
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Intro to C Programming

Tom Papatheodore
System Acceptance & User Environments Group
Oak Ridge Leadership Computing Facility (OLCF)
Oak Ridge National Laboratory (ORNL)

January 20, 2022

22 Open slide master to edit

Associated Materials for this Talk

The slides, code examples, and exercises can be found in the intro_to_c
directory of the repository for this course:

https://github.com/olcf/foundational_hpc_skills

https://github.com/olcf/foundational_hpc_skills

33 Open slide master to edit

C Programming Language

• General-purpose programming language initially developed by Dennis
Ritchie at Bell Laboratories

• Compiled Language
– A compiler is a program used to convert high-level code (like C) into machine code

• Many operating systems, as well as Perl, PHP, Python, and Ruby, are
written in C.

44 Open slide master to edit

A Simple C Program (01_simple_c_program/simple.c)

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

55 Open slide master to edit

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

C preprocessor directive telling the compiler to
include contents of the header file in angle
brackets.

66 Open slide master to edit

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

Declaration of a function called main, which is
where execution of the program begins. The
“int” indicates that the function will return an
integer value.

More on functions later…

77 Open slide master to edit

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

These curly braces indicate the beginning and
end of the main function.

88 Open slide master to edit

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

Defines an integer called “a” and assigns it a
value of 3.

More on data types soon…

99 Open slide master to edit

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

A semicolon is used to indicate the end of each
statement.

1010 Open slide master to edit

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

A function, called printf, that sends formatted
output to stdout (typically the terminal from
which the program was run).

This is one of the functions defined in the stdio.h
header file.

More on printf soon…

1111 Open slide master to edit

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}

And, of course, a semicolon to indicate the end
of the statement.

1212 Open slide master to edit

A Simple C Program

#include <stdio.h>

int main(){

int a = 3;

printf(“The value of this integer is %d\n”, a);

return 0;

}
Return value “returned” to the run-time
environment.

Typically, a value of 0 indicates a
normal/successful exit.

1313 Open slide master to edit

A Simple C Program – Ok, let’s compile and run

$ gcc simple.c

$ ls
a.out simple.c

$./a.out
The value of this integer is 3

Compile C code into executable

Run program

Executable is named a.out by default

• Using gcc compiler

1414 Open slide master to edit

A Simple C Program – Ok, let’s compile and run

$ gcc –o simple simple.c

$ ls
simple simple.c

$./simple
The value of this integer is 3

Compile C code into executable

Run program

-o is a compiler flag that allows you to
name the executable

• Using gcc compiler

1515 Open slide master to edit

Variables and Basic C Data Types
Variables are named storage areas
• For example, int a = 5 creates a variable (storage area in memory) named “a” and

saves the value of 5 in that memory location.
– Variables of different data types occupy different amounts of memory and can store different ranges of

values

• Must be declared before use.

Basic C Data Types
Name Type Range of Values Size (B)
char Character ASCII characters 1
int Integer -2,147,483,648 to 2,147,483,647 4
float Decimal (precision to 6 places) 1.2e-38 to 3.4e38 4
double Decimal (precision to 15 places) 2.3e-308 to 1.7e308 8

1616 Open slide master to edit

Formatted Output with printf Function
Example 1:
printf(“Hello World”);

The Result of Example 1 would be: Hello World

Example 2:
printf(“Hello World\n”);

The Result of Example 2 would be: Hello World (with a new line)

$./a.out
Hello World$

$./a.out
Hello World
$

1717 Open slide master to edit

Formatted Output with printf Function
Example 3:
int i = 2;
printf(“The value of the integer is %d\n”, i);

The Result of Example 3 would be: The value of the integer is 2

Example 4:
float x = 3.14159;
printf(“The value of the float is %.2f\n”, x);

The result of Example 4 would be: The value of the float is 3.14

String to print, with format
tags

format
tag

Variable whose value is
used in format tag

format
tag

String to print, with format
tags

Variable whose value is
used in format tag

1818 Open slide master to edit

Formatted Output with printf Function

Name Type Range of Values Format Specifier
char Character ASCII characters %c
int Integer -32,768 to 32,767 <or>

