<3

NVIDIA.

GPU CONCURRENCY

ROBERT SEARLES
5/26/2021

EXECUTION SCHEDULING & MANAGEMENT

Pre-emptive scheduling Concurrent scheduling
Processes share GPU through time-slicing Processes run on GPU simultaneously
Scheduling managed by system User creates & manages scheduling streams
B
A

=
time

CUDA CONCURRENCY MECHANISMS

Partition Type

Max Partitions
Performance lIsolation
Memory Protection
Memory Bandwidth QoS
Error Isolation
Cross-Partition Interop

Reconfigure

Single process
Unlimited
No
No
No
No
Always

Dynamic

Logical Physical

48 7
By percentage Yes

Yes Yes

No Yes

No Yes

IPC Limited IPC
Process launch When idle

MPS: Multi-Process Service
MIG: Multi-Instance GPU

3 <ANVIDIA.

CUDA STREAMS

STREAM SEMANTICS

Two operations issued into the same stream will execute in issue-
order. Operation B issued after Operation A will not begin to
execute until Operation A has completed.

Two operations issued into separate streams have no ordering
prescribed by CUDA. Operation A issued into stream 1 may execute
before, during, or after Operation B issued into stream 2.

> Operation: Usually, cudaMemcpyAsync or a kernel call. More
generally, most CUDA API calls that take a stream parameter, as well
as stream callbacks.

STREAM EXAMPLES

> Host/Device execution concurrency:

Kernel<<<b, t>>>(.); // this kernel execution can overlap with
cpuFunction(..); // this host code

> Concurrent kernels:

Kernel<<<b, t, 0, streamA>>>(..); // these kernels have the possibility
Kernel<<<b, t, 0, streamB>>>(..); // to execute concurrently

v

In practice, concurrent kernel execution on the same device is hard to witness

v

Requires kernels with relatively low resource utilization and relatively long execution time

v

There are hardware limits to the number of concurrent kernels per device

v

Less efficient than saturating the device with a single kernel

6 <ANVIDIA.

\; ¥ » "
» . . '.".. v, '
- 2 //. ‘ » -
» . ‘ - ’-
: e % ¢ ! v
A ® a y - .
. . .. » . .
- »
’ it .o. °e . » e 2
o . »

. . INTRODUCTION TO CUDA’s
MULTI-PROCESS SERVICE (MPS)

MPI DECOMPOSITION

Spread work across GPUs

Very common in HPC

Designed to concurrently execute
multiple MPI ranks on different GPUs

Used when there is too much work for a
single GPU.

= 9 R Y R
L

Rank Rank Rank Rank Rank Rank Rank Rank
0 1 2 3 4 5 6 7

8

<A NVIDIA.

MULTI-PROCESS SERVICE (MPS) OVERVIEW

First available on Kepler architecture —
(SM 3.5 - K20/K40/K80)
l:Gru:|

Significantly enhanced on Volta (SM 7.0)

\
/

Rank Rank Rank Rank Rank Rank Rank

Designed to concurrently map multiple
MPI ranks onto a single GPU

Nl -
N -
N -
N -
N -
N -
NN -
Nz 7

Used when each rank is too small to fill
the GPU on its own

/
\

lnmnnl
On Summit, use -alloc_flags=gpumps CPU
when submitting a job with bsub

PROCESSES SHARING GPU WITHOUT MPS

No Overlap

NVIDIA Nsight Systems 2019.6.1 - a X
ght Sy
File View Tools Help

b e x| TR oo x |

default.qdrep f—— =
£ Timeline View - Pl """ A 3wvemnings 22 messages
15@ +110ms +111ms +112ms +113ms &

~ (8 [62020] /mps_demo

~ Threads (10)

