NVIDIA.

CUDA DEBUGGING

Bob Crovella, 9/14/2021

AGENDA

CUDA Error Management
compute-sanitizer

cuda-gdb

Further Study

> Homework

" ERROR MANAGEMENT

BASIC CUDA ERROR CHECKING

» All CUDA runtime API calls return an error code.

» CUDA runtime API: https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

» Example: cudaError_t cudaSetDevice (int device)

» cudaError_t is an enum type, with all possible error codes, examples:
» cudaSuccess (no error)

» cudaErrorMemoryAllocation (out of memory error)
» cudaGetErrorString(cudaError_t err) converts an error code to human-readable string
» Best practice is to always check these codes and handle appropriately. Just do it!

> The usual kernel launch syntax (kernel_name<<<...>>>(...)) is not a CUDA runtime API call and does not
return an error code per-se

4 “ANVIDIA.

https://docs.nvidia.com/cuda/cuda-runtime-api/index.html

ASYNCHRONOUS ERRORS

Host: Device:

CUDA kernel launches are asynchronous
» The kernel may not begin executing right away

» The host thread that launches the kernel
continues, without waiting for the kernel to
complete

It is possible for a CUDA error to be detected
during kernel execution

That error will be signalled at the next CUDA
runtime API call, after the error is detected

5 <ANVIDIA.

KERNEL ERROR CHECKING

Kernel error checking
example:

CUDA kernel launches can produce two types of
errors:

» Synchronous: detectable right at launch

» Asynchronous: occurs during device code execution

Detect Synchronous errors right away with
cudaGetLastError() or cudaPeekAtLastError()

Asynchronous error checking involves tradeoffs

» Can force immediate checking with a synchronizing
call like cudaDeviceSynchronize() but this breaks
asynchrony/concurrency structure

» Optionally use a debug macro

> Optionally set CUDA_LAUNCH_BLOCKING
environment variable to 1

6

<A NVIDIA.

STICKY VS. NON-STICKY ERRORS

» A non-sticky error is recoverable
» Example: ret = cudaMalloc(100000000000000000000000000000); (out of memory error)
» Such errors do not “corrupt the CUDA context”

» Subsequent CUDA runtime API calls behave normally

» A sticky error is not recoverable
» A sticky error is usually (only) resulting from a kernel code execution error
» Examples: kernel time-out, illegal instruction, misaligned address, invalid address
» CUDA runtime API is no longer usable in that process
» All subsequent CUDA runtime API calls will return the same error
» Only “recovery” process is to terminate the owning host process (i.e. end the application).

7 “ANVIDIA.

» A multi-process application can be desighed to allow recovery: https://stackoverflow.com/questions/56329377

https://stackoverflow.com/questions/56329377

EXAMPLES

shared_mem_size=32768;

k<<<1024, 1024, shared_mem_size*sizeof(double), stream>>>(...);
cudaGetLastError() gets the last error *and clears it if it is not sticky*
cudaPeekAtLastError() gets last error but does not clear it
cudaMemcpy(dptr, hptr, size, cudaMemcpyDeviceToHost);

ret = cudaMemcpy(dptr2, hptr2, size2, cudaMemcpyHostToDevice);

8

“ANVIDIA.

EXAMPLES

» Macro example - macro instead of function

OMPUTE-SANITIZER TOOL

COMPUTE-SANITIZER

v

A functional correctness checking tool, installed with CUDA toolkit

v

Provides “automatic” runtime API error checking - even if your code doesn’t handle errors

v

Can work with various language bindings: CUDA Fortran, CUDA C++, CUDA Python, etc.

v

Sub-tools:

» memcheck (default): detects illegal code activity: illegal instructions, illegal memory access, misaligned
access, etc.

» racecheck: detects shared memory race conditions/hazards: RAW, WAW, WAR

» initcheck: detects accesses to global memory which has not been initialized

» synccheck: detects illegal use of synchronization primitives (e.g. __syncthreads())
» Many command line options to modify behavior:

» https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#command-line-options 11 Anvioia

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#command-line-options

MEMCHECK SUB-TOOL

The “default” tool - its recommended to run this tool first, before using other tools
Basic usage: compute-sanitizer ./my_executable
Kernel execution errors:

» Invalid/out-of-bounds memory access

» Invalid PC/Invalid instruction

» Misaligned address for data load/store
Provides error localization when your code is compiled with -lineinfo

» This is useful for other tools also, e.g. source-level work in the profilers (nsight compute)
Has a performance impact on speed of kernel execution
Can also do leak checking for device-side memory allocation/free

Error checking is “tighter” than ordinary runtime error checking

12

“ANVIDIA.

