%OAK RIDGE

National Laboratory

An Overview of The Fortran Stand
Foriran 2023 and Beyond

A1 A1 1Q
10 3.()_(»1101mwmm§m AR
010110101011010 011 81 01 00

Reuben D. Budiardja

Acting Group Leader,

Advanced Computing for Nuclear, Particles, and ‘Asiro
Oak Ridge Leadership Computing Facility
INCITS/Fortran Technical Committee Chair

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Abstract

While it has been around for many decades, Fortran is still the preeminent
language suitable for scientific and numerical computation, making up a large
share of applications that are running in supercomputing facilities such as
OLCEF. The latest Fortran standard, informally known as Fortran 2023, was just
recently released. In this talk, | will give an overview of the Fortran
standardization process, followed by a high-level summary of the new features
iIn Fortran 2023. | will also discuss future improvements being considered to

make Fortran an even more productive language in the era of heterogeneous
HPC.

%OAK RIDGE gg@ﬁgg’

al Labor:

Fortran Standardization Efforts

https://i3-foriran.org/

« Standards are published by International Organization for

Standardization (ISO); ISO JTC1/SC22/WGS5 is the ISO working group for
Fortran
— consists of multiple “national bodies” (NB)

o INCITS is the U.S. standard NB, serving as Technical Advisory Group to the
JICI

— INCITS/Fortran Technical Committee is responsible for the technical development of
the standards
https://www.incits.org/committees/pl22.3

- Formerly known as ANSI X3J3

* In practice, WG5S provides general directions & advice, while
INCITS/Fortran does the technical work @
- Members outside the U.S. participate in INCITS/Fortran i
%QﬂéK RIDGE | gh2esie

ional Laboratory | FACILITY

https://www.incits.org/committees/pl22.3
https://j3-fortran.org/

Fortran Standardization Efforts

« Performance and numerical centric
— work hard such that feature specifications does not hamper optimization

« Continues evolution to accommodate hardware development in HPC
— while frying to avoid chasing passing fads

e Backward compatibility
— previous standards is proper subset of current standards

%OAK RIDGE LE@%@EH"’

al Labor:

Fortran Standards Evolution
... and their compelling features in the exascale world

e FORTRAN 66
- The first standardized version by American Standard Association (now
ANSI) known as “USA Standard FORTRAN."
— main program, subroutine, function, “intrinsic” data types

« FORTRAN /7

- Added significant features to address shortcomings of FORTRANG6
- Block if-statement

— do-loop extensions

— implicit statement

% OAK RIDGE | eteciir

National Laboratory | FACILITY

Fortran Standards Evolution (2)
... and their compelling features in the exascale world

° FOr'l'rQ N 90 my first intfroduction to the language

- Notable name change from FORTRAN to Fortran
— The first version with an international (ISO) standard; one document
for both ISO and ANSI standard
- A maqjor revision to the standards, including new features such as:
« free-form source N ~
e modules Facilities for encapsulation,
« generic procedures & operator overloading composition, absiraction, &
: : polymorphism — managing
« user-defined derived (structure) data types complexities for large programs.
« compile-time checking inferfaces PAS
o portable, user-specified numerical precision
e Array operations with array syntax (sections or whole array)
%OAK RIDGE | 2ie

National Laboratory | FACILITY

Fortran Standards Evolution (3)
... and their compelling features in the exascale world

e Fortran 95

— Minor revision: mostly clarifications and correcting defects
- forall statement and construct

— pure and elemental procedures

— pointer inifialization and structure default initialization

#_@OAK RIDGE gggﬁng

al Labor:

Fortran Standards Evolution (4)
... and their compelling features in the exascale world

e Fortran 2003

— Another major revision, including new features such as:

« Object-oriented programming support: type extension, accessibility
control, dynamic type allocation, inheritance, type-bound procedures,
polymorphism

e Enhancements to derived type
* Procedure pointers

e C Interoperability

— By now all major compilers have implemented most if not all of Fortran 2003
standards

