
Bob Crovella, 9/14/2021

CUDA DEBUGGING

2

CUDA Error Management

compute-sanitizer

cuda-gdb

Further Study

Homework

AGENDA

3

ERROR MANAGEMENT

4

BASIC CUDA ERROR CHECKING

All CUDA runtime API calls return an error code.

CUDA runtime API: https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

Example: cudaError_t cudaSetDevice (int device)

cudaError_t is an enum type, with all possible error codes, examples:

cudaSuccess (no error)

cudaErrorMemoryAllocation (out of memory error)

cudaGetErrorString(cudaError_t err) converts an error code to human-readable string

Best practice is to always check these codes and handle appropriately. Just do it!

The usual kernel launch syntax (kernel_name<<<…>>>(…)) is not a CUDA runtime API call and does not
return an error code per-se

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

5

ASYNCHRONOUS ERRORS

CUDA kernel launches are asynchronous

The kernel may not begin executing right away

The host thread that launches the kernel
continues, without waiting for the kernel to
complete

It is possible for a CUDA error to be detected
during kernel execution

That error will be signalled at the next CUDA
runtime API call, after the error is detected

Host: Device:

int i = 0;
ret=cudaMalloc(…);
dev<<<…>>>(…);
int j = 4;
for (i=0, i<j; i++)

ret=cudaSetDevice(i);
…

__global__ void dev(…){
int *d=NULL;
int j=d[0];
<error>

launch

error

6

KERNEL ERROR CHECKING

CUDA kernel launches can produce two types of
errors:

Synchronous: detectable right at launch

Asynchronous: occurs during device code execution

Detect Synchronous errors right away with
cudaGetLastError() or cudaPeekAtLastError()

Asynchronous error checking involves tradeoffs

Can force immediate checking with a synchronizing
call like cudaDeviceSynchronize() but this breaks
asynchrony/concurrency structure

Optionally use a debug macro

Optionally set CUDA_LAUNCH_BLOCKING
environment variable to 1

dev<<<…>>>(…);
ret = cudaGetLastError();
if (debug) ret = cudaDeviceSynchronize();

Kernel error checking
example:

7

STICKY VS. NON-STICKY ERRORS

A non-sticky error is recoverable

Example: ret = cudaMalloc(100000000000000000000000000000); (out of memory error)

Such errors do not “corrupt the CUDA context”

Subsequent CUDA runtime API calls behave normally

A sticky error is not recoverable

A sticky error is usually (only) resulting from a kernel code execution error

Examples: kernel time-out, illegal instruction, misaligned address, invalid address

CUDA runtime API is no longer usable in that process

All subsequent CUDA runtime API calls will return the same error

Only “recovery” process is to terminate the owning host process (i.e. end the application).

A multi-process application can be designed to allow recovery: https://stackoverflow.com/questions/56329377

https://stackoverflow.com/questions/56329377

8

EXAMPLES

shared_mem_size=32768;

k<<<1024, 1024, shared_mem_size*sizeof(double), stream>>>(…);

cudaGetLastError() gets the last error *and clears it if it is not sticky*

cudaPeekAtLastError() gets last error but does not clear it

cudaMemcpy(dptr, hptr, size, cudaMemcpyDeviceToHost);

ret = cudaMemcpy(dptr2, hptr2, size2, cudaMemcpyHostToDevice);

9

EXAMPLES

Macro example - macro instead of function

#include <stdio.h>

#define cudaCheckErrors(msg) \

do { \

cudaError_t __err = cudaGetLastError(); \

if (__err != cudaSuccess) { \

fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \

msg, cudaGetErrorString(__err), \

__FILE__, __LINE__); \

fprintf(stderr, "*** FAILED - ABORTING\n"); \

exit(1); \

} \

} while (0)

10

COMPUTE-SANITIZER TOOL

11

COMPUTE-SANITIZER

A functional correctness checking tool, installed with CUDA toolkit

Provides “automatic” runtime API error checking – even if your code doesn’t handle errors

Can work with various language bindings: CUDA Fortran, CUDA C++, CUDA Python, etc.