Process A Process B

MPI
CUDA API

Profiler overhead

Context A Context B

100.0% Kernels
100.0% Kernels
Events View N7
= Name ~ Duration Start T dummy_kemel =
(o2
7 dummy_kernel 65983 s - GPUO 1.11049s | Begins: 1.11069s
| Ends: 1.11075s (+65.951 p
8 dummy_kernel 65983 ps | - GPUO 1.11055s 9

dummy_kernel 65.984 ps 1.11062s grid: <<<80,1,1>>>
- ' . block: <<<1024,1, 1>>>
dummy_kemel 65.951 s Locinch Type: Risular

1 dummy_kernel 66304ps | - GPUO 11116s | | Static Shared Memory: 0 b
12 dummy_kernel 6595Tps | - GPUO 1.11167s g;:amic Shared Memory:
13 dummy_kernel 65984ps | - GPUO 1111745 | Obytes

Registers Per Thread: 16+

&

Process A Process B

10 <A NVIDIA.

PROCESSES SHARING GPU WITHOUT MPS

Additional small overhead arising from pre-emptive context switch

@ NVIDIA Nsight Systems 2019.6.1 - [m] X
File View Tools Help
—ree——— 15@ +110.7ms +110.75ms +110.8ms +110.85ms +11094
Project Explorer X | IEENEGGIC Gl mps.qdrep X @ [62020] Jmps demo e 1 _ . y . f L i
default.qdrep v Th 1
[mps.qdrep ‘ = Timeline View = > 1x U i reads (10)
1s @mo,‘zms +110.6ms +110.8ms ~ || [62020] MPI Rank 0 ~
i Fisieir i ol TGN i b ki P
v (0 [62020] ./mps_demo
MPI |
~ Threads (10)
e SE—
~ V| [62020] MPI Rank 0 ~ Profiler overhead
MPI 100.0% Kernels » dum
CUDA API 100.0% Kernels . d

Profiler overhead

100.0% Kernels ¢ cumm. | gumm. qumm..._cumm..| gumm.) cumy..
‘ »
Events View v ‘
[Sear:h..‘ \]
Name ~ Duration TID GPU Context Start =l P} y_kernel &
7 dummy_kernel 65983 pus | - GPUO Stream 7 | 1.11049s Begins: 1.11069s
Ends: 1.11075s (+65.951 p
8 dummy_kernel 65983 s | - GPU O Stream 7 1.11055s 9
9 dummy_kernel 65984 ps | - GPUO Stream7 | 1.11062s grid: <<<80,1,1>>>
block: <<<1024, 1, 1>>>
T S P E T EEZM | Context
dummy_kernel 66304 ps GPUO Stream7 | 1.1116s Static Shared Memory: 0 b
es .
12 dummy_kernel 65951 ps | - GPU O Stream 7 1.11167s Dynamlc Shared Memory: SW'I tC h
13 dummy_kernel 65984 pus | - GPUO Stream 7 1.11174s 0 bytes
T e r—— e ey = = — e ~ | Registers Per Thread: 16 |~

Overhead

(S

1

<A NVIDIA.

PROCESSES SHARING GPU WITH MPS

Maximum Overlap

@ NVIDIA Nsight Systems 2019.6.1 - o X
File View Tools Help

P P B | Project Explorer || defauitqdrep X

A | default.qdr —

rOCeSS rOCeSS L Timeline View - 7 2 x “J‘=“ A\ 3 warnings, 22 messages

Context A Context B

1s +108ms, +108.2ms +1084ms +108.6ms +108.8ms b=
~ V| [61852] MPIRank 0 ~

MPI
CUDA API

Profiler overhead
V| [61877) mps_demo ~

100.0% Kernels
100.0% Kernels

[search...

ontext Start dummy_kernel

~ Duration

1 60.856 s | - GPUO Stream7 | 1.10779s Begins: 1.108s
[| Ends: 1.10807s (+69.215 p
68.767ps | - GPUO Stream7 | 1.10786s ‘ 9

grid: <<<80, 1,1>>>
block: <<<1024,1,1>>>
Launch Type: Regular

1.10807s Static Shared Memory: 0 b
ytes

Stream 7 | 1.10814s ‘ Dynamic Shared Memory:
Stream7 | 1.10821s } 0O bytes

69.248 s Stream 7
dumr _kernel 69.215 s | | Stream 7
69472 ps | - GPUO
69.023ps | - GPUO
69.567ps | -

1.10793s

Stream 7

Registers Per Thread: 16

(<)

Kernels from Kernels from

Process A Process B

12 <A NVIDIA.

