

# INTRODUCTION TO CUDA's MULTI-PROCESS SERVICE (MPS)



# MOTIVATING USE CASE

Given a fixed amount of work to do, divided evenly among N MPI ranks:

- What is the optimal value of N?
- How many GPUs should we distribute these N ranks across? -

global void kernel (double\* x, int N) { int i = threadIdx.x + blockIdx.x \* blockDim.x; if (i < N) { x[i] = 2 \* x[i];



## **BASE CASE: 1 RANK** Run with $N = 1024^3$

\_rank\_no\_MPS\_N\_1e9.qdrep × 4\_ranks\_no\_MPS\_N\_1e9.qdrep × ■ Timeline View -75 🗢 +425ms +430ms +435ms +440ms +445ms +450ms +455ms +460ms +465ms +470ms +475ms +480ms +485ms +490ms +495mt 27 498.05ms 2ms ▶ CPU (176) Processes (27) ▼ [162415] ./test CUDA HW (Unknown GPU) kern... kernel(double\*,... kernel(double\*... kernel(double\*... kernel(double\*... kernel(double\*... 100.0% Kernels Ends: 7.508845 (+ 19 grid: <<<3906250, block: <<<256, 1, 1 Launch Type: Regul Static Shared Memo Threads (1) Dynamic Shared M Registers Per Threa Local Memory Per Local Memory Tota [162382] jsrun Shared Memory e Shared Memory Ba Launched from thr Latency: ←6.184 s Correlation ID: 419 Stream: Stream 7 [162409] ▶ [162401] 23 processes hidden... -+



|                                                                                                                                                                       |        |      |      |        |        |       |        | <u> </u> | Q 4x   |        | -<br>_<br>_ | <u>1 warning, 9</u> | messages |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|------|--------|--------|-------|--------|----------|--------|--------|-------------|---------------------|----------|
| +505ms +                                                                                                                                                              | +510ms | +515 | ns   | +520ms | +525ms | +530m | s +535 | ōms      | +540ms | +545ms | +550ms      | +555                | 5ms      |
|                                                                                                                                                                       |        |      |      |        |        |       |        |          |        |        |             |                     |          |
|                                                                                                                                                                       |        |      |      |        |        |       |        |          |        |        |             |                     |          |
| <b>2 *</b>                                                                                                                                                            | ke     | rne  | l(do | oub    | le*    | . ke  | rnel   | l(do     | bub    | le*,.  | ke          | rnel                | ••••     |
| ), 1, 1>>><br>1>>><br>Jar<br>nory: 0 bytes<br>Aemory: 0 bytes<br>ad: 16<br>Thread: 0 bytes<br>al: 94,371,840 byt<br>kecuted: 0 bytes<br>ank Size: 4 B<br>read: 162415 | tes    |      |      |        |        |       |        |          |        |        |             |                     |          |
| •                                                                                                                                                                     |        |      |      |        |        |       |        |          |        |        |             |                     |          |
|                                                                                                                                                                       |        |      |      |        |        |       |        |          |        |        |             |                     |          |
|                                                                                                                                                                       |        |      |      |        |        |       |        |          |        |        |             |                     | *        |

3

💿 NVIDIA.

## **GPU COMPUTE MODES**

NVIDIA GPUs have several compute modes

Default: multiple processes can run at one time Exclusive Process: only one process can run at one time Prohibited: no processes can run

**Controllable with** nvidia-smi --compute-mode; generally needs elevated privileges (so e.g. bsub -alloc flags gpudefault on Summit)