-2,147,483,648 to 2,147,483,647
%d

float Decimal (precision to 6
places)

1.2e-38 to 3.4e38 %f

double Decimal (precision to 15
places)

2.3e-308 to 1.7e308 %f

There are many options to format output using the printf function. Feel free to
Google :)

1919 Open slide master to edit

C Arrays

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

int A[10]; // declares an array of 10 integers

Data structure that
holds a fixed number of
data elements of a
specific type

2020 Open slide master to edit

C Arrays

7 32 256 17 -20 22 1 0 59 -2

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

int A[10]; // declares an array of 10 integers

A[0] = 7; // assigns values to the array elements
A[1] = 32;
A[2] = 256;
A[3] = 17;
A[4] = -20;
A[5] = 22;
A[6] = 1;
A[7] = 0;
A[8] = 59;
A[9] = -2;

printf(“The value of A[3] = %d\n”, A[3]);

The result would be:
The value of A[3] = 17

Data structure that
holds a fixed number of
data elements of a
specific type

Each element

is 4 bytes for int

Loops

• while Loop
• do-while Loop
• for Loop

2222 Open slide master to edit

while Loops

while(expression){

// Execute loop statements until expression evaluates to 0

}

expression: Evaluated before each iteration

2323 Open slide master to edit

03_loops/while_loop/while_loop.c

#include <stdio.h>

int main(){

float x = 1000.0;

while(x > 1.0){
printf(”x = %f\n", x);
x = x / 2.0;

}

return 0;
}

$ gcc –o while_loop while_loop.c

$./while_loop
x = 1000.000000
x = 500.000000
x = 250.000000
x = 125.000000
x = 62.500000
x = 31.250000
x = 15.625000
x = 7.812500
x = 3.906250
x = 1.953125

2424 Open slide master to edit

do-while Loops

do{

// Execute loop statements until expression evaluates to 0

}while(expression)

expression: Evaluated after each iteration

The implications of using a do-while loop instead of a while loop can be explored in
03_loops/do_while_loop/do_while_loop.c

2525 Open slide master to edit

for Loops

for(initialization; conditional_expression; iteration){

// loop statements

}

conditional_expression: Evaluated before body of loop

iteration: Evaluated after body of loop

2626 Open slide master to edit

03_loops/for_loop/for_loop.c

#include <stdio.h>

int main(){

int N = 10;
int sum = 0;

for(int i=0; i<N; i++){

sum = sum + i;
printf(”Iteration: %d, sum = %d\n", i, sum);

}

return 0;

}

$ gcc –o for_loop for_loop.c

$./for_loop
Iteration: 0, sum = 0
Iteration: 1, sum = 1
Iteration: 2, sum = 3
Iteration: 3, sum = 6
Iteration: 4, sum = 10
Iteration: 5, sum = 15
Iteration: 6, sum = 21
Iteration: 7, sum = 28
Iteration: 8, sum = 36
Iteration: 9, sum = 45

i++ is same as i = i + 1

2727 Open slide master to edit

Continue Statement
When a continue statement is encountered within a loop, the remaining
statements in the loop body (after the continue) are skipped and the next iteration
of the loop begins.

03_loops/continue/continue.c

#include <stdio.h>

int main(){

for(int i=0; i<10; i++){

if(i == 7){
continue;

}

printf("Loop iteration: %d\n", i);
}

return 0;
}

$ gcc –o continue continue.c

$./continue
Loop iteration: 0
Loop iteration: 1
Loop iteration: 2
Loop iteration: 3
Loop iteration: 4
Loop iteration: 5
Loop iteration: 6
Loop iteration: 8
Loop iteration: 9

2828 Open slide master to edit

Break Statement
When a break statement is encountered within a loop, the loop is terminated.

