
ORNL is managed by UT-Battelle LLC for the US Department of Energy

Node Local Storage: Common Use Cases
and Some Tools to Help

Christopher Zimmer

Mike Brim (UnifyFS)

22 Open slide master to edit

Summit Storage Perspective

• Primary Storage: Alpine:
– 250 PB GPFS Parallel File System
– 2.5 TB/s read and write
– Order of 100,000,000 IOPS

• Specialized Storage: Node Local NVMes
-Using all nodes

• 7.3 PB
• 25 TB/s Read
• 9.6 TB/s Write
• > 1,000,000,000 IOPS

33 Open slide master to edit

Fronter Storage Perspective (Public)

• Primary Storage: Orion
– ~679PB Lustre Multi-Tier Parallel File System
– 10 TB/s Distributed Flash Tier
– ~5 TB/s Capacity Tier
– Order of 100,000,000 IOPS

• Specialized Storage: Node Local NVMes
– >10 PB Capacity
– >60 TB/s Read
– >25 TB/s Write
– >10B IOPs

44 Open slide master to edit

When to use the Burst Buffers (Node Scale)

• Large block/Small-Medium sized streaming inputs/outputs on
periodic basis may benefit most from parallel file-system

• Small granularity access or exceptionally large I/O needs best
served by node-local
– >50TB/hour read/write (Checkpointing)
– <32K high frequency access (Training)

0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0

1
18

1
36

1
54

1
72

1
90

1
10

81
12

61
14

41
16

21
18

01
19

81
21

61
23

41
25

21
27

01
28

81
30

61
32

41
34

21
36

01
37

81
39

61
41

41
43

21
45

01

BW
/n

od
e

(G
B/

s)

Nodes/Job

Summit Per Node I/O BW

PFS Min PFS Max NVMe

55 Open slide master to edit

Checkpointing/Output

• When to consider:
– I/O overheads > 5% - What does this look like?

• Recent analysis of workload at ~100TB/hour
• 3-5 minutes per checkpoint (why) shared access, capturing full performance

generally requires ideal access patterns
• 15-20 seconds checkpoints to NVMe (drain in the background)

– 72 minutes of I/O reduced to 8 minutes.

• Frontier will be a larger machine with more transistors,
checkpoint frequency will like need to increase.

66 Open slide master to edit

Manual: Grab an NVMe and Go

• Allocate node local storage

• bsub -Is -nnodes 1 -PSTF008 -W00:10 -alloc_flags "nvme"
/bin/bash
– jsrun -r1 df

• /dev/mapper/bb-bb1 1452706772 33040 1452673732 1%
/mnt/bb/cjzimmer

• Batch:
– #!/bin/bash -l

– #BSUB -P STF008

– #BSUB -W 01:00

– #BSUB -nnodes 1

– #BSUB -alloc_flags "gpumps smt4 nvme"

77 Open slide master to edit

Spectral

• On node copy agent
– Runs on isolated cores as system agent

• Application Interface Transparent
– No code modifications (LD_PRELOAD)

• Changes limited job scripts
– Application only reasons about a single namespace

• Preserves portability with single namespace

88 Open slide master to edit

Spectral Data Flow

Application Node
Local
Burst
Buffer

Application
RankApplication

RankApplication
Rank

1. Open / Write
Redirected to
NVMe

Spectrald

Isolated System
Cores

Compute Cores/GPUs

2. Close call generates
possible transfer

GPFS Parallel
File System

3. Moves BB data to GPFS

ENV: PFS_DIR

99 Open slide master to edit

Spectral errata

• Spectral tracks no meta data
– Sophisticated I/O patterns including hazards (RAW, WAW) will result in

corruption
• The trade off is speed, meta data is expensive, raw performance can be achieved

UnifyFS

• Job-duration user-level file system

• Provides unified namespace over
independent node-local storage

• No application code changes
required, and minimal job script
changes

Source Code on GitHub:
https://github.com/LLNL/UnifyFS

Online documentation:
https://unifyfs.readthedocs.io/en/latest/index.html

https://github.com/LLNL/UnifyFS
https://unifyfs.readthedocs.io/en/latest/index.html

1111 Open slide master to edit

UnifyFS Overview

• Designed for efficient use of node-local storage for
applications with typical HPC bulk-synchronous I/O patterns
– supports both shared files (N-1) and file-per-process (N-N)

• Transparently intercepts I/O: POSIX, MPI-IO, HDF5

• Usage: 3 Easy Steps
1. Update application file paths to use prefix /unifyfs

• often, this does not require code changes
2. Link application with the UnifyFS client library
3. Update job script to start/stop UnifyFS servers at beginning/end of job

(with optional stage-in and stage-out)

1212 Open slide master to edit

UnifyFS File Sharing Semantics

• Application data written to node-local storage is only visible to
remote application processes after an explicit sync operation
– POSIX I/O: fsync() or close()
– MPI-IO: MPI_File_sync()
– HDF5: H5Fflush()

• File Lamination: mark file as read-only, no further writes allowed
– allows UnifyFS to optimize metadata management for faster reads
– to laminate, use UnifyFS API or chmod(0444)

1313 Open slide master to edit

UnifyFS - Summit Quickstart Guide

Ømodule use /sw/summit/unifyfs/modulefiles

Ømodule avail unifyfs/1.0-beta

Ømodule load unifyfs/1.0-beta/mpi-mount-<compiler>

Øunifyfs-help # for info on job integration and configuration

§ For Help/Issues/Suggestions:
§ Do not contact OLCF help
§ Send an email to ecp-unifyfs@exascaleproject.org

mailto:ecp-unifyfs@exascaleproject.org

1414 Open slide master to edit

Machine Learning

• Training in particular stresses the file-system
– Lots of small file reads and re-reads put tremendous pressure on the

system.

1515 Open slide master to edit

Common Technique

• Sharded Training
– Manual process

• 1. Cut dataset into shards that fit on NVMe
• 2. Copy shards to NVMe prior to run
• 3. Train on data from NVMe

– While this is tedious, it’s shown significant performance benefit
– Can impact convergence

1616 Open slide master to edit

New Tool (Summer 2022)

• Eliminates sharding
– Intercepts reads and caches them locally on NVMe
– Subsequent reads within the same application run fulfill subsequent

accesses without PFS.

– Eliminates meta data overhead
– Increases BW availability

1717 Open slide master to edit

Pre-Question

• How one would set up using a parallel MPI write across multiple
nodes that could be collected with the Burst Buffer?
– Spectral or UnifyFS are tools that can do this
– Chimera-IO writes 10 HDF5/MPIIO Files

• Spectral redirects the individual rank portions to the NVMe
• On a 96 node test case

– I/O timing is cut from 353s to 135s
• @96 GPFS has more aggregate BW than 96 NVMe