# SIMPLE OVERSUBSCRIPTION

The most common oversubscription case uses default mode We simply target the same GPU with N ranks



| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |



# **OVERSUBSCRIPTION: 4 RANKS**

Run with  $N = 1024^3$ 

| 1_rank_no_MPS_N_1e9.qdrep × 4_ran         | ks_no_MPS_N_1e9.qdrep × |             |                  |        |                |          |               |               |                                                                             |
|-------------------------------------------|-------------------------|-------------|------------------|--------|----------------|----------|---------------|---------------|-----------------------------------------------------------------------------|
|                                           |                         |             |                  |        |                |          |               |               |                                                                             |
| 85 -                                      | +430ms +435m            | s +440ms    | +445ms           | +450m  | is +45         | 55ms     | +460ms        | +465ms 8s     | 468.10ms +470ms                                                             |
| ▶ CPU (176)                               |                         |             |                  |        |                |          |               |               |                                                                             |
| ▼ Processes (30)                          |                         |             |                  |        |                |          |               |               |                                                                             |
| ▶ [163770] jsrun                          |                         |             |                  |        |                |          |               |               |                                                                             |
| ▼ [163802] ./test                         |                         |             |                  |        |                |          |               |               |                                                                             |
| ▼ CUDA HW (Unknown GPU)                   |                         |             |                  |        |                |          |               |               |                                                                             |
| ▶ 100.0% Kernels                          | kernel(doub             | le*, int)   |                  | k      | ærnel(double*, | int)     |               |               |                                                                             |
| ▼ Threads (1)                             |                         |             |                  |        |                |          |               |               |                                                                             |
| ▶ [163802] test                           |                         |             |                  |        |                |          |               |               |                                                                             |
| ▼ [163803] ./test                         |                         |             |                  |        |                |          |               |               |                                                                             |
| <ul> <li>CUDA HW (Unknown GPU)</li> </ul> |                         |             |                  |        |                |          |               |               |                                                                             |
| ▶ 100.0% Kernels                          |                         | kern        | el(double*, int) |        |                |          | kernel(       | double*, int) | kernel                                                                      |
| <ul> <li>Threads (1)</li> </ul>           |                         |             |                  |        |                |          |               |               | Begins: 8.45521s<br>Ends: 8.47403s (+18.819<br>grid: <<<976563, 1, 1>       |
| ▼ [163804] ./test                         |                         |             |                  |        |                |          |               |               | Launch Type: Regular<br>Static Shared Memory:<br>Dynamic Shared Memory      |
| ▼ CUDA HW (Unknown GPU)                   |                         |             |                  |        |                |          |               |               | Registers Per Thread: 10<br>Local Memory Per Thre<br>Local Memory Total: 94 |
| ▶ 100.0% Kernels                          | kernel(double*, int)    |             | kernel(double*   | , int) |                |          |               | kernel(doub   | Shared Memory execut<br>Shared Memory Bank S<br>Launched from thread:       |
| <ul> <li>Threads (1)</li> </ul>           |                         |             |                  |        |                |          |               |               | Latency: ←7.096 s<br>Correlation ID: 736<br>Stream: Stream 7                |
| ▼ [163805] ./test                         |                         |             |                  |        |                |          |               |               |                                                                             |
| ✓ CUDA HW (Unknown GPU)                   |                         |             |                  |        |                |          |               |               |                                                                             |
| ▶ 100.0% Kernels                          |                         | kernel(doub | le*, int)        |        |                | kernel(d | double*, int) |               |                                                                             |
| <ul> <li>Threads (1)</li> </ul>           |                         |             |                  |        |                |          |               |               |                                                                             |
| 25 processes hidden — +                   |                         |             |                  |        |                |          |               |               |                                                                             |
|                                           |                         |             |                  |        |                |          |               |               |                                                                             |

|                    |             |                 |                 | 🔤 Q 2x 💳 🗆    | A warnings, 24 mess |
|--------------------|-------------|-----------------|-----------------|---------------|---------------------|
| +475               | ms          | +480ms          | +485ms          | +490ms        | +495ms +5           |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
| ernel(do           | ouble* int) |                 |                 | kernel(double | * int)              |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             | ķ               | kernel(double*, | int)          |                     |
|                    |             |                 |                 | ,             |                     |
|                    |             |                 |                 |               |                     |
| tes<br>bytes       |             |                 |                 |               |                     |
| bytes<br>840 bytes |             |                 |                 |               |                     |
| bytes<br>B         |             |                 | kernel(c        | louble*, int) | ke                  |
| 303                |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             | kernel(double*, | int)            |               | kernel(double       |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |
|                    |             |                 |                 |               |                     |

🕺 NVIDIA.

