
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Using HIP and GPU Libraries with OpenMP

OLCF Preparing for Frontier Training Series

Reuben D. Budiardja
Swaroop Pophale
Wael Elwasif
Suzanne Parete-Koon

Oak Ridge Leadership Computing Facility
Oak Ridge National Laboratory

2

The Question

GPU libraries and HIP kernels often expect pointers to GPU
memory addresses as arguments.

How do we get those from OpenMP?

3

Introducing “use_device_addr” clause

use_device_addr (var1, [var2, …])

[...] references to the list item in [...] are converted into references
to the corresponding storage [in the device data environment].

• item should already be mapped
• if not mapped, assumed to be accessible from the device (i.e. GPU)
• For C/C++, since dynamically allocated array is likely a pointer,

use use_device_ptr instead
• In OpenMP 4.5, only use_device_ptr exists

– use this with compiler supporting OpenMP 4.5 (e.g. IBM XL on Summit)

Potentially common use case for this clause
is to call GPU libraries / routines from host.

4

use_device_addr / use_device_ptr simple example

Repository containing examples in this tutorial:
https://github.com/olcf/openmp-gpu-library

https://github.com/olcf/openmp-gpu-library

5

Illustrative Fortran Example - Main program

Initializations on host

Mapping to device; OpenMP runtime creates
corresponding data storage on device

Multiple ways to do matrix multiplication:

• Using Fortran intrinsic matmul() on host
• Using subroutine with OpenMP offload
• Using subroutine with HIP kernel
• Using subroutine with GPU library (hipblas)

6

OpenMP Offload Subroutine

Computation if offloaded to GPU;
No data movement because of data mappings
are already done previously in the main
program.

7

Using HIP Kernel - Fortran Calling Subroutine

use_device_addr tells OpenMP to use the
corresponding addresses on device. c_loc()
returns the c_ptr type compatible to void * in
C.

Interface for the C helper subroutine (i.e.
function returning void) using the Fortran - C
interoperability standard.
c_ptr points to GPU memory addresses.

Preprocessor replaces “use_device_addr” to
“use_device_ptr” for IBM XL compiler on
Summit since it provides OpenMP 4.5.

8

Using HIP Kernel - C & HIP Subroutines

C helper function to be called from
Fortran.

HIP / CUDA kernel for matrix multiplication,
expecting the pointers to GPU memory
addresses as argument.

Create un-mangled C symbol available for
linkage with the corresponding Fortran
interface.

9

Using GPU Libraries (hipblas / cublas) - Fortran Interfaces

Interfaces to the hipblas / cublas functions;
name replacements are done via preprocessor
above.

Preprocessor to switch between HIP or CUDA
version based on defined macros (set in
Makefile)

Note: On Frontier / Crusher, these Fortran interfaces
are provided by hipfort:

• module load hipfort on terminal
• use hipfort in Fortran

https://github.com/ROCmSoftwarePlatform/hipfort

https://github.com/ROCmSoftwarePlatform/hipfort

10

Using GPU Libraries (hipblas / cublas) - Fortran Call

Calling hibblas / cublas

11

GPU-aware MPI library allows GPU
memory addresses to be used as
arguments to MPI subroutine calls:

• avoids staging (i.e. copying) data to
host first

• allows optimized / faster GPU-to-GPU
communications

In the next few slides we look at
examples on how to do this with
OpenMP-managed data.

GPU-Aware MPI Frontier Node Diagram (partial)

12

Calling GPU-aware MPI routine

13

Bonus: “omp_target_associate_ptr” routine*

omp_target_associate_ptr(host_ptr, device_ptr, size,
device_offset, device_num)

… maps a device pointer to a host pointer.

This routine tells OpenMP to use the device_ptr when host_ptr
appear in target region and subsequent map clause.

• device_ptr may be returned from runtime routine (e.g.
omp_target_alloc(), hipMalloc() / cudaMalloc())

• OpenMP will not create its own device storage for the host_ptr (i.e.
host variables)

*Note: omp_target_associate_ptr() is not needed
for GPU-aware MPI, but useful to know.

14

D_Buffer is dereferenced to F_Buffer, which is
now a rank-2 real arrays backed by
GPU-memory addressed. F_Buffer can be
passed to GPU-aware MPI routines.

Calling GPU-aware MPI routine (2)

Buffer is allocated; D_Buffer points to
GPU-memory allocated to the same size. Both are
associated with omp_target_associate_ptr()

Buffer: host variable
D_Fuffer: device_ptr to a GPU address
F_Buffer: Fortran pointer on the host

Values are set on addressed pointed by D_Buffer

15

Building and Running Matrix Multiplication Examples

On Summit

module load xl
module load cuda
make clean
make MACHINE=POWER_XL

jsrun -n 1 -g 1 -c 1 \
./MatrixMultiply_POWER_XL

 OpenMP Verification : PASSED
 HIP Verification : PASSED
GPU Library Verification : PASSED

On Crusher / Frontier

module load PrgEnv-cray
module load craype-accel-amd-gfx90a
module load rocm
make clean
make MACHINE=Cray_CCE

srun -n1 ./MatrixMultiply_Cray_CCE

 OpenMP Verification : PASSED
 HIP Verification : PASSED
GPU Library Verification : PASSED

Repository containing examples in this tutorial:
https://github.com/olcf/openmp-gpu-library

https://github.com/olcf/openmp-gpu-library

16

Conclusion

• We learned how to use GPU libraries with OpenMP code
– use_device_addr clause to get the corresponding device address of

a host variable
– omp_target_associate_ptr to map a generic device pointer to a host

variable for OpenMP runtime

• Complete examples code with README to run on Summit and
Crusher / Frontier is available at
[REPO INFO]

• Questions & comments: reubendb@ornl.gov