%OAK RIDGE gggﬁng

al Labor:

Fortran Standards Evolution (5)
... and their compelling features in the exascale world

e Fortran 2008

- Relatively minor revision to the standard

e as decided by the committee to allow time for vendors to implement Fortran
2003 (and users to learn to use if)

— New features

o Coarrays (parallel programming for distributed & shared-memory architecture ... more
on this later)

o Submodules - modularization of large modules, another layer of encapsulation

 Performance enhancement. do concurrent®, contiguous™
(a potential path for GPU programming directly from the base language more later)

e Enhancements to data objects, I/O, and execution control

LEADERSHIP
COMPUTING
FACILITY

%OAK RIDGE

National Laboratory

Fortran Standards Evolution (6)
... and their compelling features in the exascale world

e Fortran 2018

— Another minor revision with a few major enhancements:
e Further interoperability with C
« Enhancement to parallel features (coarrays)

e |ocality clause to do concurrent

%OAK RIDGE gg@ﬁng

al Labor:

Fortran - C Interoperabillity (Fortran 2003, 2018)

e Also known as “iso_c_binding"” (for the Fortran module that provides entities
related to this feature).

A standardized means to reference entities from/by C:
- calling C function from Fortran; calling Fortran subroutine / function from C
- defines what — and the conditions under which — entities are interoperable

— manipulations of Fortran data objects (e.g. allocatable arrays, pointers) from C
(or C-like) language (Fortran 2018)

e Probably one of the most useful feature in “heterogenous” world

- For e.g., providing bindings for libraries such as MPI, OpenMP, and GPU libraries (
HIP, HIPFort, CUDA, ...)

* OLCF works with compiler vendors to ensure strong support for this feature
%OAK RIDGE tﬁﬁ%@:ﬁng’

al Labor:

The Current Standard: Fortran 2023

... and their compelling features in the exascale world

e Fortran 2023
— Published in October 2023

- ISO publication:
hitps:.//www.iso.org/standard/82170.html

— Committee’s “Interpretation Document”
hitps.//|3-fortran.org/doc/year/24/24-007.pdf

% OAK RIDGE | iepeessie

National Laboratory | FACILITY

https://www.iso.org/standard/82170.html
https://j3-fortran.org/doc/year/24/24-007.pdf

Fortran 2023 New Features

e The Introduction section of the standard provides

the comprehensive list (with forward references)

e ~20 new features were added to the language +

smallish features + “fixes” & clarification (from

corrigendaq, interpretation request, etc.)

— New features informally named “CC XX [titles / short
desc]”

 Only going to highlight some in this talk

e Excellent summary by John Reid at WGS:

%

— https://wagS-fortran.org/N2201-N2250/N2212.pdf

OAK RIDGE | o5t

National Laboratory | FACILITY

Introduction

This document comprises the specification of the base Fortran language, informally known as Fortran 2023.

With the limitations noted in 4.3.3, the

syntax and semantics of Fortran 2018 are contained entirely within

Fortran 2023. Therefore, any standard-conforming Fortran 2018 program not affected by such limitations is a
standard-conforming Fortran 2023 program. New features of Fortran 2023 can be compatibly incorporated into
such Fortran 2018 programs, with any exceptions indicated in the text of this document.

Fortran 2023 contains several extensions to Fortran 2018; these are listed below.

Source form:

The maximum length of a line in free form source has been increased. The maximum length of a statement
has been increased. The limit on the number of continuation lines has been removed.