# SIMPLE OVERSUBSCRIPTION

Each rank operates fully independently of all other ranks

Individual processes operate in time slices

A performance penalty is paid for switching between time slices



🕺 NVIDIA

## **ASIDE: CUDA CONTEXTS**

Every process creates its own CUDA context

The context is a stateful object required to run CUDA Automatically created for you when using the CUDA runtime API On V100, the size is ~300 MB + your GPU code size This limits the number of ranks we can fit on the GPU regardless of application data **Context size is partially controlled by** cudaLimitStackSize (more on that later)







Timeslice 1





**CPU** Processes

GPU Interrupt











Full process isolation, peak throughput optimized for each process



## WHEN DOES OVERSUBSCRIPTION HELP? Perhaps a smaller case where launch latency is relevant? (N = 10<sup>6</sup>)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1_rank_no_MPS_N_1e9.qdrep × 4_ra   | anks_no_MPS_N_1e9.qdrep × 1 | 1_rank_no_MPS_N_1e6.qdr | rep ×              |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|-------------------------|--------------------|--------------|------------|-----------|---------------------|----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------|-----------------|----------------|-------------|------------|--------------|----------------|----------------|---------------|--------------------|
| x 1000       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100       1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ■ Timeline View     ▼              |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              | 2003           | Q 2x           | <u>^ 1 wa</u> | arning, 9 messages |
| • MORT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25                                 | +112.315ms +112.32ms        | +112.325ms +1           | 112.33ms +112.335m | ns +112.34ms | +112.345ms | +112.35ms | +112.355ms +112.36m | ns +1 <mark>2s 112.</mark> | 36637ms -112.37ms                                               | +112.375ms                                                      | +112.38ms | +112.385ms +112 | 39ms +112.395m | is +112.4ms | +112.405ms | +112.41ms +  | 112.415ms +112 | 42ms +112.425n | s +112.43ms   | +112.435ms         |
| - lossing<br>- Marking Marken Ma | ► CPU (176)                        |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
| - Korzy Add Construction of the second of      | <ul> <li>Processes (27)</li> </ul> |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
| · Not score         Seme         Sem         Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ▼ [106672]./test                   |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                | _           |            |              |                |                |               |                    |
| • Non server         emel(double*, int)         kernel(double*, int)         kernel(double*, int)         kernel(double*, int)           • Nata 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ▼ CUDA HW (Unknown GPU)            |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
| • Next ()       Performance         • Next ()       Pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ▶ 100.0% Kernels                   | kernel(doubl                |                         | kernel(double      | e*, int)     |            |           | kernel(double       | e*, int)                   | kernel                                                          |                                                                 | kernel(d  | ouble*, int)    |                |             | kernel(do  | ouble*, int) |                | kerr           | el(double*, i | nt)                |
| <ul> <li>Next Part Part Part Part Part Part Part Par</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ▶ Threads (1)                      |                             |                         |                    |              |            |           |                     |                            | Begins: 2.11235s<br>Ends: 2.11237s (+22<br>grid: <<<4096, 1, 1  | 2.460 μs)<br>1>>>                                               |           |                 |                |             |            |              |                |                |               |                    |
| • (D095)         Note: Start Marry 100 Figure 200 Figure                                   | ▶ [106631] jsrun                   |                             |                         |                    |              |            |           |                     |                            | block: <<<256, 1, 1<br>Launch Type: Regu                        | >>><br>Ilar                                                     |           |                 |                |             |            |              |                |                |               |                    |
| • INNOT       Image: Image                     | ▶ [106659]                         |                             |                         |                    |              |            |           |                     |                            | Dynamic Shared Merri<br>Registers Per Threa<br>Local Memory Per | lemory: 0 bytes<br>lemory: 0 bytes<br>id: 16<br>Thread: 0 bytes |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ▶ [106650]                         |                             |                         |                    |              |            |           |                     |                            | Local Memory Tota<br>Shared Memory ex<br>Shared Memory Ba       | al: 94,371,840 bytes<br>ecuted: 0 bytes<br>ank Size: 4 B        |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23 processes hidden — +            | -                           |                         |                    |              |            |           |                     |                            | Launched from thr<br>Latency: +3.675 m                          | read: 106672<br>s                                               |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            | Stream: Stream 7                                                |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    |                             |                         |                    |              |            |           |                     |                            |                                                                 |                                                                 |           |                 |                |             |            |              |                |                |               |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                    | 4                           |                         |                    |              |            |           |                     |                            | :                                                               |                                                                 |           |                 |                |             |            |              |                |                |               | •                  |

