
Business Sensitive Information

Kokkos Tools Training

The Kokkos Team & Kevin Huck

August 17-19, 2021, OLCF

SAND2021-10002 TR

2

What is the Kokkos Tools effort?

• Kokkos aims to provide a unified interface to a variety of hardware and programming
models

• Kokkos Tools does the same, but for tooling

• Current mature capability areas
– Profiling

– Autotuning

• Exploratory
– Compilers

– IDE integrations

– Debuggers David Poliakoff:
Profiling tools,
Debuggers,
Autotuning,
IDEs,
Dog facts

Drew Lewis:
Compilers

3

Why Kokkos Tools?

• “Toolchain-per-architecture” undesirable • Tooling with Kokkos Semantics, not C++

• In C++: “void
Kokkos::Impl::cuda_parallel_launch_local
_memory<Kokkos::Impl::ParallelFor<_GL
OBAL__N__49_tmpxft_00004d6b_00000
000_7_integrator_nve_cpp1_ii_28abe736
::InitialIntegrateFunctor,
Kokkos::RangePolicy<>,
Kokkos::Cuda>>(_GLOBAL__N__49_tmpxf
t_00004d6b_00000000_7_integrator_nve
_cpp1_ii_28abe736::InitialIntegrateFunct
or”

• In Kokkos:
“IntegratorNVE::initial_integrate”

NVIDIA nsys

AMD Rocprof

4

Design Goals

• Don’t have “tool-enabled builds,” always enable tools. Turning them on or off should be a
runtime decision
– Necessitates zero or very low overhead when not in use (we achieve this)

• Function-pointer callback-based system. On Unix, we dlopen a tool library and fill out
function pointers from it
– Comparing those function pointers to nullptr is very fast

• Events we track
– Kernels, Regions, Metadata, Memory alloc/free (including Views), DualView operations

• Events we will soon track
– Using a View in a kernel

5

How do I integrate these into my Kokkos code?

Instrumentation “built-in” to Kokkos Core

./my_application [run with no tool]

./my_application --kokkos-tools-library=/path/to/tool.so [run with a tool]

KOKKOS_PROFILE_LIBRARY=/path/to/tool.so ./my_application [run with a tool]
No recompilation, just add a command
line argument!

6

Where to get Tools that support this?

• Kokkos Tools repo
– git@github.com:kokkos/kokkos-tools

– Simple tools to do simple tasks, builds are trivial (just type “make”)

• Caliper
– git@github.com:LLNL/caliper

– More complicated, more powerful. I (David P) tend to prototype functionality here

– UVM Profiling, SPOT performance tracking

• APEX
– git@github.com:khuck/xpress-apex

– Developed out of University of Oregon, popular with many ORNL users

– Supports profiling a wide variety of programming models, and autotuning

– Handles asynchronous tasks, unlike many other tools

– Slices, dices, juliennes fries

7

Tools not discussed here

• TAU
– TAU has six or seven thousand excellent trainings a year ☺
– Sameer Shende could do a Kokkos Tools/TAU one if this is of

interest

• Timemory
– Great tool. So great the developer got hired by AMD

• Oops

– Worth investigating if you’re interested in incorporating
advanced measurements through template metaprogramming

• Score-P
– Another very good tool, with Bill Williams heading up Kokkos

Tools efforts

– Happy to put you in contact with Bill

8

Code samples to show this in action

• git@github.com:DavidPoliakoff/kokkos-tools-examples

• Will build:
– Caliper

– Kokkos Tools

– APEX

– Examples

• Configure it like you would Kokkos, it will configure these tools appropriately (also builds
Kokkos)

• NVIDIA: cmake -DKokkos_ENABLE_TUNING=ON -DBUILD_SHARED_LIBS=ON
-DCMAKE_BUILD_TYPE=Debug -DKokkos_ENABLE_CUDA_LAMBDA=ON
-DKokkos_ENABLE_CUDA=ON -DKokkos_ARCH_VOLTA70=ON ..

• Known bug: there’s a bug in our install. If you add the install location/lib64 to
LD_LIBRARY_PATH, the examples run

Simple Tools

10

Why Simple Tools?

• Suppose DOE was purchasing new architectures with new toolchains at an incredible clip
– I know, it’s inconceivable

• Do we really have to learn a toolchain per architecture for simple tasks?
– No

Space-time Stack:
where am I spending
time and memory?