Data declaration:

A data object with a coarray component can be an array or allocatable. BIND(C) ENUM are now referred
to as interoperable enumerations, and noninteroperable enumeration types are available. An interoperable
enumeration can be given a type name. TYPEOF and CLASSOF type specifiers can be used to declare one
or more entities to have the same type and type paramete another entity. A PUBLIC namelist group
can have a PRIVATE namelist group object. The DIMENSION attribute can be declared with a syntax
that does not depend on the rank (8.5.8, 8.5.17).

as

Data usage and computation:

Binary, octal, and hexadecimal literal constants can be used in additional contexts. A deferred-length
allocatable errmsg-variable is allocated by the processor to the length of the explanatory message. An
ALLOCATE statement can specify the bounds of an array allocation with array expressions. A pointer
assignment statement can specify lower bounds or rank remapping with array e> ions. Arrays can be
used to specify multiple subscripts or subscript triplets (9.5.3.2). Conditional expr ms provide selective
evaluation of subexpressions.

Input/output:

The AT edit descriptor provides output of character values with trailing blanks trimmed. The LEADING -
ZERO= specifier in the OPEN and WRITE statements, and the LZP, LZS and LZ control edit descriptors,
provide control of optional leading zeros during formatted output. deferred-length allocatable iomsg-
variable is allocated by the processor to the length of the explanatory message. A deferred-length allocatable
scalar io-unit in a WRITE statement is allocated by the processor to the length of the record to be written.

Execution control:

The REDUCE locality specifier for the DO CONCURRENT construct specifies reduction variables for the

loop. The NOTIFY WAIT statement, NOTIFY= specifier on an image selector, and the NOTIFY TYPE

from the intrinsic module ISO . FORTRAN ENV provide one-sided data-oriented synchronization between

images.

Intrinsic procedures:

The intrinsic functions ACOSD SIND, ATAND, ATAN2D, COSD, SIND, and TAND are trigonometric

functions in which angles are specified in degrees. The intrinsic functions ACOSPI, ASINPI, ATANPI,

2PI, COSPI, SINPI, and TANPI are trigonometric functions in which angles are specified in half-

multiples of 7). The intrinsic function SELECTED LOGICAL_KIND returns kind
ot m 2. SR S - bl B

1 S EE SRR ebien ODT I e VS RGNS bR MR e

SRR R

https://wg5-fortran.org/N2201-N2250/N2212.pdf

Conditional Expressions

... provide selective evaluation of subexpressions.

General form:
(condition ? expression [: condition ? expression]... : expression)

- Each expression shall have the same declared type, kind, and rank.
- Each condition is evaluated in succession until either

- one with the value true is found, in which case the expression following the
condition is tfaken

- all found to be false, in which case the value of the final expression is taken

Example:
if (a > 1.0) then
value = a
= > .
else value = (a > 1.0 ? a : 0.0)
value = 0.0
end if

LEADERSHIP
COMPUTING
FACILITY

%QAK RIDGE

ional Laboratory

Conditional Arguments

... provide actual argument selection in a procedure reference.

General form:
(condition ? consequent [: condition ? expression]... : consequent)

- Each consequent is an expression, a variable, or .nil. to specify absence
- Each condition is evaluated in succession:
- one with the value true is found, in which case the consequent following the
condition is taken
- all found to be false, in which case the value of the final consequent is taken
- Nesting is not allowed, i.e. consequent cannot be a conditional argument, but can
be a conditional expression

% OAK RIDGE | eteciir

National Laboratory | FACILITY

Conditional Arguments

Example:

call MySub ((x>0 ? x : y>0°?2Yy : Z, &
(edge > 0 ? edge : mode == 3 ? 1.0 : .nil.) &

some, other, arguments)
where the interface of MySub is:

subroutine MySub (x, bnd)
real, intent (inout) :: X
real, intent (in), optional :: bnd

% OAK RIDGE | iepeessie

National Laboratory | FACILITY

FOTTI’CII’\ POTO||€|ISm real :: a, b, x(n)

%QAK

do concurrent:

a=2=o

b = -huge (b)

do concurrent (1 = 1, n) reduce (+:a) reduce(max:b)
a =a+ x(1i)
b = max(b, x(i)

end do

first intfroduced in Fortran 2008
tells the compiler there are no data dependencies between iterations
compiler may optimize with, e.g. vectorization, unrolling, multi-threadings
There is a set of restrictions that must be satisfied for do-concurrent