MEMCHECK EXAMPLE

$ cat t1866.cu

__global void k(char *d){
d[43] = ©;

}

int main(){
char *d;
cudaMalloc(&d, 42);
k<<<1,1>>>(d);
cudaDeviceSynchronize();

}

$ nvcc -o t1866 t1866.cu -lineinfo

$./t1866

$

$ compute-sanitizer ./t1866

========= COMPUTE-SANITIZER

========= Invalid _ global__ write of size 1 bytes
========= at 0x40 in
/home/user2/misc/t1866.cu:2:k(char*)

========= by thread (0,0,0) in block (0,0,90)
========= Address Ox7fe035a0002b is out of bounds
========= Saved host backtrace ..

SSSs Host Frame:culLaunchKernel
[0x7fe0685de728]

========= Host Frame: [0x4034bl]
========= in /home/user2/misc/./t1866

========= Pprogram hit unspecified launch failure
(error 719) on CUDA API call to cudaDeviceSynchronize.

========= ERROR SUMMARY: 2 errors

RACECHECK SUB-TOOL

CUDA specifies no order of execution among threads
Shared memory is commonly used for inter-thread communication
In this scenario, ordering of reads and writes often matters for correctness
Basic usage: compute-sanitizer --tool racecheck ./my_executable
Finds shared memory (only) race conditions:
> WAW - two writes to the same location that don’t have intervening synchronization

» RAW - a write, followed by a read to a particular location, without intervening synchronization

» WAR - a read, followed by a write, without intervening synchronization
Detailed reporting is available:

» https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#racecheck-report-modes

14 “ANVIDIA.

https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html#racecheck-report-modes

RACECHECK EXAMPLE

$ cat t1866.cu

const int bs = 256;

__global void reverse(char *d){
__shared__ char s[bs];
s[threadIldx.x] = d[threadIldx.x];
d[threadIdx.x] = s[bs-threadIldx.x-1];

}

int main(){
char *d;
cudaMalloc(&d, bs);
reverse<<<1l,bs>>>(d);
cudaDeviceSynchronize();

}
$ nvcc -o t1866 t1866.cu -lineinfo
$ compute-sanitizer ./t1866
========= COMPUTE-SANITIZER
========= ERROR SUMMARY: O errors

$ compute-sanitizer --tool racecheck ./t1866
========= COMPUTE-SANITIZER

========= ERROR: Race reported between Write
access at 0x70 in
/home/user2/misc/t1866.cu:4:reverse(char*)

and Read access at 0x80 in
/home/user2/misc/t1866.cu:5:reverse(char*) [256
hazards]

========= RACECHECK SUMMARY: 1 hazard displayed
error, © warnings)

$

(1

NVIDIA.

INITCHECK SUB-TOOL

$ cat t1866.cu

const int bs = 1;

__global void k(char *in, char *out)({
out[threadIldx.x] = in[threadIdx.x];

}

int main(){
char *dl1l, *d2;
cudaMalloc(&d1l, bs);
cudaMalloc(&d2, bs);
k<<<1,bs>>>(d1l, d2);
cudaDeviceSynchronize();

}
$ nvcc -o t1866 t1866.cu -lineinfo
$ compute-sanitizer ./t1866
========= COMPUTE-SANITIZER
========= ERROR SUMMARY: O errors

$ compute-sanitizer --tool initcheck ./t1866
========= COMPUTE-SANITIZER

========= Uninitialized _ global memory read of
size 1 bytes

S at Ox50 in
/home/user2/misc/t1866.cu:3:k(char*,char*)
========= by thread (0,0,0) in block (0,0,0)
========= Address Ox7fc543a00000

SSSs Saved host backtrace up to driver
entry point at kernel launch time

SSSs Host Frame:culLaunchKernel
[0x7fc57546a728]

—======== in /1ib64/1libcuda.so.1

========= ERROR SUMMARY: 1 error

NVIDIA.

SYNCCHECK SUB-TOOL

Applies to usage of __syncthreads(), __syncwarp(), and CG equivalents (e.g. this_group.sync())

Typical usage is for detection of illegal use of synchronization, where not all necessary threads can
reach the sync point:

» Threadblock level

> Warp level

In addition, the __syncwarp() intrinsic can take a mask parameter, which specifies expected threads

» Detects invalid usage of the mask
Basic usage: compute-sanitizer --tool synccheck ./my_executable
Applicability is limited on cc 7.0 and beyond due to volta execution model relaxed requirements
Example:

» https://docs.nvidia.com/compute-sanitizer/ ComputeSanitizer/index. html#synccheck-demo-illegal-syncwafp <™=

https://docs.nvidia.com/compute-sanitizer/ComputeSanitizer/index.html#synccheck-demo-illegal-syncwarp

DEBUGGING WITH CUDA-GDB

CUDA-GDB

» Based on widely-used gdb debugging tool (part of gnu toolchain). (This is not a tutorial on gdb)
» “command-line” debugger, allows for typical operations like:
» setting breakpoints (e.g. b))
» single-stepping (e.g. s)
» inspection of data (e.g. p)
» And others
» cuda-gdb uses the same command syntax where possible, and provides certain command extensions
» Generally, you want to build a debug code to use with the debugger
» The focus here will be on debugging device code. Assumption is you already know how to debug host code

> Supports debug of both CUDA C++ and CUDA Fortran applications

19 “ANVIDIA.