## WHEN DOES OVERSUBSCRIPTION HELP? Unfortunately, this isn't better.

| 1_rank_no_MPS_N_1e9.qdrep × 4_ranks_no_MPS_N_1e9.qdrep × 1_rank_no_MPS_N_1e6.qdrep × 4_ranks_no_MPS_N_1e6.qdrep > |                                                                                                        |                                       |
|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------|
|                                                                                                                   |                                                                                                        | 🖾 Q 2x — <u>A 4 warnings, 24 mess</u> |
| 1s ▼ +310.75ms +310.8ms +310.85ms 1s 31                                                                           | 0.8869ms 0.9ms +310.95ms +311.05ms +311.05ms +311.1ms +311.15ms +311.2ms +311.25ms +311.25ms +311.35ms | +311.35ms +311.4ms                    |
| ► CPU (176)                                                                                                       |                                                                                                        |                                       |
| ▼ Processes (30)                                                                                                  |                                                                                                        |                                       |
| ▶ [111188] jsrun                                                                                                  |                                                                                                        |                                       |
| ▼ [111221] ./test                                                                                                 |                                                                                                        |                                       |
| ▼ CUDA HW (Unknown GPU)                                                                                           |                                                                                                        |                                       |
| ▶ 100.0% Kernels                                                                                                  | kernel                                                                                                 |                                       |
| ▼ Threads (1)                                                                                                     | Begins: 1.31088s<br>Ends: 1.31089s (+6.396 μs)<br>grid: <<<1024, 1, 1>>>                               |                                       |
| ▶ [111221] test                                                                                                   | block: <<<2b, 1, 1>>><br>Launch Type: Regular<br>Static Shared Memory: 0 bytes                         |                                       |
| ▼ [111222] ./test                                                                                                 | Registers Per Thread: 16<br>Local Memory Per Thread: 0 bytes<br>Local Memory Total: 94,371,840 bytes   |                                       |
| ✓ CUDA HW (Unknown GPU)                                                                                           | Shared Memory executed: 0 bytes<br>Shared Memory Bank Size: 4 B<br>Launched from thread: 111221        |                                       |
| ▶ 100.0% Kernels                                                                                                  | Correlation ID: 1167<br>Stream: Stream 7                                                               |                                       |
| Threads (1)                                                                                                       |                                                                                                        |                                       |
| ▼ [111223] ./test                                                                                                 |                                                                                                        |                                       |
| ▼ CUDA HW (Unknown GPU)                                                                                           |                                                                                                        |                                       |
| ▶ 100.0% Kernels                                                                                                  |                                                                                                        |                                       |
| Threads (1)                                                                                                       |                                                                                                        |                                       |
| ▼ [111224] ./test                                                                                                 |                                                                                                        |                                       |
| ✓ CUDA HW (Unknown GPU)                                                                                           |                                                                                                        |                                       |
| ▶ 100.0% Kernels                                                                                                  |                                                                                                        |                                       |
| Threads (1)                                                                                                       |                                                                                                        |                                       |
| 25 processes hidden — +                                                                                           |                                                                                                        |                                       |
|                                                                                                                   |                                                                                                        |                                       |

14

💿 NVIDIA.