Meant to standardized available directives recognized by compilers (sometime
with different exact meanings)

Fortran 2018 adds locality clause: (local, local init, shared, default(none))

Fortran 2023 adds reduction specifier for intrinsic operator:
+, %, .and., .or., .eqv., max, min, iand, ieor, ior

Some compilers allow offloading of do concurrent to GPU

RIDGE

ional Laboratory

LEADERSHIP
COMPUTING
FACILITY

Using Arrays to Specity Array Subscripts (1)

Recap: an array section A in Fortran is addressed with:

A ([lbound] : [ubound] : [stride] [, subscript-triplet]...)

Example:
Suppose an array is declared as A(5, 4, 6). The array-section
A (3:5, 2, 1:5:2) isarank-2 array of shape (3, 3) the following elements

from A:

A (3, 2, 1) A (3, 2, 3) A (3, 2, 5)
A(4, 2, 1) A (4, 2, 3) A (4, 2, 5)
A(S5, 2, 1) A (5, 2, 3) A (5, 2, 5)

% OAK RIDGE | eteciir

National Laboratory | FACILITY

Using Arrays to Specity Array Subscripts (2)

multiple-subscript can be used to specify a sequence of subscripts

Examples of references to parts of arrays using one-dimensional arrays to specify sequences of subscripts or
sequences of subscript triplets, assuming V1, V2, and V3 are rank-one arrays, are:

A(@[3,5])

A(6, @[3,5], 1)
A(e[1,2]:[3,4])

A(e:[4,6]
A(evi, :,
B(evi, :,
c(evi, :,

2y By

QV2)

QV2:)

@::V3)

1)

! Array element, equivalent to A(3, 5)

! Array element, equivalent to A(6, 3, 5, 1)

! Array section, equivalent to A(1:3, 2:4)

! Array section with stride, equivalent to A(:4:2, :6:2, :, 1)

Rank-one array section, the rank of A being

! SIZE (V1) + 1 + SIZE (V2).
 Rank 1 + SIZE (V2) array section, the rank of B being
I BIZE (V1) + 1 + SIZE (V2).
! Rank 1 + SIZE (V3) array section, the rank of C being
| SIZE (V1) + 1 + SIZE (V3).

% OAK RIDGE | eteciir

National Laboratory | FACILITY

provides a way to write code to access array in a
rank-agnostic manner

Arrays to Specify Rank and Bound

integer, dimension(3) :: 1lb_array, ub_array
real, dimension(1lb_array-1 : ub_array+l1l) :: grid !-- rank-3 array

allocate (x (: ub_array), y (1lb_array: ub_array))

Integer Constant to specify Rank

integer, dimension(10, 10, 10) :: x©
logical, rank(3), allocatable :: x1

real, rank(rank(x@)), allocatable :: x2

LEADERSHIP
COMPUTING
FACILITY

%OAK RIDGE

National Laboratory

(Very) Briet Introduction / History to Coarrays

e Started with a simple idea: we can calculate the address of arrays in remote
processors from the local array

e First implemented as simple put and get operations

 Add subscript (with []) to array to indicate processor grid. Operation with @
codimension indicate to programmer that it (potentially) involves remote
QCCess.

o Standardized in Fortran 2008

if (p==p1) then

call MPI_send (arrayl,size(arrayl),MPI_real,p2,tag,comm,ierr)

else if (p==p2) then if (p==p1) array2(:)[p2] = arrayl1(:)

call MPI_recv (array2,size(arrayl),MPI_real,pl,tag,comm,status,ierr)

end if
Fortran coarrays

MPI Send & Recv

J.Reid, B. Long, J. Steidel, “History of Coarrays and SPMD Parallelism in Fortran”
% OAK RIDGE | eteciir

National Laboratory | FACILITY

(Very) Brief Introduction / History to Coarrays (2)

e Coarrays provides parallel programming capability for Fortran on distributed-
and shared-memory systems.

e Program is replicated, each replication is called an image.