BUILDING DEBUG CODE

Fundamentally, the compile command line for nvcc should include:
» -g - standard gnu switch for building a debug (host) code
» -G - builds debug device code

This makes the necessary symbol information available to the debugger so that you can do “source-
level” debugging.

The -G switch has a substantial impact on device code generation. Use it for debug purposes only.
» Don’t do performance analysis on device code built with the -G switch
» The -G switch will often make your code run slower
» In rare cases, the -G switch may change the behaviour of your code

Make sure your code is compiled for the correct target: e.g. -arch=sm_70

20 “ANVIDIA.

ADDITIONAL PREP SUGGESTIONS

> If possible, make sure your code completes the various sanitizer tool tests
> |If possible, make sure your host code is “sane” e.g. does not seg fault

> |f possible, make sure your kernels are actually being launched, e.g:

» nsys profile --stats=true ./my_executable (and check e.g. “CUDA Kernel Statistics”

21 <A NVIDIA.

CUDA SPECIFIC COMMANDS

» set cuda.. <used to set general options and advanced settings>
» launch_blocking (on/off) <make launches pause the host thread>
» break_on_launch (option) <break on every new kernel launch>
> info cuda ... <get general information on system configuration>
» devices, sms, warps, lanes, kernels, blocks, threads, ...
» cuda ... <used to inspect or set current focus>
» (cuda-gdb) cuda device sm warp lane block thread <display current focus coordinates>
» block (0,0,0), thread (0,0,0), device 0, sm 0, warp 0, lane 0

» (cuda-gdb) cuda thread (15) <change coordinate(s)>

22 “ANVIDIA.

DEMO

IIIIIII

ADDITIONAL NOTES, TIPS, TRICKS

synccheck tool may have limited usefulness due to Volta execution model - relaxed sync requirements

CUDA Fortran debugging “print” commands not working correctly - expected to be fixed in a future tool
chain

Cannot inspect device memory (e.g. with “print”) unless stopped at a breakpoint in device code
compute-sanitizer host backtrace will be improved in the future

How to “look up” an error code (e.g. 719), two ways:
» Search in .../cuda/include/driver_types.h

» Docs: runtime API section 6.36, Data types

24 “ANVIDIA.

v

v

v

v

FURTHER STUDY

CUDA error checking:

» https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#error-checking

» https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-

using-the-cuda-runtime-api

» CUDA context: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context

compute-sanitizer:

» https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html

cuda-gdb:
» https://docs.nvidia.com/cuda/cuda-gdb/index.html

Simple gdb tutorial:

» https://www.cs.cmu.edu/~gilpin/tutorial/

25

“ANVIDIA.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#error-checking
https://stackoverflow.com/questions/14038589/what-is-the-canonical-way-to-check-for-errors-using-the-cuda-runtime-api
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#context
https://docs.nvidia.com/cuda/sanitizer-docs/ComputeSanitizer/index.html
https://docs.nvidia.com/cuda/cuda-gdb/index.html
https://www.cs.cmu.edu/~gilpin/tutorial/

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

» Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

» https://github.com/olcf/cuda-training-series/blob/master/exercises/hw12/readme.md

Prerequisites: basic linux skills, e.g. s, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

26 “ANVIDIA.

mailto:username@home.ccs.ornl.gov
mailto:git@github.com:olcf/cuda-training-series.git
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw12/readme.md

"BACKUP: BASIC GDB SYNTAX

BASIC GDB

Getting started, setting a breakpoint, running, single-step, continuing

Compile your code with -g (host debug) and -G (device debug)
gdb ./my_executable
Set a breakpoint: b command

» if only one file: (gdb) b <line_number>

» If multiple source files: (gdb) b <file_name:line_number>
Run-from-start: r command
Single step: s command (“step into”)
Step next: n command (“step over”)

Continue : ¢ command

28 “ANVIDIA.

BASIC GDB

Inspecting data, clearing breakpoints, conditional breakpoints

> Print data: p command
» symbolically: p s[0]
» multiple values: p s[0]@8
> Removing breakpoints:
» clear <file-name:line-number> (removes breakpoint based on location)
» delete <breakpoint-number> (removes breakpoint based on id)
» Conditional breakpoints:
» Set a breakpoint first
» condition <breakpoint-id> <Boolean-test>

» condition 1 i<32

29 “ANVIDIA.

NVIDIA

