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Pre-emptive scheduling
Processes share GPU through time-slicing

Scheduling managed by system

Concurrent scheduling
Processes run on GPU simultaneously

User creates & manages scheduling streams
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CUDA CONCURRENCY MECHANISMS

Streams MPS MIG
Partition Type Single process Logical Physical

Max Partitions Unlimited 48 7

Performance Isolation No By percentage Yes

Memory Protection No Yes Yes

Memory Bandwidth QoS No No Yes

Error Isolation No No Yes

Cross-Partition Interop Always IPC Limited IPC

Reconfigure Dynamic Process launch When idle

MPS: Multi-Process Service
MIG: Multi-Instance GPU
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CUDA STREAMS



5

STREAM SEMANTICS

1. Two operations issued into the same stream will execute in issue-
order.  Operation B issued after Operation A will not begin to 
execute until Operation A has completed.

2. Two operations issued into separate streams have no ordering 
prescribed by CUDA.  Operation A issued into stream 1 may execute 
before, during, or after Operation B issued into stream 2.

Operation:  Usually, cudaMemcpyAsync or a kernel call.  More 
generally, most CUDA API calls that take a stream parameter, as well 
as stream callbacks.
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STREAM EXAMPLES

Host/Device execution concurrency:

Concurrent kernels:

In practice, concurrent kernel execution on the same device is hard to witness

Requires kernels with relatively low resource utilization and relatively long execution time

There are hardware limits to the number of concurrent kernels per device

Less efficient than saturating the device with a single kernel

Kernel<<<b, t, 0, streamA>>>(…);   // these kernels have the possibility
Kernel<<<b, t, 0, streamB>>>(…);   // to execute concurrently

Kernel<<<b, t>>>(…);   // this kernel execution can overlap with
cpuFunction(…);        // this host code
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INTRODUCTION TO CUDA’s
MULTI-PROCESS SERVICE (MPS)
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MPI DECOMPOSITION

Spread work across GPUs

Very common in HPC

Designed to concurrently execute 
multiple MPI ranks on different GPUs

Used when there is too much work for a 
single GPU.
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MULTI-PROCESS SERVICE (MPS) OVERVIEW

First available on Kepler architecture
(SM 3.5 - K20/K40/K80)

Significantly enhanced on Volta (SM 7.0)

Designed to concurrently map multiple 
MPI ranks onto a single GPU

Used when each rank is too small to fill 
the GPU on its own

On Summit, use –alloc_flags=gpumps
when submitting a job with bsub
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PROCESSES SHARING GPU WITHOUT MPS
No Overlap

5/26/21

Process A Process B

Context A Context B

Process A Process B

GPU
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PROCESSES SHARING GPU WITHOUT MPS
Additional small overhead arising from pre-emptive context switch

5/26/21

Context 
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Overhead
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PROCESSES SHARING GPU WITH MPS
Maximum Overlap

5/26/21
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PROCESSES SHARING GPU WITH MPS
No Context Switch Overhead

5/26/21
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WITHOUT vs. WITH MPS, SIDE-BY-SIDE
MPS enables inter-process concurrency on the GPU

5/26/21

MPS makes processes 
concurrent on the GPU
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CUDA 11 
Multi-Instance GPU (MIG)
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GPU ARCHITECTURE AND CUDA

2016

PASCAL

HBM, NVLINK, FP16

2017

VOLTA

HBM, NVLINK, TENSOR 
CORES, MPS

2018

TURING

TENSOR CORES, RT 
CORES

2020

AMPERE

HBM, NVLINK, TENSOR 
CORES, PARTITIONING

CUDA 8.0 CUDA 9.0 CUDA 10.0 CUDA 11.0

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.
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INTRODUCING NVIDIA A100

