—1

Hewlett Packard
Enterprise

Getting the Most out of HPE Cray MPI

Tim Mattox, HPC Performance Engineer, HPE Frontier Center of Excellence (COE)

February 16, 2023

Frontier Training Workshop: HPE Cray MPI



MPI Best Practices (from a former MPI developer... me)

e Post non-blocking receives before their matching sends
e Check the MPI error/return codes
e Things can go wrong (and will someday)
e Don’t abuse the MPI layer... It isn't magic
o Finite number of Communicators
o Finite number of Tags (MPI_TAG_UB could be as low as 32,767)
« Finite number of pending receives/sends
« Give MPI a chance to make progress (details on another slide)
» Avoid unnecessary use of MPI_ANY_SOURCE
o But use it if you need to, rather than posting a bunch of “just in case” receives
e Don’t roll-your-own MPI Collectives
 File a bug if performance is not what you expect (unless you are an HPL developer :-)
« Why? Roll-your-own won’t take advantage of hardware collective acceleration
« Also, have a look at the “new” non-blocking collectives in MPI-3

: Frontier Training Workshop: HPE Cray MPI I 2



How to post non-blocking receives before their matching sends

| put the i-receives before the sends, right? You need to do it across ranks, like this:
for (i = 0; 1 < dimensions; ++i) { for (1 = 0; 1 < dimensions; ++1) {
MPI Irecv; MPI Irecv;
MPI Isend; }
} - // Do some useful compute here
, .
MPT Waitall; // Dop t do MPI_Bgrrle? here |
— for (1 = 0; 1 < dimensions; ++1) {
// Okay place for some compute'
Well, not exactly...

MPI Isend;
// Better place for some compute'

}

// Best place to overlap compute’
MPI Waitall;

"Note: MPI buffers passed into MPI Isend, etc.are owned by MPl until after the MPT Wait, etc. Don’t touch! That includes reading!

: Frontier Training Workshop: HPE Cray MPI

I 3



How to give MPI a chance to make progress?

Cassini NICs do both tag-matching and progress the rendezvous protocol in hardware!
However, if profiling shows a non-trivial amount of time in MPI Wa1it, etc, fry one of these

two methods:

Make calls into MPI every so often

« During “computation overlap” code, especially if there
are pending non-blocking collectives
« MPTI Testsome is preferred over MPI Testany
e Many MPI calls will guarantee MPI progress
—-MPI Test (and allits variants)
-MPI Wait (and allits variants)

-MPI Request get status might be a better
alternative in MPI 4.1, officially®

*Note: The MPI Forum passed initial vote for it having same
text as MPI Test with regards to “progress guarantees”.

—

Set MPICH ASYNC PROGRESS=1

e This will spawn an MPI progress thread
e That thread will need a CPU core*
o Forces thread-safety to MPI_THREAD_MULTIPLE

e Might cause some MPI performance overhead

Avoid this if you can. It is rarely actually needed. With
Cassini NICs, the only common case that would need
this is when using non-blocking collectives and your
code doesn’t have MPI calls for a long time.

*Note: It is worth a try if you have spare cores

Frontier Training Workshop: HPE Cray MPI I 4



HPE Cray MPI Documentation

eman intro mpil
e Most useful MPI environment variables are documented here
« Pointers to other useful man pages
man fi cxi (The CXI Fabric Provider for libfabrics) Please ignore RXM on Sligshot-11 systems
 Cassini (CXI) is the name of the NIC in the Slingshot-11 network
« This man page documents environment variables for libfabrics (FI) that are specific fo Cassini NICs

emodule show cray-mpich
« Change log and bugs fixed by the currently loaded version

e OLCF System User Guide for Frontier
o https://docs.olcf.ornl.gov/systems/frontier user guide.html#gpu-aware-mpi (scroll up a tiny bit to start)
e MPI information is sprinkled throughout the examples

: Frontier Training Workshop: HPE Cray MPI I 5


https://docs.olcf.ornl.gov/systems/frontier_user_guide.html

Building/Compiling with HPE Cray MPI

e Load needed modules
emodule load cray-mpich (you might want to tfry a newer than the default version)
emodule load craype-accel-amd-gfx90a (not strictly necessary, but you might want it)
e Tell your build system how to link to the MPI, in two primary ways
« Use the HPE Cray Wrapper Compilers: cc/CC/ftn with either of these two PrgEnv modules:
-module load PrgEnv-cray andif youwanta non-default ROCm: module load amd-mixed/X.Y.Z
-module load PrgEnv-amd and if you want a non-default ROCm: module swap amd amd/X.Y.Z
o Or specify these compiler and linker flags for your non-wrapped compiler of choice

—Compiler flags: -I$ {MPICH DIR}/include
~Linker flags: -L$ {MPICH DIR}/lib -1mpi
— Extra Linker flags to handle GPU resident message buffers:
${PE MPICH GTL DIR amd gfx90a} ${PE MPICH GTL LIBS amd gfx90a}

: Frontier Training Workshop: HPE Cray MPI I 6



HPE Cray MPI: Commonly Used Environment Variables

*MPICH ENV DISPLAY=1
« Set this so your program will log exactly how MPI was configured

