.org/N2201-N2250/N2212.pdf

14

Conditional Expressions

… provide selective evaluation of subexpressions.

General form:
(condition ? expression [: condition ? expression]… : expression)

- Each expression shall have the same declared type, kind, and rank.
- Each condition is evaluated in succession until either

- one with the value true is found, in which case the expression following the
condition is taken

- all found to be false, in which case the value of the final expression is taken

Example:

if (a > 1.0) then
 value = a
else
 value = 0.0
end if

 value = (a > 1.0 ? a : 0.0)

15

Conditional Arguments

… provide actual argument selection in a procedure reference.

General form:
(condition ? consequent [: condition ? expression]… : consequent)

- Each consequent is an expression, a variable, or .nil. to specify absence
- Each condition is evaluated in succession:

- one with the value true is found, in which case the consequent following the
condition is taken

- all found to be false, in which case the value of the final consequent is taken
- Nesting is not allowed, i.e. consequent cannot be a conditional argument, but can

be a conditional expression

16

Conditional Arguments

Example:

call MySub ((x > 0 ? x : y > 0 ? y : z, &
 (edge > 0 ? edge : mode == 3 ? 1.0 : .nil.) &
 some, other, arguments)

where the interface of MySub is:

subroutine MySub (x, bnd)
 real, intent (inout) :: x
 real, intent (in), optional :: bnd

17

Fortran Parallelism

• do concurrent:
– first introduced in Fortran 2008
– tells the compiler there are no data dependencies between iterations
– compiler may optimize with, e.g. vectorization, unrolling, multi-threadings
– There is a set of restrictions that must be satisfied for do-concurrent

• Meant to standardized available directives recognized by compilers (sometime
with different exact meanings)

• Fortran 2018 adds locality clause: (local, local_init, shared, default(none))
• Fortran 2023 adds reduction specifier for intrinsic operator:

+, *, .and., .or., .eqv., max, min, iand, ieor, ior
• Some compilers allow offloading of do concurrent to GPU

real :: a, b, x(n)
a = 0
b = -huge (b)
do concurrent (1 = 1, n) reduce (+:a) reduce(max:b)
 a = a + x(i)
 b = max(b, x(i)
end do

18

Using Arrays to Specify Array Subscripts (1)

Recap: an array section A in Fortran is addressed with:

A ([lbound] : [ubound] : [stride] [, subscript-triplet]...)

Example:
Suppose an array is declared as A(5, 4, 6). The array-section
A (3:5, 2, 1:5:2) is a rank-2 array of shape (3, 3) the following elements
from A:

A (3, 2, 1) A (3, 2, 3) A (3, 2, 5)
A (4, 2, 1) A (4, 2, 3) A (4, 2, 5)
A (5, 2, 1) A (5, 2, 3) A (5, 2, 5)

19

Using Arrays to Specify Array Subscripts (2)

multiple-subscript can be used to specify a sequence of subscripts

provides a way to write code to access array in a
rank-agnostic manner

20

Arrays to Specify Rank and Bound

integer, dimension(3) :: lb_array, ub_array

real, dimension(lb_array-1 : ub_array+1) :: grid !-- rank-3 array

allocate (x (: ub_array), y (lb_array: ub_array))

Integer Constant to specify Rank

integer, dimension(10, 10, 10) :: x0

logical, rank(3), allocatable :: x1

real, rank(rank(x0)), allocatable :: x2

21

(Very) Brief Introduction / History to Coarrays

• Started with a simple idea: we can calculate the address of arrays in remote
processors from the local array

• First implemented as simple put and get operations
• Add subscript (with []) to array to indicate processor grid. Operation with a

codimension indicate to programmer that it (potentially) involves remote
access.

• Standardized in Fortran 2008

MPI Send & Recv

Fortran coarrays

J. Reid, B. Long, J. Steidel, “History of Coarrays and SPMD Parallelism in Fortran”

22

(Very) Brief Introduction / History to Coarrays (2)

• Coarrays provides parallel programming capability for Fortran on distributed-
and shared-memory systems.

• Program is replicated, each replication is called an image.

• An additional set of subscripts provide access to data on another image.
Additional statements provide image control.

• Compiler can optimize both execution and communication between images
images

• Coarrays is supported on Frontier with HPE/Cray compiler

• Recent Coarray tutorial at OLCF
https://www.olcf.ornl.gov/calendar/introduction-to-high-performance-parallel-distributed-compu
ting-using-chapel-upc-and-coarray-fortran/

https://www.olcf.ornl.gov/calendar/introduction-to-high-performance-parallel-distributed-computing-using-chapel-upc-and-coarray-fortran/
https://www.olcf.ornl.gov/calendar/introduction-to-high-performance-parallel-distributed-computing-using-chapel-upc-and-coarray-fortran/

23

US 12 Array of Coarray
• Fortran 2018:

C825 An entity whose type has a coarray ultimate component shall be a nonpointer
nonallocatable scalar, shall not be a coarray, and shall not be a function result.