11

Space-Time Stack: Dead simple, highly useful tool

• For this part, I recommend using your own Kokkos code. If you don’t have one, though, try
the “instances” example in the examples repo

• Running is extremely complicated:
– Set KOKKOS_PROFILE_LIBRARY to [examples install dir]/lib64/kp_space_time_stack.so

– Run your program

12

Space-time-stack: continued

13

Try it yourself!

Run space-time-stack on
your own code, or on one of
the examples

14

Simple Tools: Advanced Mode

15

Finding fences
KOKKOS_PROFILE_LIBRARY=./lib64/kp_space_time_stack.so
./bin/instances_begin --kokkos-tools-args=--separate-devices

16

Try it yourself!

Run space-time-stack on
the instances_begin
example, showing
per-device operations

KOKKOS_PROFILE_LIBRARY=./lib64/kp_sp
ace_time_stack.so ./bin/instances_begin
--kokkos-tools-args=--separate-devices

17

Fixed

18

Note: the only fences are Tool fences

Using Third-Party
Tools

20

Kokkos Tools can also be used to interface and augment existing
profiling tools.

∙ - Provide context information like Kernel names
∙ - Turn data collection on and off in a tool independent way

There are two ways this happens:
- Load a specific connector tool like nvprof-connector

- For example for Nsight Compute and Vtune

- Tools themselves know about Kokkos instrumentation
- For example Tau

Using Third Party Tools

21

Use the nvprof-connector to interact with NVIDIA tools

Translates KokkosP hooks into NVTX instrumentation
- Works with all NVIDIA tools which understand NVTX
- Translates Regions and Kernel Dispatches

Initially wasn’t very useful since regions are shown independently of
Kernels

But CUDA 11 added renaming of Kernels based on Kokkos User
feedback!

Using Third Party Tools – Nsight Systems

22

Run your application using
nsys profile -f true --stats=true -o out.qdrep ./instances_end

To enable kernel renaming you need to:
●Load the nvprof-connector via setting KOKKOS PROFILE LIBRARY in the
run configuration.

●Go to Tools > Preferences > Rename CUDA Kernels by
●NVTX and set it on.

This does a few things:
●User Labels are now used as the primary name.
●You can still expand the row to see which actual kernels are grouped under it.
●The bars are now named Label/GLOBAL FUNCTION NAME.`

Using Third Party Tools – Nsight Systems

23

Using Third Party Tools – Nsight Systems

Caliper

25

Caliper: a Performance Analysis Toolbox

• Developed at Lawrence Livermore National Lab

• https://software.llnl.gov/Caliper/

• Significantly more than a Kokkos Tool, but a great Kokkos Tool

• KOKKOS_PROFILE_LIBRARY=/path/to/libcaliper.so

• Configuration
– Set Caliper environment variables

– Or use prebaked configs

– “--kokkos-tools-args=config,” or “CALI_CONFIG=config”

– Generally, add “profile.kokkos” to a config to get Kokkos profiling

David Boehme: “the Caliper man”

https://software.llnl.gov/Caliper/
https://software.llnl.gov/Caliper/BuiltinConfigurations.html

26

Simple timing

27

Okay, so it does the space-time-stack? Why Caliper?

• In addition to simple timings, Caliper supports an unbelievable array of profiling
capabilities
– Often the first place we prototype functionality

• Tech not discussed here
– SPOT: performance tracking utility, see whether you’re helping or harming the performance of a codebase

as you develop it

– Hatchet: slice and dice your calltrees, calculate which parts of a program are speeding up or slowing down

– CurIOs: IO profiling

• There are entire Caliper trainings available

28

UVM Profiling: a Caliper case study

29

What can we see?

• ./bin/uvm_caliper ./bin/uvm_begin

• “uvm_caliper” just sets environment variables

30

Try it yourself!

Run Caliper on your own
code using UVM, or on the
UVM examples

./bin/uvm_caliper ./bin/uvm_begin

31

Typical optimization path

• Understand Kokkos Utilization (SpaceTimeStack)
– Check how much time in kernels

– Identify HotSpot Kernels

• Run Memory Analysis (MemoryEvents)
– Are there many allocations/deallocations - 5000/s is OK.