*MPICH VERSION DISPLAY=1
« Helps to track how issues change with different MPI versions

e MPICH GPU SUPPORT ENABLED=1
« Allows GPU resident buffers to be used in MPI calls. Probably already using this one

*MPICH GPU MANAGED MEMORY SUPPORT ENABLED=1
o Allows MPI to use memory addresses that can be migrated (i.e. cuda/hipMallocManaged memory)

*MPICH OFI NIC POLICY=GPU
o Selects the NIC that is closest to the GPU (GCD) being used?
e« Use MPICH OFI NIC POLICY=NUMA for non-GPU codes (also usually works for GPU codes)

*NOTE: For best performance, each Frontier node needs at least 4 MPI ranks (1 per NIC), usually 8 MPI ranks (1
per GCD). If you have fewer than 4 MPI ranks per node, not all the NICs will be used. HPE Cray MPI does not
currently (and isn’t planning on) load balancing a single MPI rank’s traffic across multiple Cassini NICs.

: Frontier Training Workshop: HPE Cray MPI I 7



HPE Cray MPI: Performance/Tuning Environment Variables
Generally, the defaults are good, but sometimes you can tune things for your application

«FI_MR CACHE MONITOR=memhooks

e This is the first thing | try for unexplained performance issues or MPI problems (hangs or significant performance
loss at scale). It forces a different memory registration cache monitor that tends to work better, in my experience.

' CXI RX MATCH MODE=software
« Use this for flow control or queue exhaustion problems. Seeing a lot of these at scale

e If using a version older than cray-mpich/8.1 .23 you might try increasing these parameters:
« I'T CXI REQ BUF SIZE,FI CXI REQ BUF MIN POSTED,FI CXI DEFAULT CQ SIZE
« These varTabIes_changE the amount of buffer sgace available in software m_a’rchina mode.
e Increasing these can OOM the job, so try to be judicious.

*MPICH GPU IPC THRESHOLD=<value>
« This is a performance funable parameter for controlling when GPU DMA engines are used for intra-node GPU-
GPU transfers. Messages smaller than this threshold won’t spend time setting up the DMA engine. If your code
does not reuse GPU-GPU buffers, it might be worth increasing this threshold from the 1024-byte default.
However, if your code does reuse GPU-GPU buffers, the setup time can be amortized. Thus, try to reuse buffers.

: Frontier Training Workshop: HPE Cray MPI I 8



HPE Cray MPI: Debugging’™ Environment Variables

*MPICH SINGLE HOST ENABLED=0
« Force fraffic through the NIC when you only have one node

*MPICH SMP SINGLE COPY MODE=NONE

« This disables all intranode optimizations and forces all in-node communication through slow interprocess
communicator paths on CPU memory. This is very useful to turn on if you think there's a bug in a fast on-node
communication pathway.

*MPICH GPU IPC ENABLED=0

« Disabling SMP operations above will also disable IPC. To keep CPU side intfranode optimizations in place but
force GPU intranode through CPU staging buffers, turn on GPU IPC.

*NOTE: Don’t use these in production runs! They are for debugging purposes only.

: Frontier Training Workshop: HPE Cray MPI I 9



Low Level Fabric Interface (FI) Debugging/Logging Environment Variables

*F'I LOG LEVEL=warn&FI LOG PROV=cx1i
« This will cause the Cassini provider to log messages. Can be very useful to debug issues.
e Turnup todebug (FI LOG LEVEL=debug) and you'll get a firehose, so be careful.
« When using, ignore these messages, they are “normal” on Frontier:

libfabric:8012:1658440432:core:core:cuda_hmem_dl_init():287<warn> Failed to find cudaMemcpy
libfabric:8012:1658440432:core:core:ofi_hmem_init():227 <warn> Failed to initialize hmem iface FI_HMEM_CUDA: No data available
libfabric:13281:1658440433:core:core:fi_getinfo_(0:1072<warn> fi_getinfo: provider ofi_rxm returned -61 (No data available)
libfabric:13281:1658440433:core:core:fi_getinfo_(0:1072<warn> fi_getinfo: provider ofi_rxd returned -61 (No data available)

libfabric:4110:1659388214:core:core:ofi_shm_map(Q:153<warn> shm_open failed

: Frontier Training Workshop: HPE Cray MPI I

10




HPE Cray MPI Takeaways

 Profile your application at relevant scale & problem size

e |f you see or suspect MPI performance problems
« Make sure you followed the MPI Best Practices | mentioned*
See if any of the environment variables | mentioned are relevant

Look for other relevant environment variablesin man intro mpi

Re-profile to see if the problem has changed/improved/moved

See if there is a newer cray-mpich/X.Y.Z version available

Ask at the Weekly Crusher (Frontier) COE Office Hours (currently held on Mondays from 2-3pm EST):

https://www.olcf.ornl.gov/crusher-office-hours

"My copy of the MPI-3 specification from 2012 is 822 pages long. This talk only scratched the surface of what could be recommended.