PROCESSES SHARING GPU WITH MPS

No Context Switch Overhead

File View Tools Help

@ NVIDIA Nsight Systems 2019.6.1

Project Explorer
| default.qdrep
[] mps.qdrep

X

defaultqdrep X }Vmps.qdrep X |

‘ = Timeline View = 2 Ix

1s. +107.9ms
Py

+108ms

~ Threads (10)

~ V| [61852] MPI Rank 0 ~

MPI
CUDA API

Profiler overhead

V! [61877] mps_demo ~

v

~ Threads (10)

pateszico . [N

[61853] ./mps_demo

jv‘—;‘:‘,‘ A\ 3 warnings, 22 messages
1s. < +1 DS.‘06m5 +1 OS.IOTms +1 08.‘08m5 + 108;09m5 + 108‘41 ms + 108,‘1 -
8 threads hidden.. =mdjs ‘f
~ CUDA (MPI Rank 0) f
* 1000%Kemels & dummy_kernel T mmykeme
* 100.0% dummy_kerel dummy kere! | re— e —
100.0% dummy_kernel(cummy kemel | (O oy el

100.0% Kernels # dum.f dummy_ker.) dummy_ker. cummy .. ummy ke
4 . 100.0% Kernels
i Events View v
earch...
Name Y Duration TID GPU Context Start S P y_kernel
1 dummy_kernel 69.856 s | - GPUO Stream 7 1.10779s Begins: 1.108s
Ends: 1.10807s (+69.215
2 dummy_kernel 68.767 ps | - GPUO Stream 7 1.10786s 5
3 dummy_kernel 69.248ps | - GPUO Stream 7 1.10793s grid: <<<80,1,1>>>
block: <<<1024, 1, 1>>>
5 dummy_kernel 69472 ps | - GPUO Stream 7 | 1.10807s Static Shared Memory: 0 b
ytes
6 dummy_kernel 69.023 ps | - GPU O Stream 7 1.10814s Dynamic Shared Memory:
7 dummy_kernel 69.567 ps | - GPUO Stream 7 | 1.10821s 0 bytes

Registers Per Thread: 16

-

o awmeme) (T ammeme -
4 »

(<]

13 <A NVIDIA.

WITHOUT vs. WITH MPS, SIDE-BY-SIDE

MPS enables inter-process concurrency on the GPU

@ NVIDIA Nsight Systems 2019.6.1 - o x @ NVIDIA Nsight Systems 2019.6.1 - o X
File View Tools Help File View Tools Help
| Project Explorer x | [l osadrep X | | Project Explorer X || gefaultqdrep X

default.qdrep

M | default.qdr —
PR O 1y (P 5 L qcrep) A
‘ Timeline View - ‘ & xS . .) A\ 3 warnings, 22 mesages R mps.adrep Timeline View 27 1x \Tl' . . A 3 warnings, 22 messages
| 1s @ +110ms +111ms +112ms +113ms = 1s +108ms, +108.2ms +1084ms +108.6ms +108.8ms =
|~ 18 [62020] /mps_demo I = R S S ~ Threads (10)

~ Threads (10)