Sub-tools:

memcheck (default): detects illegal code activity: illegal instructions, illegal memory access, misaligned
access, etc.

racecheck: detects shared memory race conditions/hazards: RAW, WAW, WAR

initcheck: detects accesses to global memory which has not been initialized

synccheck: detects illegal use of synchronization primitives (e.g. __syncthreads())

Many command line options to modify behavior:

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#command-line-options

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#command-line-options

12

MEMCHECK SUB-TOOL

The “default” tool – its recommended to run this tool first, before using other tools

Basic usage: compute-sanitizer ./my_executable

Kernel execution errors:

Invalid/out-of-bounds memory access

Invalid PC/Invalid instruction

Misaligned address for data load/store

Provides error localization when your code is compiled with –lineinfo

This is useful for other tools also, e.g. source-level work in the profilers (nsight compute)

Has a performance impact on speed of kernel execution

Can also do leak checking for device-side memory allocation/free

Error checking is “tighter” than ordinary runtime error checking

13

MEMCHECK EXAMPLE
Out-of-bounds detection

$ cat t1866.cu
__global__ void k(char *d){
d[43] = 0;

}
int main(){
char *d;
cudaMalloc(&d, 42);
k<<<1,1>>>(d);
cudaDeviceSynchronize();

}
$ nvcc -o t1866 t1866.cu -lineinfo
$./t1866
$

$ compute-sanitizer ./t1866
========= COMPUTE-SANITIZER
========= Invalid __global__ write of size 1 bytes
========= at 0x40 in
/home/user2/misc/t1866.cu:2:k(char*)
========= by thread (0,0,0) in block (0,0,0)
========= Address 0x7fe035a0002b is out of bounds
========= Saved host backtrace …
========= Host Frame:cuLaunchKernel
[0x7fe0685de728]
…
========= Host Frame: [0x4034b1]
========= in /home/user2/misc/./t1866
=========
========= Program hit unspecified launch failure
(error 719) on CUDA API call to cudaDeviceSynchronize.
…
========= ERROR SUMMARY: 2 errors

14

RACECHECK SUB-TOOL

CUDA specifies no order of execution among threads

Shared memory is commonly used for inter-thread communication

In this scenario, ordering of reads and writes often matters for correctness

Basic usage: compute-sanitizer --tool racecheck ./my_executable

Finds shared memory (only) race conditions:

WAW – two writes to the same location that don’t have intervening synchronization

RAW – a write, followed by a read to a particular location, without intervening synchronization

WAR – a read, followed by a write, without intervening synchronization

Detailed reporting is available:

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#racecheck-report-modes

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#racecheck-report-modes

15

RACECHECK EXAMPLE
RAW hazard

$ cat t1866.cu
const int bs = 256;
__global__ void reverse(char *d){
__shared__ char s[bs];
s[threadIdx.x] = d[threadIdx.x];
d[threadIdx.x] = s[bs-threadIdx.x-1];

}
int main(){
char *d;
cudaMalloc(&d, bs);
reverse<<<1,bs>>>(d);
cudaDeviceSynchronize();

}
$ nvcc -o t1866 t1866.cu -lineinfo
$ compute-sanitizer ./t1866
========= COMPUTE-SANITIZER
========= ERROR SUMMARY: 0 errors
$

$ compute-sanitizer --tool racecheck ./t1866
========= COMPUTE-SANITIZER
========= ERROR: Race reported between Write
access at 0x70 in
/home/user2/misc/t1866.cu:4:reverse(char*)
========= and Read access at 0x80 in
/home/user2/misc/t1866.cu:5:reverse(char*) [256
hazards]
=========
========= RACECHECK SUMMARY: 1 hazard displayed (1
error, 0 warnings)
$

16

INITCHECK SUB-TOOL
Detects use of uninitialized device global memory

$ cat t1866.cu
const int bs = 1;
__global__ void k(char *in, char *out){
out[threadIdx.x] = in[threadIdx.x];

}
int main(){
char *d1, *d2;
cudaMalloc(&d1, bs);
cudaMalloc(&d2, bs);
k<<<1,bs>>>(d1, d2);
cudaDeviceSynchronize();

}
$ nvcc -o t1866 t1866.cu -lineinfo
$ compute-sanitizer ./t1866
========= COMPUTE-SANITIZER
========= ERROR SUMMARY: 0 errors
$

$ compute-sanitizer --tool initcheck ./t1866
========= COMPUTE-SANITIZER
========= Uninitialized __global__ memory read of
size 1 bytes
========= at 0x50 in
/home/user2/misc/t1866.cu:3:k(char*,char*)
========= by thread (0,0,0) in block (0,0,0)
========= Address 0x7fc543a00000
========= Saved host backtrace up to driver
entry point at kernel launch time
========= Host Frame:cuLaunchKernel
[0x7fc57546a728]
========= in /lib64/libcuda.so.1
…
========= ERROR SUMMARY: 1 error
$

17

SYNCCHECK SUB-TOOL

Applies to usage of __syncthreads(), __syncwarp(), and CG equivalents (e.g. this_group.sync())

