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ARCHETYPES OF MACHINE LEARNING
• Supervised learning:

• Given these inputs and known outputs, derive 
a relationship

• Linear regression falls under supervised 
learning

• Artificial neural network:
– Linear and non-linear transformations with many 

free parameters
– Useful especially when the basis is unknown

• Reinforcement learning
• Train model to take actions within a given 

ruleset based on predefined reward function
– Play a video game with these inputs that gives you 

a high score
• Unsupervised Learning (not discussed 

today)
• Find relationships in unlabeled data

All archetypes rely on data to learn, generalize, 
and predict

Inputs
(Features)

Statistical ModelANN

Outputs
(Predictions)



MACHINE LEARNING TASKS
• Forward pass

• Pass inputs through a model with a given set of 
weights (i.e. values) for every free parameter

• Backward pass
• Calculate the gradient of the error w.r.t. the weights

• Training Loop (similar to optimization)
• Perform a forward pass with given weights and 

features
• Calculate error compared to expected output
• Use backward pass to estimate gradient
• Update the weights

• Trained model:
• Architecture (layers, layer types, etc.)
• Weights (values of the free parameters)

• Inference: Forward pass of a trained model to 
make a new prediction
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CHALLENGES IN EMBEDDING ML INSIDE AND OUTSIDE OF SIMULATIONS
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Technical
• How can we call an ML model from a Fortran/C/C++ code?

• How can we scale this to the needed compute scales?
• ML models in physics simulations tend to be small
• Want to efficiently allocate GPU resources

These technical challenges impede scientific progress!
• Naturally focuses the community on how to replace simulations with AI
• AI to solve physics problems tends to be in idealized contexts or static data
• Scientists are asking the questions, but do not have the tools to test this practically
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Lower the barriers to entry
•Enable Fortran, C, C++ 

simulations to interact with ML 
packages efficientl   y

•Rapidly prototype and iterate on 
new ML models

•Allow scientists to focus on 
building applications not code or 
infrastructure

Introduce a new workflow 
paradigm
•Simulations as producers and 

consumers of data and ML 
models

•Data is kept in-memory and 
available in-flight

SMARTSIM ENABLES AI-ENHANCED SIMULATIONS
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Capability/Outcome 

SmartSim

Partial Model 
Emulation

Online Inference

Online Analysis

Online Training

Computational Steering

Cl
ie

nt

Simulation



SMARTSIM OVERVIEW
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ABOUT SMARTSIM

SmartRedis 
Client API

AI Models AI Models

Data Sources Code / Scripts

Native C/C++/Fortran 
simulation 

Orchestrator

SmartRedis 
Client API

Analysis and 
Visualization

The SmartSim open-source library 
bridges the divide between 
traditional numerical simulation and 
data science

SmartSim enables simulations to be used as engines within a system, 
producing data, consumed by other services to add value and create new 
applications
• Use Machine Learning (ML) models in existing Fortran/C/C++ simulations
• Communicate data between C, C++, Fortran, and Python applications
• Train ML models and make predictions using TensorFlow, PyTorch, and ONNX
• Analyze data streamed from HPC applications while they are running

All of these can be done without touching the filesystem, i.e., data-in-motion

PYTORCH  |   TENSORFLOW   |   ONNX

Interactive or 
Automated 



Computational Fluid Dynamics: 
OpenFOAM, FLEXI, PHASTA, libCEED,
NekRS (in progress)

Climate and Weather:
MOM6, NEMO, CESM

Molecular Dynamics
LAMMPS, OPENMM

Easy to instrument an existing codebases 
to enable new AI/ML/data science 
applications
- Very little new code needs to be added

8

SMARTSIM AND SIMULATION INTEGRATIONS
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HIGH-LEVEL ARCHITECTURE

Python  |  C  | C++  |  
Fortran

Native Parallel / 
High- Performance 
Code

TCP

[0.2, 0.7, 0.3, 0.9],  [0.1, 0.5, 0.1, 0.2],  [0.9, 0.7, 0.8, 
0.9]

][
SmartRedis DataSets Data Movement StrategiesData Movement Strategies

Apollo, Cray XC/EX/CS, or other 
supported cluster system

AI Models Data 
Sources

Code / Scripts

SmartRedis

Filesystem CRAYLABS@HPE.COM
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CLUSTERED DATABASE

Orchestrator Database

User Provided 
Application/Simulatio
n

Python driver

Slur
m

PBS Local LSF

Compute node (s)

TCP

TCP

TCP

MPI

MPI

MPI

Compute Node

Application deployed by 
SmartSim

SmartRedi
s

SmartRedi
s

SmartRedi
s

SmartRedi
s

MPI

MPI

MPI

Compute Node

Application deployed by 
SmartSim

SmartRedi
s

SmartRedi
s

SmartRedi
s

SmartRedi
s
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CO-LOCATED DATABASE