 An additional set of subscripts provide access to data on another image.
Additional statements provide image conftrol.

e Compiler can optimize both execution and communication between images
Images

e Coarrays is supported on Frontier with HPE/Cray compiler

e Recent Coarray tutorial at OLCF
https://www.olcf.ornl.gov/calendar/introduction-to-high-performance-parallel-distributed-compu
ting-using-chapel-upc-and-coarray-fortran/

,O0AK RIDGE | aesssie

National Laboratory | FACILITY

https://www.olcf.ornl.gov/calendar/introduction-to-high-performance-parallel-distributed-computing-using-chapel-upc-and-coarray-fortran/
https://www.olcf.ornl.gov/calendar/introduction-to-high-performance-parallel-distributed-computing-using-chapel-upc-and-coarray-fortran/

US 12 Array of Coarray

%

OAK RIDGE

National Laboratory

Fortran 2018:

C825 An entity whose type has a coarray ultimate component shall be a nonpointer
nonallocatable scalar, shall not be a coarray, and shall not be a function result.

Use case to relax the constraint hifps://|3-fortran.ora/doc/year/18/18-280r1 .1xt :

Boundary-data communication exchange ... may be encapsulated into derived type, e.g.
type vector

real, allocatable :: component(:),component buffer(:)[:]
end type
type(vector) :: bundle, field
Unfortunately, Fortran 2018 rules fix the number of such data objects in the program. Fixing the number of
data objects at compile time is undesirable ... because it prevents those same objects from being reused as
components of other higher-level objects in a sufficiently flexible way ... would need to be recompiled to
allow for changing the partitioning of the problem into subdomains.

Fortran 2023 allows object with coarray component to be array or allocatable:
type(vector), dimension (:, :, :), allocatable :: bundle, field

C825 An entity whose type has a coarray potential subobject component shall not be a
pointer, shall not be a coarray, and shall not be a function result.

LEADERSHIP
COMPUTING
FACILITY

https://j3-fortran.org/doc/year/18/18-280r1.txt

simple Procedures

e Fortran 95 infroduced pure procedure: procedure that does not have side
effect. e.g. it changes the variables through its argument (function return, or
intent(inout/out) args for subroutine.

— allowing it to be used in parallel construct / concurrency

e Fortran 2023 infroduces simple procedure
— must satisfy all requirements of pure procedure
— plus additional requirements to ensure an entirely local calculation
— dallow compiler to better optimized for threads / concurrency
— allintrinsic functions are simple

e Example
real simple elemental MyFunction (al)

end function MyFunction

%OAK RIDGE gggﬁng

al Labor:

FO

%OAK

rtran 2023 Features Not Covered

US 01 & 92: length statement

US 14: Automatic allocation of length of character
US 16: typeof and classof

US 23: binary, octal, hexadecimal constants

US 03: split and tokenize (token extractions from strinQ)
US 04, 05: Trig functions

US 07, 08: Additional named constants for kinds
UK O1: c_f_pointer can specify lower bound

US 09: C - Fortran string conversion

US 10, 11: edit descriptor enhancements

US 21: Enumeration enhancements

Other miscellaneous enhancements and clarifications

EEEEEEEEEE
RIDGE CCCCCCCCC
al Labor: CILITY

Fortran 202Y<e (with 'Y’ TBD)

e The committee is already working on the next standard, informally called
F202Y

e An initial list of features was approved by NB at 2023 WGS ISO Fortran
Iv\ee’rlng including
Generic programming with Template
- Generic subprograms
- Standardize Fortran preprocessor
- Asynchronous tasking
- Improved rank-independent functionality
- efc. see hitps://wagS-fortran.org/N2201-N2250/N2222.txt for current list

 The next WGS Fortran meeting (June 2024) will approve additional
features

%OAK RIDGE gggﬁng

al Labor:

https://wg5-fortran.org/N2201-N2250/N2222.txt

Generic Programming with Templates (F202Y Preview)