• Use case to relax the constraint https://j3-fortran.org/doc/year/18/18-280r1.txt :

Boundary-data communication exchange … may be encapsulated into derived type, e.g.
type vector

real, allocatable :: component(:),component_buffer(:)[:]
end type
type(vector) :: bundle, field
Unfortunately, Fortran 2018 rules fix the number of such data objects in the program. Fixing the number of
data objects at compile time is undesirable … because it prevents those same objects from being reused as
components of other higher-level objects in a sufficiently flexible way … would need to be recompiled to
allow for changing the partitioning of the problem into subdomains.

• Fortran 2023 allows object with coarray component to be array or allocatable:
type(vector), dimension (:, :, :), allocatable :: bundle, field

C825 An entity whose type has a coarray potential subobject component shall not be a
pointer, shall not be a coarray, and shall not be a function result.

https://j3-fortran.org/doc/year/18/18-280r1.txt

24

simple Procedures

• Fortran 95 introduced pure procedure: procedure that does not have side
effect. e.g. it changes the variables through its argument (function return, or
intent(inout/out) args for subroutine.
– allowing it to be used in parallel construct / concurrency

• Fortran 2023 introduces simple procedure
– must satisfy all requirements of pure procedure
– plus additional requirements to ensure an entirely local calculation
– allow compiler to better optimized for threads / concurrency
– all intrinsic functions are simple

• Example
real simple elemental MyFunction (a1)
 …
end function MyFunction

25

Fortran 2023 Features Not Covered

• US 01 & 92: length statement
• US 14: Automatic allocation of length of character
• US 16: typeof and classof
• US 23: binary, octal, hexadecimal constants
• US 03: split and tokenize (token extractions from string)
• US 04, 05: Trig functions
• US 07, 08: Additional named constants for kinds
• UK 01: c_f_pointer can specify lower bound
• US 09: C - Fortran string conversion
• US 10, 11: edit descriptor enhancements
• US 21: Enumeration enhancements
• Other miscellaneous enhancements and clarifications

26

Fortran 202Y? (with ‘Y’ TBD)

• The committee is already working on the next standard, informally called
F202Y

• An initial list of features was approved by NB at 2023 WG5 ISO Fortran
Meeting, including
– Generic programming with Template
– Generic subprograms
– Standardize Fortran preprocessor
– Asynchronous tasking
– Improved rank-independent functionality
– etc. see https://wg5-fortran.org/N2201-N2250/N2222.txt for current list

• The next WG5 Fortran meeting (June 2024) will approve additional
features

https://wg5-fortran.org/N2201-N2250/N2222.txt

27

A motivating _AXPY example:

subroutine axpy(a, x, y)

 real, intent(in) :: a
 real, intent(in) :: x(:)

 real, intent(inout) :: y(:)

end subroutine axpy

Generic Programming with Templates (F202Y Preview)
Disclaimer: details are subject to change

28

_AXPY example:

Generic Programming with Templates (F202Y Preview)
Disclaimer: details are subject to change

credit: Tom Clune (NASA), Brad Richardson (NERSC), & INCITS/Fortran Generic Subgroup

29

Fortran in Heterogeneous Computing World

Fortran remains an excellent language platform:

• first class array handling
• relatively simple language

– can do sophisticated execution control and data with OOP, but
straightforward computational kernels for better optimization

• easy for compilers to optimize
• run in many architectures (x86-64, Power, ARM, …)
• backward compatibility

– previous standards are proper subset of current standards

30

Everything in Fortran

• Current practice
– MPI to manage multiple processes and inter-process communications

(e.g. one process per node, per NUMA-domain, …)
– OpenMP for shared-memory, multithreading execution (threading on

multi- & many-cores)
– Heterogeneous programming models for offloading computation to

GPUs (with one or multiple GPU per process)

• Potential (near) future for Fortran applications?
– coarrays to manage multiple “images” (run as processes)
– do concurrent for multithreading and offloading to GPUs
– Some technical challenges still to overcome
– Advantages: everything is done in the language, potentially simpler

for developer and better optimization opportunities.

31

Community Building

• SC23 BoF, and likely SC24 BoF

• https://fortran-lang.discourse.group/

• https://github.com/j3-fortran/

• ORNL / OLCF actively participates in many standardization efforts:
– Fortran, C++
– OpenMP
– MPI

• OLCF works with vendor partners to prioritize feature
implementations of new standards based on user / program
needs

https://fortran-lang.discourse.group/
https://github.com/j3-fortran/

32

Concluding Remarks

• Fortran remains important to industries and agencies
– it will continue to be supported at computing facilities

• Fortran standards continues to evolve as a modern language.
– what important features you would like to see?

• Consider joining the standards committee
– or reach out to ORNL / OLCF representatives

• How do we make sure we continue to have strong compilers?
– use features that can improve / benefit your code
– include standard tracking as part of procurement

• Need robust supports in tools, programing models, and ecosystems
• Strong workforce development is needed

3333

Thank You

Reuben D. Budiardja, reubendb@ornl.gov