03_loops/break/break.c

#include <stdio.h>

int main(){

for(int i=0; i<10; i++){

if(i == 7){
break;

}

printf("Loop iteration: %d\n", i);
}

return 0;
}

$ gcc –o break break.c

$./break
Loop iteration: 0
Loop iteration: 1
Loop iteration: 2
Loop iteration: 3
Loop iteration: 4
Loop iteration: 5
Loop iteration: 6

Operators

Although we’ve been using them
already, let’s take a closer look at
operators…

3030 Open slide master to edit

Arithmetic Operators

A op B
+ Add

- Subtract

* Multiply

/ Divide

% Modulus

A++ Increment (same as A = A + 1)

B-- Decrement (same as B = B - 1)

int A = 10;
int B = 2;

A + B; // would give 12

A - B; // would give 8

A * B; // would give 20

A / B; // would give 5

A % B; // would give 0 Remainder after division of B into A

// would give 11

// would give 1

3131 Open slide master to edit

Relational Operators

A op B
== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

int A = 10;
int B = 2;

A == B; // would give 0 (false)

A != B; // would give 1 (true)

A > B; // would give 1 (true)

A < B; // would give 0 (false)

A >= B; // would give 1 (true)

Tests relationship between two
operands
• If true, returns 1
• If false, returns 0

A <= B; // would give 0 (false)

3232 Open slide master to edit

Assignment Operators

=

+=

-=

*=

/=

%=

int A = 10;
int B = 2;

A = B; // would assign a value of 2 to A

A += B; // would assign a value of 12 to A (Same as A = A + B)

A -= B; // would assign a value of 8 to A (Same as A = A - B)

A *= B; // would assign a value of 20 to A (Same as A = A * B)
A /= B; // would assign a value of 5 to A (Same as A = A / B)
A %= B; // would assign a value of 0 to A (Same as A = A % B)

3333 Open slide master to edit

Logical Operators

&& And (true if both true)

|| Or (true if at least 1 is true)

! Not (returns the opposite)

int A = 10;
int B = 2;
int C = 5;

((A > B) && (B == C)); // would give 0 (false)

((A > B) || (B == C)); // would give 1 (true)

!(B == C); // would give 1 (true)

Used in conjunction with relational
operations for decision making

If statements

Let’s take a look at if statements …

3535 Open slide master to edit

If Statements

if(condition_1){
// Execute these statements if condition_1 is met

}
else if(condition_2){

// Execute these statements if condition_2 is met
}
else{

// Execute these statements if other conditions are not met
}

Once a condition is met, the statements associated with that section are
executed and all other sections are ignored.

3636 Open slide master to edit

04_if_statements/if_statement/if_statements.c

#include <stdio.h>

int main(){

int i = 1;

if(i < 1){
printf(”i = %d (i < 1)\n", i);

}
else if(i == 1){
printf(”i is equal to 1\n");

}
else{
printf(”i = %d (i > 1)\n", i);

}

return 0;
}

$ gcc –o if_statement if_statement.c

$./if_statement
i is equal to 1

Functions

• Standard Library Functions
• User-Defined Functions

A reusable block of code that performs a specific task

3838 Open slide master to edit

Standard Library Functions
C built-in functions that can be accessed with appropriate #include statements

We have already encountered the printf function, which can be used by
including the stdio.h header file

There are many other C standard library functions defined in other header files
• math.h, stdlib.h, string.h, etc.

These functions should be used whenever possible in order to save time (why re-
invent the wheel) and because they are well-tested and portable.

3939 Open slide master to edit

User Defined Functions

return_type function_name(type1 arg1, type2 arg2, ...){

// Function Body

}

Let’s see some examples …

4040 Open slide master to edit

05_functions/add_two_numbers/add_two_numbers.c
#include <stdio.h>

// Function Definition
int add_numbers(int i, int j){

int result;
result = i + j;

return result;
}

// Main Function
int main(){

int num1 = 3;
int num2 = 7;

int sum = add_numbers(num1, num2);
printf("The sum of num1 and num2 is %d\n", sum);

return 0;
}

$ gcc –o add_two_numbers add_two_numbers.c

$./add_two_numbers
The sum of num1 and num2 is 10

4141 Open slide master to edit

05_functions/add_two_numbers/add_two_numbers.c
#include <stdio.h>

// Function Definition
int add_numbers(int i, int j){

int result;
result = i + j;

return result;
}

// Main Function
int main(){

int num1 = 3;
int num2 = 7;

int sum = add_numbers(num1, num2);
printf("The sum of num1 and num2 is %d\n", sum);

return 0;
}

$ gcc –o add_two_numbers add_two_numbers.c

$./add_two_numbers
The sum of num1 and num2 is 10

Formal parameters/arguments

Actual parameters/arguments

4242 Open slide master to edit

05_functions/change_value/change_value.c

#include <stdio.h>

// Function Definition
void change_number(int i){
i = 2;
printf("Inside the function, the number's value is %d\n", i);

