
Robert Searles, 7/16/2021

CONCURRENCY WITH
MULTITHREADING

2

Pre-emptive scheduling
Processes share GPU through time-slicing

Scheduling managed by system

Concurrent scheduling
Processes run on GPU simultaneously

User creates & manages scheduling streams

C

B

A

time

EXECUTION SCHEDULING & MANAGEMENT

A B C A B

time
time-
slice

3

CUDA STREAMS

5

STREAM SEMANTICS

1. Two operations issued into the same stream will execute in issue-
order. Operation B issued after Operation A will not begin to
execute until Operation A has completed.

2. Two operations issued into separate streams have no ordering
prescribed by CUDA. Operation A issued into stream 1 may execute
before, during, or after Operation B issued into stream 2.

Operation: Usually, cudaMemcpyAsync or a kernel call. More
generally, most CUDA API calls that take a stream parameter, as well
as stream callbacks.

6

STREAM CREATION AND COPY/COMPUTE
OVERLAP

Requirements:

D2H or H2D memcopy from pinned memory

Kernel and memcopy in different, non-0 streams

Code:

7

EXAMPLE STREAM BEHAVIOR FOR VECTOR MATH
(assumes algorithm decomposability)

Stream ID: 0 1 0 1 0 1 0

H->D copy

kernel

D->H copy

cudaMemcpy(d_x, h_x, size_x,
cudaMemcpyHostToDevice);
Kernel<<<b, t>>>(d_x, d_y, N);
cudaMemcpy(h_y, d_y, size_y,
cudaMemcpyDeviceToHost);

non-streamed

for (int i = 0, i<c; i++){
size_t offx = (size_x/c)*i;
size_t offy = (size_y/c)*i;
cudaMemcpyAsync(d_x+offx, h_x+offx,

size_x/c, cudaMemcpyHostToDevice,
stream[i%ns]);
Kernel<<<b/c, t, 0,

stream[i%ns]>>>(d_x+offx, d_y+offy,
N/c);
cudaMemcpyAsync(h_y+offy, d_y+offy,

size_y/c, cudaMemcpyDeviceToHost,
stream[i%ns]);}

streamed

Similar: video processing pipeline

8

DEFAULT STREAM

Kernels or cudaMemcpy… that do not specify stream (or use 0 for stream) are using the default stream

Legacy default stream behavior: synchronizing (on the device):

All device activity issued prior to the item in the default stream must complete before default stream item
begins

All device activity issued after the item in the default stream will wait for the default stream item to finish

All host threads share the same default stream for legacy behavior

Consider avoiding use of default stream during complex concurrency scenarios

Behavior can be modified to convert it to an “ordinary” stream

nvcc --default-stream per-thread …

Each host thread will get its own “ordinary” default stream

Stream 1
Stream 2

Default stream

9

OTHER CONCURRENCY SCENARIOS

Host/Device execution concurrency:

Concurrent kernels:

In practice, concurrent kernel execution on the same device is hard to witness

Requires kernels with relatively low resource utilization and relatively long execution time

There are hardware limits to the number of concurrent kernels per device

Less efficient than saturating the device with a single kernel

Kernel<<<b, t, 0, streamA>>>(…); // these kernels have the possibility
Kernel<<<b, t, 0, streamB>>>(…); // to execute concurrently

Kernel<<<b, t>>>(…); // this kernel execution can overlap with
cpuFunction(…); // this host code

10

MPI DECOMPOSITION

Very common in HPC

Many legacy codes use MPI + OpenMP

MPI handles inter-node communcation

OpenMP provides better shared memory
multithreading within each node

How can we add GPUs into the mix?
Application

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Rank
7

Threads Threads Threads Threads Threads Threads Threads Threads

CPU CPU CPU CPU CPU CPU CPU CPU

11

MULTITHREADING + CUDA STREAMS

Easier than rewriting entire legacy code

Individual OpenMP threads may still have
a significant amount of work

Streams allow multiple threads to submit
kernels for concurrent execution on a
single GPU