Disclaimer: details are subject to change

A motivating _AXPY example:

subroutine axpy(a, X, V)

real, intent(in) :: a
real, intent(in) :: x(:)

real, intent(inout) :: y(:)

end subroutine axpy

#_@OAK RIDGE gggﬁng

al Labor:

Generic Programming with Templates (F202Y Preview)

Disclaimer: details are subject to change

template axpy_tmpl(T, plus, times)
requirement bin_op(T, op)

rivate
type, deferred :: T Zublic : axpy integer, parameter :: sp = kind(1.0), dp = kind(1.d0)
elemental function op(a, b) requires bin_op(T, plus) instantiate axpy_tmpl(real(sp), operator(+), operator(*))
type(T), intent(in) :: a, b requires bin_op(T, times) instantiate axpy_tmpl(real(dp), operator(+), operator(*))
type(T) :: op interface axpy instantiate axpy_tmpl(integer, operator(+), operator(*))
end function orocedure axpy._ real(sp) :: a, x(10), y(10)
end requirement snd Tatescs real(dp) :: da, dx(10), dy(10)
contains integer :: ia, ix(10), iy(10)
subroutine axpy_(a, X, y)
type(T), intent(in) :: a call axpy(a, X, y)
type(T), intent(in) :: x(}) call axpy(da, dx, dy)
type(T), intent(inout) :: y(:) call axpy(ia, ix, iy)

y = plus(times(a, Xx), y)

end subroutine

end template credit: Tom Clune (NASA), Brad Richardson (NERSC), & INCITS/Fortran Generic Subgroup

Fortran in Heterogeneous Computing World

Fortran remains an excellent language platform:

 first class array handling

o relatively simple language

— can do sophisticated execution control and data with OOP, but
straightforward computational kernels for better optimization

e eqsy for compilers to optimize
e runin many architectures (x86-64, Power, ARM, ...)

o backward compatibility
— previous standards are proper subset of current standards

% OAK RIDGE | iepeessie

National Laboratory | FACILITY

Everything in Fortran

o Current practice
- MPI to manage multiple processes and inter-process communications
(e.g. one process per node, per NUMA-domain, ...)
- OpenMP for shared-memory, multithreading execution (threading on
multi- & many-cores)
- Heterogeneous programming models for offloading computation to
GPUs (with one or multiple GPU per process)

o Potential (near) future for Fortran applicationse
- coarrays to manage mulfiple “images” (run as processes)
- do concurrent for multithreading and offloading to GPUs
- Some technical challenges still to overcome
- Advantages: everything is done in the language, potentially simpler

for developer and better optimization opportunifies.
%,0AK RIDGE | iorr

ional Laboratory | FACILITY

Community Building

o« SC23 BoF, and likely SC24 BoF

e https://fortran-lang.discourse.group/

e hitps://github.com/|3-fortran/

« ORNL / OLCF actively participates in many standardization efforts:
— Fortran, C++
- OpenMP
- MPI

o OLCF works with vendor partners to prioritize feature
Implementations of new standards based on user / program
needs

% OAK RIDGE | iepeessie

National Laboratory | FACILITY

https://fortran-lang.discourse.group/
https://github.com/j3-fortran/

Concluding Remarks

Fortran remains important to industries and agencies
— it will continue to be supported at computing facilities

e Fortran standards continues to evolve as a modern language.
- what important features you would like to see¢

« Consider joining the standards committee
— orreach out to ORNL / OLCF representatives

« How do we make sure we contfinue to have strong compilers?

- use features that can improve / benefit your code
- include standard fracking as part of procurement

 Need robust supports in tools, programing models, and ecosystems
e Strong workforce development is needed

%OAK RIDGE gg@ﬁgg’

al Labor:

e
= et T v . | . ® T oW e ." A0 ——

'Reuben D. Budiardja, reubendb@ornl govk "”‘*

