
GPU CONCURRENCY

ROBERT SEARLES
5/26/2021

2

Pre-emptive scheduling
Processes share GPU through time-slicing

Scheduling managed by system

Concurrent scheduling
Processes run on GPU simultaneously

User creates & manages scheduling streams

C

B

A

time

EXECUTION SCHEDULING & MANAGEMENT

A B C A B

time
time-
slice

3

CUDA CONCURRENCY MECHANISMS

Streams MPS MIG
Partition Type Single process Logical Physical

Max Partitions Unlimited 48 7

Performance Isolation No By percentage Yes

Memory Protection No Yes Yes

Memory Bandwidth QoS No No Yes

Error Isolation No No Yes

Cross-Partition Interop Always IPC Limited IPC

Reconfigure Dynamic Process launch When idle

MPS: Multi-Process Service
MIG: Multi-Instance GPU

4

CUDA STREAMS

5

STREAM SEMANTICS

1. Two operations issued into the same stream will execute in issue-
order. Operation B issued after Operation A will not begin to
execute until Operation A has completed.

2. Two operations issued into separate streams have no ordering
prescribed by CUDA. Operation A issued into stream 1 may execute
before, during, or after Operation B issued into stream 2.

Operation: Usually, cudaMemcpyAsync or a kernel call. More
generally, most CUDA API calls that take a stream parameter, as well
as stream callbacks.

6

STREAM EXAMPLES

Host/Device execution concurrency:

Concurrent kernels:

In practice, concurrent kernel execution on the same device is hard to witness

Requires kernels with relatively low resource utilization and relatively long execution time

There are hardware limits to the number of concurrent kernels per device

Less efficient than saturating the device with a single kernel

Kernel<<<b, t, 0, streamA>>>(…); // these kernels have the possibility
Kernel<<<b, t, 0, streamB>>>(…); // to execute concurrently

Kernel<<<b, t>>>(…); // this kernel execution can overlap with
cpuFunction(…); // this host code

7

INTRODUCTION TO CUDA’s
MULTI-PROCESS SERVICE (MPS)

8

MPI DECOMPOSITION

Spread work across GPUs

Very common in HPC

Designed to concurrently execute
multiple MPI ranks on different GPUs

Used when there is too much work for a
single GPU.

GPU

CPU

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Rank
7

GPU GPU GPU GPU GPU GPU GPU

9

MULTI-PROCESS SERVICE (MPS) OVERVIEW

First available on Kepler architecture
(SM 3.5 - K20/K40/K80)

Significantly enhanced on Volta (SM 7.0)

Designed to concurrently map multiple
MPI ranks onto a single GPU

Used when each rank is too small to fill
the GPU on its own

On Summit, use –alloc_flags=gpumps
when submitting a job with bsub

GPU

CPU

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Ra
nk
7

10

PROCESSES SHARING GPU WITHOUT MPS
No Overlap

5/26/21

Process A Process B

Context A Context B

Process A Process B

GPU

11

PROCESSES SHARING GPU WITHOUT MPS
Additional small overhead arising from pre-emptive context switch

5/26/21

Context
Switch

Overhead

12

PROCESSES SHARING GPU WITH MPS
Maximum Overlap

5/26/21

Process A Process B

Context A Context B

GPU
Kernels from

Process A
Kernels from

Process B

MPS

13

PROCESSES SHARING GPU WITH MPS
No Context Switch Overhead

5/26/21

14

WITHOUT vs. WITH MPS, SIDE-BY-SIDE
MPS enables inter-process concurrency on the GPU

5/26/21

MPS makes processes
concurrent on the GPU

17

CUDA 11
Multi-Instance GPU (MIG)