~ |V! [61852] MPI Rank 0 ~
~ |V! [62020] MPI Rank 0 ~

MPI

MPI | CUDA API
CUDA API

Profiler overhead
Profiler overhead
® V| [61877] mps_demo ~

| L
100.0% Kernels

0oooa: 100.0% Kernels
100.0% Kernels 100.0% Kernels
Events View w7 ‘ [Events View 7 ‘
[search... X [search.. N
Name ~ Duration TID GPU ontext Start] | dummy_kernel E # Name ~ Duration TID GPU Context Start * | dummy_kernel E
7 dummy_kernel 65983 pus | - GPUO 7 | 1.11049s “ Begins: 1.11069s 1 dummy_kerr 69.856 ps | - GPUO Stream 7 | 1.10779 Begins: 1.108s
| Ends: 1.110755 (+65.951 p Ends: 1.10807s (+69.215 p
8 dummy_kernel 65983ps | - GPUO Strea 1.11055s 9 2 dumm el 68767 ps | - GPUO Stream7 | 1.10786s 19
9 dummy_kernel 65984ps | - GPUO Stream 7 ik 110625 | grid: <<<80,1,1>>> 3 d /_kernel 69.248 ps Stream 7 | 1.10793s | grid: <<<80,1,1>>>
. ' | block: <<<1024, 1, 1>>> | block: <<<1024, 1, 1>>>
[0 | dummypkeme 65951 | PR | oot e Reguiar 4 Lammy_kernel 69215 s | - GPUO | Stream7 | 1.108s | Launch Type: Reguiar
| 11 dummy_kernel 66304ps | - GPUO Stream7 | 1.1116 ‘ Static Shared Memory: 0 b 5 dummy_kernel 69472ps | - GPUO Stream 7 | 1.10807s Static Shared Memory: 0 b
[tes | ytes
12 dummy_kernel 65951 ps | - GPUO Stream7 | 1.11167s | {,‘ymk Shared Memory: 6 dummy_kernel 69.023ps | - GPUO Stream7 | 1.10814s {.‘ymk Shared Memory:
| 13 dummy_kernel 65984 ps | - GPUO Stream 7 1.11174s pytes |

dummy_kernel 69567 ps | - GPUO Stream 7 | 1.10821s | Obytes
= = = = . — ers Per Thread: 16 |~ 3 = i = ... |v RegistersPerThread: 16~

(<}

o}

MPS makes processes
concurrent on the GPU

14 <A NVIDIA.

CUDA 11
Multi-Instance GPU (MIG)

GPU ARCHITECTURE AND CUDA

2016 2017 2018 2020

PASCAL VOLTA TURING AMPERE
HBM, NVLINK, FP16 HBM, NVLINK, TENSOR TENSOR CORES, RT HBM, NVLINK, TENSOR

CORES, MPS CORES CORES, PARTITIONING

18 <ANVIDIA.

INTRODUCING NVIDIA A100

Ampere 37 Gen Tensor Cores
World’s Largest 7nm chip Faster, Flexible, Easier to use
54B XTORS, HBM2 20x Al Perf with TF32

[s
I
-

Il I I .
New Sparsity Acceleration New Multi-Instance GPU 34 Gen NVLINK and NVSWITCH
Harness Sparsity in Al Models Optimal utilization with right sized GPU Efficient Scaling to Enable Super GPU

\
»>
I n
A EEN fAEAEN

2x Al Performance 7x Simultaneous Instances per GPU 2X More Bandwidth

19

<SANVIDIA.

NVIDIA A100: SPECS

V100 A100
SMs 80 108
. FP64, TF32, BF16,
Tensor Core Precision FP16 FP16, 18, 14, B1
Shared Memory
per Block 96 kB 160 kB
L2 Cache Size 6144 kB 40960 kB
Memory Bandwidth 900 GB/sec 1555 GB/sec
NVLink Interconnect 300 GB/sec 600 GB/sec
FP64 Throughput 9.7 | 19.5 TFLOPS
TF32 Tensor Core N/A 156 | 312 TFLOPS

20

<ANVIDIA.