Ampere
World’s Largest 7nm chip

54B XTORS, HBM2

3rd Gen NVLINK and NVSWITCH
Efficient Scaling to Enable Super GPU

2X More Bandwidth

3rd Gen Tensor Cores
Faster, Flexible, Easier to use 

20x AI Perf with TF32

New Sparsity Acceleration
Harness Sparsity in AI Models

2x AI Performance

New Multi-Instance GPU
Optimal utilization with right sized GPU

7x Simultaneous Instances per GPU
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NVIDIA A100: SPECS

V100 A100

SMs 80 108

Tensor Core Precision FP16 FP64, TF32, BF16, 
FP16, I8, I4, B1

Shared Memory
per Block 96 kB 160 kB

L2 Cache Size 6144 kB 40960 kB

Memory Bandwidth 900 GB/sec 1555 GB/sec

NVLink Interconnect 300 GB/sec 600 GB/sec

FP64 Throughput 9.7 | 19.5 TFLOPS

TF32 Tensor Core N/A 156 | 312 TFLOPS
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MULTI-INSTANCE GPU (MIG)
Optimize GPU Utilization, Expand Access to More Users with Guaranteed Quality of Service

Up To 7 GPU Instances In a Single A100: 
Dedicated SM, Memory, L2 cache, Bandwidth for 
hardware QoS & isolation

Simultaneous Workload Execution With 
Guaranteed Quality Of Service:
All MIG instances run in parallel with predictable 
throughput & latency

Right Sized GPU Allocation: 
Different sized MIG instances based on target 
workloads

Diverse Deployment Environments: 
Supported with Bare metal, Docker, Kubernetes, 
Virtualized Env.

MIG User Guide: https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html


24

EXAMPLE: TWO LEVEL PARTITIONING
A100-40GB – Up to 7 GPUs

P0 P1 P2 P3 P0 P0

Instance 0 Instance 1 Instance 2
4-Slice

4 parallel CUDA processes P0 – P3
2-Slice

One CUDA process P0
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Instances

FB FB

Compute 
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MIG ISOLATION
● Computational Isolation

○ Streaming Multiprocessors (SMs) are not shared between GPU Instances
○ This provides high Quality of Service (QoS) for each GPU Instance

● DRAM Bandwidth Isolation
○ Slices of the L2 Cache are physically associated with particular DRAM channels and memory
○ Isolating MIGs to non-overlapping sets of L2 Cache slices does two things:

■ Isolates BW
■ Allocates DRAM memory between the MIGs

● Configuration Isolation
○ Creating GPU Instances or Compute Instances do not disturb work running on existing instances

● Error Isolation
○ Resources within the chip are separately resettable
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LOGICAL VS. PHYSICAL PARTITIONING

GPU MULTI-PROCESS SERVICE

A B C

Multi-Process Service
Dynamic contention for GPU resources

Single tenant

CUDA MULTI-PROCESS SERVICE CONTROL

PyTorch PyTorchTensorFlow TensorFlow Jarvis + TensorRT TensorRT

Multi-Instance GPU
Hierarchy of instances with guaranteed resource allocation

Multiple tenants
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CUDA BEHAVIOR AND DEVELOPER TOOLS
Can CUDA code continue to run on a separate part of the chip 
when we re-configure the chip?

Yes, as long as you don’t reconfigure the partition the code is 
running on

All CUDA code will have to stop to enable/disable MIG mode

What is the difference between “compute instance” and “GPU 
instance”?

GPU instances can be further sub-divided into compute 
instances (one per slice or GPC) that share memory. It is a 
more advanced use-case. 

What is difference between CUDA streams, MPS, and MIG? 

MPS does not HW partition the processes

MIG partitions jobs each with dedicated compute, memory, and 
memory bandwidth

CUDA stream: Per process, no hardware isolation

Will MIG replace MPS

MPS is a feature of CUDA and will continue as a feature with roadmap, 
it is not meant to be a “replacement for” MPS or fixing any MPS 
bug.
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FUTURE MODULES

Multi-Threading + CUDA Streams

MPI/MPS + CUDA

Debugging Tools

Compute sanitizer & cuda-gdb