18

GPU ARCHITECTURE AND CUDA

2016

PASCAL

HBM, NVLINK, FP16

2017

VOLTA

HBM, NVLINK, TENSOR
CORES, MPS

2018

TURING

TENSOR CORES, RT
CORES

2020

AMPERE

HBM, NVLINK, TENSOR
CORES, PARTITIONING

CUDA 8.0 CUDA 9.0 CUDA 10.0 CUDA 11.0

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

1919

INTRODUCING NVIDIA A100

Ampere
World’s Largest 7nm chip

54B XTORS, HBM2

3rd Gen NVLINK and NVSWITCH
Efficient Scaling to Enable Super GPU

2X More Bandwidth

3rd Gen Tensor Cores
Faster, Flexible, Easier to use

20x AI Perf with TF32

New Sparsity Acceleration
Harness Sparsity in AI Models

2x AI Performance

New Multi-Instance GPU
Optimal utilization with right sized GPU

7x Simultaneous Instances per GPU

20

NVIDIA A100: SPECS

V100 A100

SMs 80 108

Tensor Core Precision FP16 FP64, TF32, BF16,
FP16, I8, I4, B1

Shared Memory
per Block 96 kB 160 kB

L2 Cache Size 6144 kB 40960 kB

Memory Bandwidth 900 GB/sec 1555 GB/sec

NVLink Interconnect 300 GB/sec 600 GB/sec

FP64 Throughput 9.7 | 19.5 TFLOPS

TF32 Tensor Core N/A 156 | 312 TFLOPS

23

MULTI-INSTANCE GPU (MIG)
Optimize GPU Utilization, Expand Access to More Users with Guaranteed Quality of Service

Up To 7 GPU Instances In a Single A100:
Dedicated SM, Memory, L2 cache, Bandwidth for
hardware QoS & isolation

Simultaneous Workload Execution With
Guaranteed Quality Of Service:
All MIG instances run in parallel with predictable
throughput & latency

Right Sized GPU Allocation:
Different sized MIG instances based on target
workloads

Diverse Deployment Environments:
Supported with Bare metal, Docker, Kubernetes,
Virtualized Env.

MIG User Guide: https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

24

EXAMPLE: TWO LEVEL PARTITIONING
A100-40GB – Up to 7 GPUs

P0 P1 P2 P3 P0 P0

Instance 0 Instance 1 Instance 2
4-Slice

4 parallel CUDA processes P0 – P3
2-Slice

One CUDA process P0

GPU
Instances

FB FB

Compute
Engine

[0]

L2

Compute
Engine

[1]

Compute
Engine

[2]

Compute
Engine

[3]
Compute
Engine

L2

FB

L2

Compute
& Memory
Partitions

1-Slice
Running Debugger

NVDEC
[0]

NVDEC
[1]

NVDEC
x1

Compute
Engine

[0]

Compute
Engine

[1]

Compute Instance Compute Instance

1g.5gb2g.10gb4g.20gb
Instance
Shapes

25

MIG ISOLATION
● Computational Isolation

○ Streaming Multiprocessors (SMs) are not shared between GPU Instances
○ This provides high Quality of Service (QoS) for each GPU Instance

● DRAM Bandwidth Isolation
○ Slices of the L2 Cache are physically associated with particular DRAM channels and memory
○ Isolating MIGs to non-overlapping sets of L2 Cache slices does two things:

■ Isolates BW
■ Allocates DRAM memory between the MIGs

● Configuration Isolation
○ Creating GPU Instances or Compute Instances do not disturb work running on existing instances

● Error Isolation
○ Resources within the chip are separately resettable

26

LOGICAL VS. PHYSICAL PARTITIONING

GPU MULTI-PROCESS SERVICE

A B C

Multi-Process Service
Dynamic contention for GPU resources

Single tenant

CUDA MULTI-PROCESS SERVICE CONTROL

PyTorch PyTorchTensorFlow TensorFlow Jarvis + TensorRT TensorRT

Multi-Instance GPU
Hierarchy of instances with guaranteed resource allocation

Multiple tenants

35

CUDA BEHAVIOR AND DEVELOPER TOOLS
Can CUDA code continue to run on a separate part of the chip
when we re-configure the chip?

Yes, as long as you don’t reconfigure the partition the code is
running on

All CUDA code will have to stop to enable/disable MIG mode

What is the difference between “compute instance” and “GPU
instance”?

GPU instances can be further sub-divided into compute
instances (one per slice or GPC) that share memory. It is a
more advanced use-case.

What is difference between CUDA streams, MPS, and MIG?

MPS does not HW partition the processes

MIG partitions jobs each with dedicated compute, memory, and
memory bandwidth

CUDA stream: Per process, no hardware isolation

Will MIG replace MPS

MPS is a feature of CUDA and will continue as a feature with roadmap,
it is not meant to be a “replacement for” MPS or fixing any MPS
bug.

36

FUTURE MODULES

Multi-Threading + CUDA Streams

MPI/MPS + CUDA

Debugging Tools

Compute sanitizer & cuda-gdb