## **OVERSUBSCRIPTION CONCLUSIONS** (when running with the default compute mode)

No free lunch theorem applies: if GPU is fully utilized, cannot get faster answers

For cases that don't fully utilize the GPU, we'd like to fill in gaps in the timeline But with GPU-only workloads, this rarely works out just right to be beneficial Typically performs better when there is CPU-only work to interleave



# SCHEDULING: HOW COULD WE DO BETTER?

### **Pre-emptive scheduling**

Processes share GPU through time-slicing Scheduling managed by system





### Concurrent scheduling

Processes run on GPU simultaneously User creates & manages scheduling streams





# MULTI-PROCESS SERVICE

NVIDIA <u>MPS</u> (Multi-Process Service) improves the situation by allowing multiple process to (instantaneously) share GPU compute resources (SMs)

Designed to **concurrently** map multiple MPI ranks onto a single GPU

Used when each rank is **too small** to fill the GPU on its own





## **MULTI-PROCESS SERVICE** Improving on what we had before!



## **OVERSUBSCRIPTION WITH MPS**

Same case as earlier with  $N = 10^9$ 

MPS mostly recovers performance losses due to context switching

But again, no free lunch theorem applies (no significant speedup either)





## **OVERSUBSCRIPTION WITH MPS**

A smaller case:  $N = 2 * 10^7$ 

Whether or not there's a speedup depends substantially on precise timing





## **OVERSUBSCRIPTION WITH MPS**

A much smaller case:  $N = 10^5$ 

Splitting up work is a clear loser here (quickly get hit by launch latency)





# OVERSUBSCRIPTION CONCLUSIONS REDUX

No free lunch theorem still applies: if GPU is fully utilized, cannot get faster answers

Strive to write your application so that you don't need MPS

If you are unable to write kernels that fully saturate the GPU, then consider oversubscription, and MPS is usually always worth turning on for that case

Profile your code to understand why MPS did or did not help





# COMPARISON OF PRE- AND POST-VOLTA MPS



Software work submission Limited isolation 16 clients per GPU No provisioning Faster, hardware-accelerated work submission



Hardware memory isolation 48 clients per GPU Execution resource provisioning

# KEY DIFFERENCES BETWEEN PRE- AND POST-VOLTA MPS

More MPS clients per GPU: 48 instead of 16

**Less overhead:** Volta MPS clients submit work directly to the GPU without passing through the MPS server.

**More security:** Each Volta MPS client owns its own GPU address space instead of sharing GPU address space with all other MPS clients.

**More control:** Volta MPS supports limited execution resource provisioning for Quality of Service (QoS). -> CUDA MPS ACTIVE THREAD PERCENTAGE

Independent work submission: Each process has private work queues, allowing concurrent submission without contending over locks.



# USING MPS

No application modifications necessary

Not limited to MPI applications

MPS control daemon spawns MPS server upon CUDA application startup

Profiling tools are MPS-aware; cuda-gdb doesn't support attaching but you can dump core files

# Manually

nvidia-smi -c EXCLUSIVE PROCESS

nvidia-cuda-mps-control -d

# On Summit

bsub -alloc flags gpumps

**Compute modes** 

On shared systems, recommended to use EXCLUSIVE\_PROCESS mode to ensure that only a single MPS server is using the GPU

• **PROHIBITED** (cannot set device)

• **EXCLUSIVE\_PROCESS** (single shared device)

• **DEFAULT** (per-process device)

# MPS CONTROL: ENVIRONMENT VARIABLES

These are set per-process; can also manage MPS system-wide via control daemon

### CUDA\_VISIBLE\_DEVICES

Sets devices which an application can see. When set on MPS daemon, limits visible GPUs for all clients.

### CUDA\_MPS\_PIPE\_DIRECTORY

Directory where MPS control daemon pipes are created. Clients & daemon must set to same value. Default is /var/log/nvidia-mps.

### CUDA\_MPS\_LOG\_DIRECTORY

Directory where MPS control daemon log is created. Default is /tmp/nvidia-mps.

### CUDA\_DEVICE\_MAX\_CONNECTIONS

Sets number of hardware work queues that CUDA streams map to. MPS clients all share the same pool, so if set in an MPS-attached process sets this it may limit the max number of MPS processes.