– Identify temporary allocations which might be able to hoisted

• Identify Serial Code Regions (SpaceTimeStack)
– Add Profiling Regions

– Find Regions with low fraction of time spend in Kernels

• Dive into individual Kernels
– Use connector tools to analyze kernels.

– E.g. use roof line analysis to find underperforming code.

Autotuning

33

Why autotune?

• Figuring out the ideal “tuning knobs” for
– NVIDIA, AMD, Intel (GPU+CPU)

– OpenMPTarget, HIP, CUDA

– V100, A100, MI100

– Every compiler

– For every kernel

• Nobody has the time

34

Autotuning: the traditional code team conversation

• Autotuning dev: “I have a technology for you to use for autotuning”

• Code team dev: “How do I get started with it?”

• Autotuning dev: “Okay, so first you build PyTorch, then you build with a compiler wrapper,
then you run this Python script to run your application”

• Code team dev: “…”

This autotuning is
simple and
non-invasive

35

Standard Usage in Codes

Soon

For most users: no code changes

36

Changes in build/run

• Additional Cmake Option
– -DKokkos_ENABLE_TUNING=ON

• To tune policy details like those above, a command-line argument
– --kokkos-tune-internals

• Plan to remove these in time, but these are still undergoing overhead testing
– Likely to change to needing options to turn these off very soon

37

Mechanics

Tell the tool what it’s tuning
int? float?

categorical? ordinal? interval? ratio?

Tell the tool about feature values, and set a
default configuration

Ask tool to overwrite the configuration

Use the configuration in kernels

Tell the tool we’re done

While app not done

See the tuning_mechanics
example to see how this
works in code, if you want
to tune your own
parameters.

Or don’t, you don’t have to
for most uses

38

Get the Tools

• Apex: already included in the repo

• Apollo: If you have Spack, download the repo here:
– https://github.com/DavidPoliakoff/tuning-spack

– spack repo add /path/to/the/checkout/directory

– spack install apollo@develop

• Additional Apollo credits:
– Giorgis Giorgakoudis, LLNL

– David Beckingsale, LLNL

– Todd Gamblin, LLNL

Chad Wood,
Apollo, UO,
cdw@cs.uoregon.edu

Graduating
and looking
for jobs

Kevin Huck,
APEX, UO
Probably not looking for a new
job, but you could always try

https://github.com/DavidPoliakoff/tuning-spack

39

Which Tool?

• All notes are as of the date this was
delivered (Aug 17, 2021)

• Apollo
– Con: OpenCV dependency

• Spack mitigates this

– Con: reading tuning “outputs” difficult

• Being worked on

– Pro: OpenCV capabilities

• Decision trees over features

– Pro: “Retraining” if results diverge from model

– Pro: Distributed training

– Pro: Investment from both LLNL and Sandia

• Apex
– Pro: no external dependencies Apex doesn’t build

itself

– Pro: Already used by some ORNL codes

– Pro: Investment from DOE, NSF, and DoD

– Pro: also a capable profiling tool

– Con: Current tuning simple, but often effective

• No decision trees over features, tuning a 1k row matric
and tuning 1k+1 row matrix are different problems

• Being worked on

• For most purposes, this is fine

40

Running a code with these tools

• Apex: ./bin/apex_exec --apex:kokkos_tuning --apex:kokkos ./application
--kokkos-tune-internals

• Apollo: KOKKOS_PROFILE_LIBRARY=/path/to/libapollo.so ./application
--kokkos-tune-internals

41

Try it yourself!

Run a tuning tool on the
tuning_begin example

42

Just add (tuning) features!

• Code walkthrough

Advanced Topics

44

Homegrown Tuning

• Suppose you want to tune something that isn’t a Kokkos parameter

• Code walkthrough

45

Skylos

• Example only

46

Where do I get more help?

• Highly responsive GitHub repo(s)
– github.com/kokkos/kokkos

– github.com/kokkos/kokkos-kernels

– github.com/kokkos/kokkos-tools

• Lectures
– kokkos.link/the-lectures

• Slack
– kokkosteam.slack.com

• Email
– dzpolia@sandia.gov

– crtrott@sandia.gov

mailto:dzpolia@sandia.gov

47

What do YOU need?

• What is the hardest part about developing Kokkos?

• What’s the last bug you had that took a week to debug?

• What are the most bewildering compiler errors you’ve encountered with Kokkos?