Typical usage is for detection of illegal use of synchronization, where not all necessary threads can
reach the sync point:

Threadblock level

Warp level

In addition, the __syncwarp() intrinsic can take a mask parameter, which specifies expected threads

Detects invalid usage of the mask

Basic usage: compute-sanitizer --tool synccheck ./my_executable

Applicability is limited on cc 7.0 and beyond due to volta execution model relaxed requirements

Example:

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html#synccheck-demo-illegal-syncwarp

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html#synccheck-demo-illegal-syncwarp

18

DEBUGGING WITH CUDA-GDB

19

CUDA-GDB

Based on widely-used gdb debugging tool (part of gnu toolchain). (This is not a tutorial on gdb)

“command-line” debugger, allows for typical operations like:

setting breakpoints (e.g. b)

single-stepping (e.g. s)

inspection of data (e.g. p)

And others

cuda-gdb uses the same command syntax where possible, and provides certain command extensions

Generally, you want to build a debug code to use with the debugger

The focus here will be on debugging device code. Assumption is you already know how to debug host code

Supports debug of both CUDA C++ and CUDA Fortran applications

20

BUILDING DEBUG CODE

Fundamentally, the compile command line for nvcc should include:

-g – standard gnu switch for building a debug (host) code

-G – builds debug device code

This makes the necessary symbol information available to the debugger so that you can do “source-
level” debugging.

The –G switch has a substantial impact on device code generation. Use it for debug purposes only.

Don’t do performance analysis on device code built with the –G switch

The –G switch will often make your code run slower

In rare cases, the –G switch may change the behaviour of your code

Make sure your code is compiled for the correct target: e.g. –arch=sm_70

21

ADDITIONAL PREP SUGGESTIONS

If possible, make sure your code completes the various sanitizer tool tests

If possible, make sure your host code is “sane” e.g. does not seg fault

If possible, make sure your kernels are actually being launched, e.g:

nsys profile --stats=true ./my_executable (and check e.g. “CUDA Kernel Statistics”

22

CUDA SPECIFIC COMMANDS

set cuda … <used to set general options and advanced settings>

launch_blocking (on/off) <make launches pause the host thread>

break_on_launch (option) <break on every new kernel launch>

info cuda … <get general information on system configuration>

devices, sms, warps, lanes, kernels, blocks, threads, …

cuda … <used to inspect or set current focus>

(cuda-gdb) cuda device sm warp lane block thread <display current focus coordinates>

block (0,0,0), thread (0,0,0), device 0, sm 0, warp 0, lane 0

(cuda-gdb) cuda thread (15) <change coordinate(s)>

23

DEMO

24

ADDITIONAL NOTES, TIPS, TRICKS

synccheck tool may have limited usefulness due to Volta execution model – relaxed sync requirements

CUDA Fortran debugging “print” commands not working correctly – expected to be fixed in a future tool
chain

Cannot inspect device memory (e.g. with “print”) unless stopped at a breakpoint in device code

compute-sanitizer host backtrace will be improved in the future

How to “look up” an error code (e.g. 719), two ways:

Search in …/cuda/include/driver_types.h

Docs: runtime API section 6.36, Data types

25

FURTHER STUDY
CUDA error checking:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#error-checking

https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-
using-the-cuda-runtime-api

CUDA context: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context

compute-sanitizer:

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html

cuda-gdb:

https://docs.nvidia.com/cuda/cuda-gdb/index.html

Simple gdb tutorial:

https://www.cs.cmu.edu/~gilpin/tutorial/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#error-checking
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context
https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://www.cs.cmu.edu/~gilpin/tutorial/

26

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw12/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

mailto:username@home.ccs.ornl.gov
mailto:git@github.com:olcf/cuda-training-series.git
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw12/readme.md

27

BACKUP: BASIC GDB SYNTAX

28

BASIC GDB

Compile your code with –g (host debug) and –G (device debug)

gdb ./my_executable

Set a breakpoint: b command

if only one file: (gdb) b <line_number>

If multiple source files: (gdb) b <file_name:line_number>

Run-from-start: r command

Single step: s command (“step into”)

Step next: n command (“step over”)

Continue : c command

Getting started, setting a breakpoint, running, single-step, continuing

29

BASIC GDB

Print data: p command

symbolically: p s[0]

multiple values: p s[0]@8

Removing breakpoints:

clear <file-name:line-number> (removes breakpoint based on location)

delete <breakpoint-number> (removes breakpoint based on id)

Conditional breakpoints:

Set a breakpoint first

condition <breakpoint-id> <Boolean-test>

condition 1 i<32

Inspecting data, clearing breakpoints, conditional breakpoints

