NVIDIA.

CONCURRENCY WITH
MULTITHREADING

Robert Searles, 7/16/2021

EXECUTION SCHEDULING & MANAGEMENT

Pre-emptive scheduling Concurrent scheduling
Processes share GPU through time-slicing Processes run on GPU simultaneously
Scheduling managed by system User creates & manages scheduling streams
B
A

=
time

CUDA STREAMS

STREAM SEMANTICS

Two operations issued into the same stream will execute in issue-
order. Operation B issued after Operation A will not begin to
execute until Operation A has completed.

Two operations issued into separate streams have no ordering
prescribed by CUDA. Operation A issued into stream 1 may execute
before, during, or after Operation B issued into stream 2.

> Operation: Usually, cudaMemcpyAsync or a kernel call. More
generally, most CUDA API calls that take a stream parameter, as well
as stream callbacks.

STREAM CREATION AND COPY/COMPUTE
OVERLAP

> Requirements:
> D2H or H2D memcopy from pinned memory

> Kernel and memcopy in different, non-0 streams

Code: cudaStream t , Streaml;
cudaStreamcCreate (&);

cudastreamCreate(&stream2);

cudaMemcpvAsvnc(dst, src, size, dir,);
kernel<<<grid, block, 0, streamZ>>>(.);

cudaStreamquery(b1 // test if stream is idle
cudaStreamsynchronize(stream2); // force CPU thread to wait
cudastreamDestroy(stream?);

EXAMPLE STREAM BEHAVIOR FOR VECTOR MATH

(assumes algorithm decomposability)

non-streamed
cudaMemcpyHostToDevice) ;
Kernel<<<b, t>>>(d_x, d_y, N);

cudamvemcpy(Ch_y, d_y, size_y,
cudaMemcpyDeviceToHost) ;

streamed
Stream ID: 01 01 010 for (int i =0, i<c; i++){

size_t offx = (size_x/c)*1i;

size_t offy = (size_y/c)*i;

cudamMemcpyAsync (d_x+offx, h_x+offx,
size_x/c, cudaMemcpyHostToDevice,
stream[i%ns]);

Kernel<<<b/c, t, O,
stream[i%ns]>>>(d_x+offx, d_y+offy,

N/C);
cudamemcpyAsync Ch_y+offy, d_y+offy,
Similar: video processing pipeline 51268/ Cuca QICDYDEVICEICHOSES

stream[i%ns]);}

SInviDIA.

DEFAULT STREAM

> Kernels or cudaMemcpy... that do not specify stream (or use 0 for stream) are using the default stream

> Legacy default stream behavior: syncI:hronizingl(on the device):

Stream 1 il
Stream 2 I
Default stream
> All device activity issued prior to the item in the default stream must complete before default stream item
begins

» All device activity issued after the item in the default stream will wait for the default stream item to finish
> All host threads share the same default stream for legacy behavior

» Consider avoiding use of default stream during complex concurrency scenarios
> Behavior can be modified to convert it to an “ordinary” stream

> nvcc --default-stream per-thread ...

> Each host thread will get its own “ordinary” default stream

8 <ANVIDIA.

OTHER CONCURRENCY SCENARIOS

> Host/Device execution concurrency:

Kernel<<<b, t>>>(.); // this kernel execution can overlap with
cpuFunction(..); // this host code

> Concurrent kernels:

Kernel<<<b, t, 0, streamA>>>(..); // these kernels have the possibility
Kernel<<<b, t, 0, streamB>>>(..); // to execute concurrently

v

In practice, concurrent kernel execution on the same device is hard to witness

v

Requires kernels with relatively low resource utilization and relatively long execution time

v

There are hardware limits to the number of concurrent kernels per device

v

Less efficient than saturating the device with a single kernel

9 <ANVIDIA.

MPI DECOMPOSITION

Very common in HPC

Many legacy codes use MPI + OpenMP

MPI handles inter-node communcation

OpenMP provides better shared memory
multithreading within each node

How can we add GPUs into the mix?

Threads Threads Threads Threads Threads Threads Threads Threads
I | | | | | | |

Rank Rank Rank Rank Rank Rank Rank Rank
0 1 2 3 4 5 6 7
eEmmmmE=

Application

10

<ANVIDIA.

MULTITHREADING + CUDA STREAMS

Easier than rewriting entire legacy code

Individual OpenMP threads may still have
a significant amount of work

Streams allow multiple threads to submit
kernels for concurrent execution on a
single GPU

Not possible pre-R465

Supported starting with CUDA 11.4/R470

GPUl |GPY GPU GPU GPY GPU GPY GPU

hr hre hre hrea

eads Threads Threads Thread ds Threads Threads Threads

—
wv
-

-
-

£

£
-
-
-
-

CP CP
Rank Rank Rank Rank Rank Rank Rank Rank
0 1 2 3 4 5 6

3

/

Application

1

<ANVIDIA.