MPI

MPI

Unix

Unix

Unix

Heterogenous Compute Nodes 
(CPU/GPU)

GPUs

HPC application using MPI for data transfer

User Provided 
Application/Simulatio
n

Application deployed by 
SmartSim

Orchestrator Database (co-located)

Slur
m

PBS Local LSF SmartRedi
s

SmartRedi
s

SmartRedi
s

Launchers

Python driver
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PROTOTYPICAL USE CASES
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ONLINE VISUALIZATION AND ANALYSIS

MPI + X 
(C/C++/Fortran) 

Simulation 

I want to perform visualization and analysis while my simulation is running
• Stream data from C/C++/Fortran simulations for analysis, and visualization in real 

time.
• No reading/writing to slow shared filesystems

Retrieve data as 
Numpy Arrays

SmartRedis

Rank n

.

.
SmartRedis

Rank 1

..

Tensors
(e.g., Fortran Arrays)

Data

Shard 1

Shard n

...

Data

Scripts

Scripts

“Orchestrator”

Datastore and scripting engine
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CONTINUOUS ONLINE TRAINING

MPI + X 
(C/C++/Fortran) 

Simulation 

I want to create machine learning models on simulation data without performing application collectives or writing 
to the filesystem

• SmartRedis Client can be used inside DataLoaders for TensorFlow and PyTorch to perform Stream Training
• Trained models can be checkpointed, saved and later sent to the database for online inference.
• Can be set from any language and called from any language (e.g., model set from Python, called from Fortran)

Training Service

Data

SmartRedis

Rank n

.

.
SmartRedis

Rank 1

..

Shard 1

Shard n

...

Data

Tensors
(e.g., Fortran Arrays)

AI Models

AI Models Horovod/DL Plugin

Training Service

Tensors
(Numpy Arrays)

Trained Models
(serialized)
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ONLINE MACHINE LEARNING TRAINING/INFERENCE

• I want to use continuously train a machine-learning model from my simulation and use the updated model for 
inference inside my solver

Data

. Shard 1

Shard n

...

Data
Tensors

(i.e. C++ Arrays)

AI Models

AI Models

SmartRedi
s

Legend

ML inference results to simulation
Data to Orchestrator

• Task:
Need to use velocities to understand 
how to optimally deform the mesh

• ML Workflow
1. Extract displacements
2. Train model on displacement 

between boundary and mesh 
boundary

3. Use ML model to predict mesh 
displacement for unstructured 
mesh

Collaboration with OpenFOAM Data-Driven 
Modelling Special Interest Group
(Maric and Weiner)

 

“Orchestrator”

Datastore and inference engine



Molecular Dynamics with DeepDriveMD
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• Goal: predict the folded configuration of a protein starting from its atomic structure
• The original paper: DeepDriveMD: Deep-Learning Driven Adaptive Molecular Simulations for Protein Folding

• Problems:
• Each protein is composed of hundreds or thousands of atoms
• Protein folding happens in discrete steps which are driven by energy minimization, but with random fluctuations

– Molecular Dynamics simulation compute evolution of protein and store steps at regular time intervals: a collection of steps is called 
a trajectory

• How can one efficiently explore the space of all possible conformations?
– Most trajectories will end up in suboptimal states
– Trajectories far apart may collapse on the same one after a sufficiently large number of steps

• Solution:
• Run short simulations, store steps
• Project conformations on low-dimensional space (latent space of a Convolutional Variational Autoencoder)
• Cluster discovered conformations
• Explore less sampled regions of the low-dimensional space

Molecular Dynamics with DeepDriveMD

CRAYLABS@HPE.COM 17

https://arxiv.org/pdf/1909.07817.pdf
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DEEPDRIVEMD DATA FLOW

CVAE Training

CVAE Training

CVAE Training

Outlier 
Detection

MD Simulation

MD Simulation

MD Simulation

Each simulation 
discovers and uploads 
configurations 
independently

Each training 
process waits for 
new configurations 
to train a new 
generative model

Checkpoint
s

Configurations

Generative Model

The outlier detection app 
waits for new trajectories and 
uses the best generative 
model for inference

MD simulations wait 
for new checkpoints 
or use initial 
configuration

Outliers and best configurations are 
selected as new starting iterations

Data 
prod
Data dep
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RELEXI – RL+CFD+SMARTSIM
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REINFORCEMENT LEARNING IN CFD

• CFD problems that can be posed as RL
• Training a neural network to behave like a turbulence model
• Design and test an active flow control system

• Supervised Learning
• Inherent risk because ML model does not interact with the 

simulation -> instability, crashes, etc.
• Reinforcement Learning solution:

• Train a model of turbulence in-situ to ensure stability
• Agent: predict Smagorinsky coefficient based on local u, v in LES
• Reward function: Compare LES+ML turbulent spectra to DNS 

solution

Work done by Kurz, Offenhauser, and Beck [2022], 
https://doi.org/10.1016/j.ijheatfluidflow.2022.109094

Modeling Assumption:
Full Solution ~ Coarse Solution + Turbulence 
Model
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ARCHITECTURE OF RELEXI



RL MODEL REPRODUCES “TRUE” SPECTRA

• RL Model convergence takes ~1 day
• 1,024 CPUs (8 nodes), 8 Nvidia A100s (1 node)

• Closely reproduces energy spectra down to 
resolved wavenumbers
• Skill beyond even the ‘resolvable’ limit
• Some generalizability to different Reynolds numbers

• Incurs about ~10% performance cost
• Small in comparison to Implict LES

• Flexibility in defining “reward” function allows 
different/multiple objectives
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DNS (True)
Implicit LES
Standard Smagorinsky
Dynamic Smagorinsky
RL Model



RL FOR ACTIVE FLOW CONTROL
Problem Statement:
• Reduce drag by controlling ‘jets’ at top and bottom of cylinder that inject momentum
RL Solution
• Find an optimal policy to control ‘jets’ based on information at 5 probe locations that minimizes 
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Uncontrolled 

Optimal RL Policy 



TURBULENCE MODELLING WITH ONLINE 
INFERENCE IN CLIMATE/WEATHER
Recent experiment done 
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TURBULENCE IN CLIMATE/WEATHER
• Resolving turbulence in the ocean requires 

excessive compute resources O(>10,000 CPUs)
• Hypothesis: Including turbulence models can 

improve low-resolution models
• Problem: Mathematically deriving new turbulence 

models is hard
• Solution: Use deep learning to predict the effect of 

turbulence from coarse data
• HPE: Partee et al. [2022]
• Courant Institute: Guillaumin and Zanna [2021]
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AI IN OCEAN SIMULATIONS

In-Memory Data Store 
              “Orchestrator”

EKEResnet
Shard 1

Shard 2

Shard 16

MOM6 Ensemble

.

.

.

Inferred EKE sent back to rank

Fortran 
client

Rank 910

.
Fortran 
client

Rank 1

.

...

Fortran 
client

Rank 910

.
Fortran 
client

Rank 1

.

...

Fortran 
client

Rank 910

.
Fortran 
client

Rank 1

.

...
Features sent to database

Goal: Improve representation of oceanic turbulence 
for quasi-LES simulations

Solution:
• Train machine-learning model to predict sub grid-

scale turbulent kinetic energy
• Model 1: Use predictions within the model of 

eddy turbulence
• 12 ensemble members 
• 10,920 CPUs, ~200 CPU-only nodes 
• 16 P100 GPUs

Milestone: First demonstration of AI embedded in 
the solver of a realistic ocean simulation

CRAYLABS@HPE.COMCollaboration between HPE/National Center for Atmospheric Research
Partee et al. [2022], doi.org/10.1016/j.jocs.2022.101707
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DEPLOYING A SECOND TURBULENCE MODEL ON FRONTIER
• Prologue

• Collaborators had a small, one-node ocean simulation 
with CNN parameterization

• Successfully integrated SmartSim into MOM6
• Cluster available to them did not have enough nodes 

to support a ‘realistic’ simulation
• June 12:

• SmartSim engineers get access to allocation on 
Frontier

• Install SmartSim from scratch
• Run base case

• June 13:
• Start doing scaling studies using SmartSim ensembles 

to understand how to efficiently use Frontier 
Resources

• June 14:
• Run one year of realistic simulation on 50 nodes of 

Frontier
• June 15

• Run application on 672 nodes of Frontier (~20,000 
CPUs and 5,000 AMD GPUs)



RESOURCES AND CONCLUSIONS
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DOCUMENTATION
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www.craylabs.org 

http://www.craylabs.org/


WHERE CAN I FIND MORE?

Other SmartSim Information
• Contact: CrayLabs@hpe.com
• SmartSim Repository: https://github.com/CrayLabs/SmartSim

• Includes docker container with tutorials!
• SmartRedis Repository: https://github.com/CrayLabs/SmartRedis
• Seminar given at NCAR: https://www.youtube.com/watch?v=2e-5j427AS0
• SmartSim Case studies: https://github.com/CrayLabs/SmartSim-Zoo
• SmartSim Slack workspace (link on repo)
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CLOSING WORDS
The value in combining AI and Simulations with SmartSim
• SmartSim can be used to create novel applications that involve both HPC and AI
• The lightweight SmartRedis client is easy to embed into simulation code
• Using a data-in-motion philosophy is key to creating complex AI/HPC workflows
• HPC and AI workflows have the potential to open up new branches of scientific discovery