Not possible pre-R465

Supported starting with CUDA 11.4/R470
Application

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Rank
7

Threads Threads Threads Threads Threads Threads Threads Threads

CPU

GPU

CPU CPU CPU CPU CPU CPU CPU

GPU GPU GPU GPU GPU GPU GPU

12

SINGLE GPU EXAMPLE

Multithreading + Concurrent kernels:

Worth it if each thread has enough work to offset kernel launch overhead

Requires less programmer overhead than rewriting entire codebase to submit single, large
kernels to each GPU (remove OpenMP and replace with CUDA)

Less efficient than saturating the device with streams from a single thread

Less efficient than saturating the device with a single kernel

cudaStream_t streams[num_streams];
for (int j=0; j<num_streams; j++)

cudaStreamCreate(&streams[j]);

#pragma omp parallel for
for (int i=0; i<N; i++) // execute concurrently across

Kernel<<<b/N, t, 0, streams[i % num_streams]>>>(…); // threads + streams

13

MULTI-GPU – STREAMS

Streams (and cudaEvent) have implicit/automatic device association

Each device also has its own unique default stream

Kernel launches will fail if issued into a stream not associated with current device

cudaStreamWaitEvent() can synchronize streams belonging to separate devices, cudaEventQuery() can
test if an event is “complete”

Simple device concurrency:
cudaSetDevice(0);
cudaStreamCreate(&stream0); //associated with device 0
cudaSetDevice(1);
cudaStreamCreate(&stream1); //associated with device 1
Kernel<<<b, t, 0, stream1>>>(…); // these kernels have the possibility
cudaSetDevice(0);
Kernel<<<b, t, 0, stream0>>>(…); // to execute concurrently

14

MULTI-GPU EXAMPLE

Multithreading + Concurrent kernels:

Multiple threads submitting kernels across a number of streams distributed across available GPUs

Example: 16 threads, 64 streams, 8 GPUs and N=1024

8 streams per GPU, 16 kernels per stream

Should have at least 1 stream per GPU

More will be optimal; Need as many streams on a GPU as it takes concurrent kernels to saturate that GPU

cudaStream_t streams[num_streams];
#pragma omp parallel for
for (int i=0; i<N; i++){

int j = i % num_streams; // Stream number
cudaSetDevice(j % num_gpus); // Round-robin across on-node GPUs
cudaStreamCreate(&streams[j]); // Associated with device j % num_gpus
Kernel<<<b/N, t, 0, streams[j]>>>(…);} // execute across threads/streams/GPUs

15

SINGLE THREAD + CUDA STREAMS

16

MULTITHREADING + CUDA STREAMS

17

MULTITHREADING + CUDA STREAMS

Runtimes

Single Thread + Default Stream = 0.01879s

Single Thread + 8 CUDA Streams = 0.00781s

8 OpenMP Threads + 8 CUDA Streams (without profiling) = 0.00835s

8 OpenMP Threads + 8 CUDA Streams (with profiling) = 0.01798s

Issue with serialization when using the profiler

We’re working on that

18

MULTI-PROCESS SERVICE (MPS) OVERVIEW

Better solution in terms of performance

Designed to concurrently map multiple
MPI ranks onto a single GPU

Used when each rank is too small to fill
the GPU on its own

On Summit, use –alloc_flags=gpumps
when submitting a job with bsub

GPU

CPU

Rank
0

Rank
1

Rank
2

Rank
3

Rank
4

Rank
5

Rank
6

Ra
nk
7

19

FUTURE SESSIONS

MPI/MPS

CUDA Debugging

20

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

https://github.com/olcf/cuda-training-series/blob/master/exercises/hw10/readme.md

Prerequisites: basic linux skills, e.g. ls, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

mailto:username@home.ccs.ornl.gov
mailto:git@github.com:olcf/cuda-training-series.git
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw10/readme.md