MULTI-INSTANCE GPU (MIG)

Optimize GPU Utilization, Expand Access to More Users with Guaranteed Quality of Service

GPU Instance 0 ——

SMs

GPU Instance 1 ——

GPU Instance 2 ——

GPU Instance 3 ——

(9]
o
[
EEEEEEEN
EEEEEEEN
N

GPU Instance 4 ——

Control
Xbar

GPU Instance 5 ——

Control
Xbar

USER6 1
GPU Instance 6 ——

\

Control
Xbar

Up To 7 GPU Instances In a Single A100:
Dedicated SM, Memory, L2 cache, Bandwidth for
hardware QoS & isolation

Simultaneous Workload Execution With

Guaranteed Quality Of Service:
All MIG instances run in parallel with predictable
throughput & latency

Right Sized GPU Allocation:
Different sized MIG instances based on target
workloads

Diverse Deployment Environments:
Supported with Bare metal, Docker, Kubernetes,
Virtualized Env.

s O

docker

MIG User Guide: https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html 23 SANVIDIA.

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

GPU
Instances

Compute
& Memory
Partitions

Instance
Shapes

EXAMPLE: TWO LEVEL PARTITIONING
A100-40GB - Up to 7 GPUs

Instance O Instance 1 Instance 2
4-Slice 2-Slice 1-Slice
4 parallel CUDA processes Po - P3 One CUDA process Pg Running Debugger
Py P, P, P Py

Compute Compute
Engine Engine

[0] 0]

Compute Instance

Compute Instance

24

<A NVIDIA.

MIG ISOLATION

Computational Isolation
Streaming Multiprocessors (SMs) are not shared between GPU Instances
This provides high Quality of Service (QoS) for each GPU Instance

DRAM Bandwidth Isolation

Slices of the L2 Cache are physically associated with particular DRAM channels and memory
Isolating MIGs to non-overlapping sets of L2 Cache slices does two things:

Isolates BW

Allocates DRAM memory between the MIGs

Configuration Isolation
Creating GPU Instances or Compute Instances do not disturb work running on existing instances

Error Isolation
Resources within the chip are separately resettable

NVIDIA.

LOGICAL VS. PHYSICAL PARTITIONING

4 \ 4 \ 4
(| CUDA MULTI-PROCESS SERVICE CONTROL)

v v v

(GPU MULTI-PROCESS SERVICE)

N\ J

Multi-Process Service
Dynamic contention for GPU resources
Single tenant

4 Parallel CUDA processes / containers

One container Debugger

GPC

Compute Compute Compute
Instance Instance Instance

Memory

GPU Instance

GPC

Compute Compute
Instance Instance

Memory Memory

GPU Instance GPU Instance

Multi-Instance GPU

Hierarchy of instances with guaranteed resource allocation
Multiple tenants

26

<A NVIDIA.

CUDA BEHAVIOR AND DEVELOPER TOOLS

Can CUDA code continue to run on a separate part of the chip
when we re-configure the chip?

Yes, as long as you don’t reconfigure the partition the code is
running on

All CUDA code will have to stop to enable/disable MIG mode

What is the difference between “compute instance” and “GPU
instance”?

GPU instances can be further sub-divided into compute
instances (one per slice or GPC) that share memory. It is a
more advanced use-case.

What is difference between CUDA streams, MPS, and MIG?
MPS does not HW partition the processes

MIG partitions jobs each with dedicated compute, memory, and
memory bandwidth

CUDA stream: Per process, no hardware isolation

Will MIG replace MPS

MPS is a feature of CUDA and will continue as a feature with roadmap,
it is not meant to be a “replacement for” MPS or fixing any MPS
bug.

35 <ANVIDIA.

FUTURE MODULES

> Multi-Threading + CUDA Streams

> MP1/MPS + CUDA

> Debugging Tools

> Compute sanitizer & cuda-gdb

NVIDIA.