: Frontier Training Workshop: HPE Cray MPI I 11


https://www.olcf.ornl.gov/crusher-office-hours

Thank you

Tim Mattox
HPC Performance Engineer, HPE Frontier Center of Excellence (COE)
timothy.mattox@hpe.com

Frontier Training Workshop: HPE Cray MPI

: © 2023 Hewlett Packard Enterprise Development LP



MPI Best Practices, Explanations
Why post non-blocking receives before their matching sends?

e If the MPI_Irecv is already posted when a message arrives:

e The payload can go directly into the destination buffer without needing to make a temporary copy
« Even for larger messages using the rendezvous protocol, the RDMA-read of the payload can start immediately

e Otherwise, the message is put intfo an “Unexpected Message” queue

e For small messages using the eager protocol:

—The payload is copied into a temporary buffer

— The payload is copied again when the matching receive is posted
« For larger messages using the rendezvous protocol:

— The (bulk of the) payload waits at the sender until the matching receive is posted

— This waiting delays getting those bytes onto the wire (effectively averaging in “zero” bandwidth during this delay)
o A non-empty “Unexpected Queue” must be searched for a match any time an MPI receive call is made.

: Frontier Training Workshop: HPE Cray MPI I 13



MPI Best Practices, Explanations
Why check the MPI error/return codes? MPI_ERRORS_ARE_FATAL is the default setting, right?

e Yes, MPI_ERRORS_ARE_FATAL is the default setting, but you might prefer something else
e Things can go wrong (and will someday, especially on new leading-edge systems such as Frontier)
e You can get better debug information from your application by switching to MPI_ERRORS_RETURN
e Backtraces don’t always tell you enough about why or where things died.
e Having your application stop and print a non-generic error message can greatly help debug things

: Frontier Training Workshop: HPE Cray MPI I 14



MPI Best Practices, Explanations
Why not abuse the MPI layer? It seems like magic to me!

e Only use a reasonable number of MPI Communicators

« Many communicator creation calls are non-local, causing book-keeping network traffic

e Each communicator has more than just a “set membership” data structure (e.g. group) to frack

—See Chapters 6 and 7 of the MPI Standard for all the things communicators can keep frack of

e Most MPI implementations reserve some values of the 32-bit tag field for internal use.

 Slingshot-11 supports 33,554,431 as the maximum tag value.

« Other underlying interconnects that HPE Cray MPI supports have different maximum tag values

e« Use MPI Comm get attr (comm, MPI TAG UB, &val, &flag) tofind the upper bound
e Only post a reasonable number of pending receives/sends

« When a message arrives, the the pending-receives data structure must be searched for the correct match

—Singshot-11 hardware matching can only track a limited number before having to fall back to soffware matching
— The search time grows relative to the number of pending receives, especially when using soffware matching

« The Slingshot-11 NIC can only directly track/progress a limited number of outstanding sends
« The MPI layer may not know as well as the application which messages can progress efficiently

: Frontier Training Workshop: HPE Cray MPI I 15



MPI Best Practices, Explanations
Why avoid MPI_ANY_SOURCE? Isn’t that easier to match?

e Matching with MPI_ANY_SOURCE is harder
» Specifying a specific source rank allows for O(~1) matching using a hash of the message envelope
e The receive with MPI_ANY_SOURCE can’t be matched using that O(~1) hash function
« Instead, a message must first fail to match with the hash
« and then check for a match in the queue of receives that were marked as MPI_ANY_SOURCE
e Thus, it is best to avoid unnecessary use of MPI_ANY_SOURCE
« But use it if you need to, rather than posting a bunch of “just in case” receives.

: Frontier Training Workshop: HPE Cray MPI I 16



What about slurm options that affect MPI?

e The Frontier and Crusher systems are running in Low Noise Mode (LNM)
e The Linux OS is generally restricted to run its tasks on core O
« Similarly, interrupts are mapped to the 1st core of each CCD, leaving 7 per CCD that should be less noisy
e In testing we discovered that sometimes GCD helper tasks get scheduled on the 2"? core of a CCD
« Avoid all these potentially noisy cores with the -S16 option to slurm sbatch or salloc commands
— This lowers the available hardware cores to just 48 out of 64 per node, so this is not the best choice for CPU OpenMP
e Some example srun options (l also add —-cpu-bind=something as well, details are for another talk):
e For ——core-spec=16 (a.k.a —S16) allocations (my personal recommendation):
srun —--cpus-per—-gpu=6 —--gpus-per-task=1 --gpu-bind=closest
e« For ——core-spec=8 (a.k.a —S8) allocations (the slurm default on Frontier & Crusher):
srun —--cpus-per-gpu=7/ --gpus-per-task=1 --gpu-bind=closest
e For ——core-spec=0 (a.k.a —S0) allocations:
srun —--cpus-per—-gpu=8 --gpus-per-task=1 --gpu-bind=closest
» Verify the mapping is as you wanted using something like the hello_jobstep program:
« https://code.ornl.gov/olcf/hello_jobstep

E— PECray Pl | 17



https://code.ornl.gov/olcf/hello_jobstep