}

// Main Function
int main(){

int number = 1;
printf("\nBefore calling the function, number = %d\n", number);

change_number(number);

printf("After calling the function, number = %d\n\n", number);

return 0;
}

$ gcc –o change_value change_value.c

$./change_value
Before calling the function, number = 1
Inside the function, the number's value is 2
After calling the function, number = 1

Wait.
What’s going on here?
The values of the actual
arguments are copied to the
formal arguments.

• So changes to the formal arguments
do not affect the actual arguments.

• This is called “call by value”

4343 Open slide master to edit

ASIDE: Variable Addresses and Pointers

4444 Open slide master to edit

Variable Addresses

#include <stdio.h>

int main(){

int i = 1;

printf("The value of i: %d\n", i);
printf("The address of i: %p\n", &i);

return 0;
}

& (reference operator) – gives the address of the variable
%p – format tag to
print address

The memory address of a variable can be
referenced using the reference operator, &

$ gcc –o variable_addresses variable_addresses.c

$./variable_addresses
The value of i: 1
The address of i: 0x7fff3e720c2c (this address will vary)

4545 Open slide master to edit

Pointer Variables
#include <stdio.h>

int main(){

float x = 2.713;
float *p_x;

p_x = &x;

printf("The value of x: %f\n", x);
printf("The address of x: %p\n", &x);
printf("The value of p_x: %p\n", p_x);
printf("The value stored at the memory address held in p_x: %f\n", *p_x);

return 0;
}

* used to declare pointer

There are special variables in C to store
memory addresses: pointers

$ gcc –o pointers_1 pointers_1.c

$./pointers_1
The value of x: 2.713000
The address of x: 0x7fff5ce8aa68
The value of p_x: 0x7fff5ce8aa68
The value stored at the memory address held in p_x: 2.713000

The pointer is assigned the value of the
memory address of x

* (dereference operator) – gives
the value stored at a memory
address

This is different use

of * than above!

06_addresses_and_pointers/pointers_1/pointers_1.c

4646 Open slide master to edit

Pointer Variables

#include <stdio.h>

int main(){

float x = 2.713;
float *p_x;

p_x = &x;

printf("The value of x: %f\n", x);
printf("The address of x: %p\n", &x);
printf("The value of p_x: %p\n", p_x);
printf("The value stored at the memory address held in p_x: %f\n", *p_x);

*p_x = 3.141;

printf(”\nThe value of x: %f\n", x);

return 0;
}

$ gcc –o pointers_2 pointers_2.c

$./pointers_2
The value of x: 2.713000
The address of x: 0x7fff5ce8aa68
The value of p_x: 0x7fff5ce8aa68
The value stored at the memory address held in p_x: 2.713000

The value of x: 3.141000

* (dereference operator) – gives the
value stored at a memory address

* (dereference operator) – also allows you
to change the value stored at that
memory address

06_addresses_and_pointers/pointers_2/pointers_2.c

4747 Open slide master to edit

Ok, back to functions …

4848 Open slide master to edit

05_functions/change_value/change_value.c

#include <stdio.h>

// Function Definition
void change_number(int i){
i = 2;
printf("Inside the function, the number's value is %d\n", i);

}

// Main Function
int main(){

int number = 1;
printf("\nBefore calling the function, number = %d\n", number);

change_number(number);

printf("After calling the function, number = %d\n\n", number);

return 0;
}

$ gcc –o change_value change_value.c

$./change_value
Before calling the function, number = 1
Inside the function, the number's value is 2
After calling the function, number = 1

4949 Open slide master to edit

In order to change the value of an actual
argument, we must pass its memory address, not

just its value.