Opportunities for Collaboration
Our team is open and eager to work with scientists across many domains
• Use simulations to generate data and symbolic regression for automatic equation discovery
• Building RL or blackbox optimizer to tune simulations for particular goals
• Improve accuracy of simulations by integrating ML models
• Adapt generative AI techniques for ML-assisted engineering design

Questions, comments, other new ideas?
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HANDS-ON WORKSHOP
RUNNING AN AI-ENABLED OCEAN SIMULATION
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OVERVIEW OF THE WORKSHOP EXERCISE
• By the end of the workshop:

• Understand how to instrument a simulation with 
SmartRedis

• Write a SmartSim driver script to configure and launch a 
simulation

• Be aware of Frontier-specific best practices
• Exercise

• Run a toy version of the ocean example
– Idealized North Pacific (‘double gyre’)

• Components:
– SmartSim modulefile
– MOM6 ocean executable
– Pre-trained ML model
– SmartSim driver

• Phase 1: Overview of implementation
• Phase 2: Run the example
• Phase 3: Scale the simulation

• Resources
• https://github.com/CrayLabs/OLCF_SmartSim2023.git
• Ask SmartSim Team Members in the Slack Channel for 

help
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Courtesy of Cheng Zhang [Princeton]

https://github.com/CrayLabs/OLCF_SmartSim2023.git


SMARTREDIS IMPLEMENTATION IN MOM6
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input(1) = "input"//CS%key_suffix
    model_input(1) = "model_input"//CS%key_suffix
    model_output(1) = "model_output"//CS%key_suffix
    output(1) = "output"//CS%key_suffix

    ! script 1
    db_return_code = CS%client%run_script(CS%script_key, "pre_process", input, model_input)
    if (CS%client%SR_error_parser(db_return_code)) call MOM_error(FATAL, "Run script1 in the database failed")

    ! ML model
    call cpu_clock_begin(CS%id_run_model)
    db_return_code = CS%client%run_model(CS%model_key, model_input, model_output)
if (CS%client%SR_error_parser(db_return_code)) call MOM_error(FATAL, "Run model in the database failed")
    call cpu_clock_end(CS%id_run_model)

    ! script 2
    call cpu_clock_begin(CS%id_run_script2)
    db_return_code = CS%client%run_script(CS%script_key, "post_process", model_output, output)
    if (CS%client%SR_error_parser(db_return_code)) call MOM_error(FATAL, "Run script2 in the database failed")
    call cpu_clock_end(CS%id_run_script2)

  ! extract the output from Python
    call cpu_clock_begin(CS%id_unpack_tensor)
    db_return_code = CS%client%unpack_tensor(output(1), out_for, shape(out_for))
    if (CS%client%SR_error_parser(db_return_code)) call MOM_error(FATAL, "unpack tensor from the database failed")
    call cpu_clock_end(CS%id_unpack_tensor)

• MOM6 is written in pure Fortran



THE MOM6 SMARTSIM DRIVER
• Link to driver: 

https://github.com/CrayLabs/OLCF_SmartSim2023/blob/main/smartsim_drivers/double_gyre/call_MOM6.p
y

• Main steps:
• Create a SmartSim Experiment
• Set the resources needed to launch and run MOM6
• Attach and configure a MOM6 simulation
• Configure a ‘colocated’ database to run alongside the simulation
• Add  ML model and pre/post-processing scripts 
• Launch the model

• Variation 1:
• Scale the number of CPUs used by the database and the simulation

• Variation 2:
• Enable CPU ‘pinning’ according to Frontier’s reserved system CPUs
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https://github.com/CrayLabs/OLCF_SmartSim2023/blob/main/smartsim_drivers/double_gyre/call_MOM6.py
https://github.com/CrayLabs/OLCF_SmartSim2023/blob/main/smartsim_drivers/double_gyre/call_MOM6.py


THE IMPORTANCE OF PINNING ON FRONTIER
• Colocated database and simulation code 

are slightly asynchronous
• Simulation code waits for ML inference to 

complete
• Pinning prevents processes from changing 

cores while waiting, reducing overall 
performance

• Frontier reserves cores for system 
processes
• Pinning those CPUs is not allowed

• SmartSim provides custom pinning for 
collocated database, Slurm allows cpu 
pinning of the application

• Rerun:
• python call_MOM6.py --enable-pinning
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CLOSING AND TAKEAWAYS
• Use this SmartSim driver as a starting point for your own simulations
• Other examples can be found in the tutorials:

https://github.com/CrayLabs/SmartSim/pkgs/container/smartsim-tutorials
• Please contact us at our Slack channel: 

https://join.slack.com/t/craylabs/shared_invite/zt-1z9cmf1yp-PrzmFadoofJ0hp5XHtDcMQ
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