### CUDA\_MPS\_ACTIVE\_THREAD\_PERCENTAGE

Controls what fraction of GPU may be used by a process - see next slides.



## EXECUTION RESOURCE PROVISIONING WITH MPS Using MPS, applications can assign fractions of a GPU to each process

### export CUDA MPS ACTIVE THREAD PERCENTAGE=percentage \$

- Environment variable: configures maximum fraction of a GPU available to an MPS-attached process
- Guarantees a process will use at most *percentage* execution resources (SMs)
- Over-provisioning is permitted: sum across all MPS processes may exceed 100%
- Provisions only execution resources (SMs) does not provision memory bandwidth or capacity
- Before CUDA 11.2, all processes be set to the same percentage
- Since CUDA 11.2, percentage may be different for each process

### Full details at: https://docs.nvidia.com/deploy/mps/index.html#topic\_5\_2\_5



## **GPU PROVISIONING WITH MPS** Using MPS, applications can assign fractions of a GPU to each process

| Image: select |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Image: select |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Image: select |  |  |  |
| Image: select |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |

### **Fractional Provisioning**

Process C could use more, but is limited to just 33% of execution resources

Process B is guaranteed space if needed



Process B is not using all of its allocation Process C may grow to fill available space Additional B work may have to wait for resources

← 3 concurrent MPS processes



### Using Oversubscription



## THINGS TO WATCH OUT FOR See https://docs.nvidia.com/deploy/mps/index.html for more details

### Memory Footprint

To provide a per-thread stack, CUDA reserves 1kB of GPU memory per thread This is (2048 threads per SM x 1kB per thread) = 2 MB per SM used, or **164 MB per client** for V100 (221 MB for A100) CUDA\_MPS\_ACTIVE\_THREAD\_PERCENTAGE reduces max SM usage, and so reduces memory footprint Each MPS process also uploads a new copy of the executable code, which adds to the memory footprint

### Work Queue Sharing

CUDA maps streams onto CUDA\_DEVICE\_MAX\_CONNECTIONS hardware work queues Queues are normally per-process, but MPS allows 96 hardware queues to be shared among up to 48 clients MPS automatically reduces connections-per-client unless environment variable is set If CUDA\_DEVICE\_MAX\_CONNECTIONS is set (e.g. to enable more concurrency within a process), this can reduce the maximum number of concurrent clients



# MPS LOGICAL VS. MIG PHYSICAL PARTITIONING



Multi-Process Service Dynamic contention for GPU resources Single tenant



Hierarchy of instances with guaranteed resource allocation Multiple tenants

### Multi-Instance GPU



## MULTI-INSTANCE GPU (MIG) Divide a Single A100 GPU Into Multiple Instances, Each With Isolated Paths Through the Entire Memory System



All MIG instances run in parallel with predictable throughput & latency, fault & error isolation

Diverse Deployment Environments Supported with Bare metal, Docker, Kubernetes Pod, Virtualized Environments

### Up To 7 GPU Instances In a Single A100

Full software stack enabled on each instance, with dedicated SM, memory, L2 cache & bandwidth

### Simultaneous Workload Execution With **Guaranteed Quality Of Service**



# CUDA CONCURRENCY MECHANISMS

|                                | Streams        | MPS            | MIG         |
|--------------------------------|----------------|----------------|-------------|
| Partition Type                 | Single process | Logical        | Physical    |
| Max Partitions                 | Unlimited      | 48             | 7           |
| Performance Isolation          | No             | By percentage  | Yes         |
| Memory Protection              | No             | Yes            | Yes         |
| Memory Bandwidth QoS           | No             | No             | Yes         |
| Error Isolation                | No             | No             | Yes         |
| <b>Cross-Partition Interop</b> | Always         | IPC            | Limited IPC |
| Reconfigure                    | Dynamic        | Process launch | When idle   |

MPS: Multi-Process Service MIG: Multi-Instance GPU