(call by reference)

5050 Open slide master to edit

05_functions/change_value_correct/change_value_correct.c

#include <stdio.h>

// Function Definition
void change_number(int *i){
*i = 2;
printf("Inside the function, the number's value is %d\n", *i);

}

// Main Function
int main(){

int number = 1;
printf("\nBefore calling the function, number = %d\n", number);

change_number(&number);

printf("After calling the function, number = %d\n\n", number);

return 0;
}

$ gcc –o change_value_correct change_value_correct.c

$./change_value_correct
Before calling the function, number = 1
Inside the function, the number's value is 2
After calling the function, number = 2

Remember, the * used declare the
pointer variable, i, in the function
argument is different than the * used
within the body of the function. To be
clear,

int *i
• The * here is simply because this is how

you declare a pointer to an integer.

*i = 2
printf(“ … %d\n”, *i)
• The * in these statements is the

dereference operator, which allows
you to access the value of the variable
associated with the memory address.“Call by reference”

Memory Allocation

• Stack
– Region of computer memory that stores temporary variables

• When a new function is called the variables are created on stack

• When the function returns, the memory is returned to the stack (LIFO)

– Memory managed for you
– Variables can only be accessed locally
– Variable size must be known at compile time

• Heap
– Region of compute memory for dynamic allocation

• No pattern to allocation/deallocation (user can do this any time)

– Memory managed by user
• E.g. using malloc(), free(), etc.

– Variables can be accessed globally
– Variable size can be determined at run time

5252 Open slide master to edit

07_memory_allocation/static.c

#include <stdio.h>

int main(){

// Statically-allocated array of floats
int N = 5;
float f_array[N];

for(int i=0; i<N; i++){
f_array[i] = 0.25*i;

}

for(int i=0; i<N; i++){
printf("f_array[%d] = %f\n", i, f_array[i]);

}

return 0;
}

$ gcc –o static static.c

$./static
f_array[0] = 0.000000
f_array[1] = 0.250000
f_array[2] = 0.500000
f_array[3] = 0.750000
f_array[4] = 1.000000

5353 Open slide master to edit

07_memory_allocation/dynamic.c

#include <stdio.h>
#include <stdlib.h>

int main(){

// Dynamically-allocated array of floats
int N = 5;
float *f_array_dyn = malloc(N*sizeof(float));

for(int i=0; i<N; i++){
f_array_dyn[i] = 0.25*i;

}

for(int i=0; i<N; i++){
printf("f_array_dyn[%d] = %f\n", i, f_array_dyn[i]);

}

free(f_array_dyn);

return 0;
}

$ gcc –o dynamic dynamic.c

$./dynamic
f_array_dyn[0] = 0.000000
f_array_dyn[1] = 0.250000
f_array_dyn[2] = 0.500000
f_array_dyn[3] = 0.750000
f_array_dyn[4] = 1.000000

Allocates N*sizeof(float) bytes of
memory and returns pointer to
the block of memory

Releases block of memory associated with f_array_dyn

5454 Open slide master to edit

Additional Resources

• Exercises that go with these slides (as well as some examples to work
through)
– https://github.com/olcf/foundational_hpc_skills

• Other sites
– https://en.cppreference.com/w/c/language
– https://en.wikibooks.org/wiki/C_Programming
– https://stackoverflow.com/questions/tagged/c
– Many other tutorials can be found by googling “c programming language”

• Website with many practice problems
– https://projecteuler.net/

https://github.com/olcf/foundational_hpc_skills
https://en.cppreference.com/w/c/language
https://en.wikibooks.org/wiki/C_Programming
https://stackoverflow.com/questions/tagged/c
https://projecteuler.net/

5555 Open slide master to edit

Examples Used in These Slides

The slides and code examples used in these slides (as well as the exercises)
can be obtained from OLCF’s GitHub…

On the AWS node, you should have cloned the repository to the following location:

/home/<username>/foundational_hpc_skills

From there

$ cd intro_to_c

The exercises to try on your own can be found in intro_to_c/08_exercises

5656 Open slide master to edit

Question?