SINGLE GPU EXAMPLE

> Multithreading + Concurrent kernels:
cudaStream_t streams[num_streams];

for (int j=0; j<num_streams; Jj++)
cudaStreamCreate(&streams[j]);

#pragma omp parallel for

for (int i=0; i<N; i++) // execute concurrently across
Kernel<<<b/N, t, 0, streams[i % num_streams]>>>(..); // threads + streams

» Worth it if each thread has enough work to offset kernel launch overhead

> Requires less programmer overhead than rewriting entire codebase to submit single, large
kernels to each GPU (remove OpenMP and replace with CUDA)

> Less efficient than saturating the device with streams from a single thread

> Less efficient than saturating the device with a single kernel

12 <ANVIDIA.

MULTI-GPU - STREAMS

Streams (and cudakvent) have implicit/automatic device association
Each device also has its own unique default stream
Kernel launches will fail if issued into a stream not associated with current device

cudaStreamWaitEvent() can synchronize streams belonging to separate devices, cudaEventQuery() can
test if an event is “complete”

Simple device concurrency:
cudaSetbDevice(0);

cudaStreamCreate(&stream0) ; //associated with device 0O
cudaSetbDevice(l);

cudaStreamCreate(&streaml) ; //associated with device 1
Kernel<<<b, t, 0, streaml>>>(..); // these kernels have the possibility
cudasSetbDevice(0);

Kernel<<<b, t, 0, streamO0>>>(..); // to execute concurrently

13 <ANVIDIA.

MULTI-GPU EXAMPLE

> Multithreading + Concurrent kernels:

cudaStream_t streams[num_streams];
#pragma omp parallel for
for (int i=0; i<N; i++){

int jJ = 1 % num_streams; // Stream number
(3 % num_gpus); // Round-robin across on-node GPUS
(&streams[3j]); // Associated with device j % num_gpus

Kernel<<<b/N, t, 0, streams[j]>>>(..);} // execute across threads/streams/GPUs

> Multiple threads submitting kernels across a number of streams distributed across available GPUs
> Example: 16 threads, 64 streams, 8 GPUs and N=1024

~ 8 streams per GPU, 16 kernels per stream
> Should have at least 1 stream per GPU

> More will be optimal; Need as many streams on a GPU as it takes concurrent kernels to saturate that GPU

14 <ANVIDIA.

SINGLE THREAD + CUDA STREAMS

ds v +348ms +3Aéﬁ\s +3‘50.ms +351ms +3'Sims +3V53}ns +3'5£ms +3‘575ms +3§67ms +35'fms +358m
h 1 h 1 h 1 f 1 1 1 h x 1 1 h 1 1 1 f 1 h

» CPU (176)

v CUDAHW (Tesla V100-SXM2-1€_

lemcpy DtoH |

» [All Streams]

» 53.4% Default stream 7
» 5.9% Stream 23

» 5.9% Stream 22

» 5.9% Stream 25

» 5.8% Stream 24
»

»

»

»

5.8% Stream 21

5.8% Stream 20

5.8% Stream 18

5.8% Stream 19
~ Threads (7)

~ V| [30291] overlap ~

OS runtime libraries

CUDA API D (AR Ao

Profiler overhead

15 <A NVIDIA.

Az v +186ms +188ms +190ms +192ms +194ms +196ms
g gy g gy gy gy it

» CPU (176)

~ CUDAHW (Unknown GPU)

» [All Streams]

» 56.5% Stream 7
5.5% Stream 20

5.5% Stream 23 :.:. m.:m :.30 0 0 : D

5% Stream 21 010 00eIen0mo0 0

5.5% Stream 24 B I. m: :.3: D 0 : U

» 5.5% Stream 22 :':' .mo :.JU : 0 : U

> 54% Stream 19 J0re ereecomoo0: 0

» 5.4% Stream 25 :':. m.:I:U :m : : :
> 5.3%Stream 18 80 B00i0MOe00 0 0 O

~ Threads (14)
I | | [| | | [|
1 ==

-

-

v

-

~ v [159828] overlap ~

|pthread_mutex_lo...| | pthread_mutex_lock | |pthread_mutex_lock| |pthread mutex_lock| | pthread_mutex_lock

| pthread_mutex_lock

| pthread_mutex_lock | | pthread_mutex_lock | | pthread_mutex_lock | | pthread_mutex_|... |

0S runtime libraries

Profiler overhead

~ v [159843] overlap ~

0OS runtime libraries | pthread_mutex_lock | |pthread_mutex_lock| |pthread_mutex_lock| | pthread_mutex_lock | | pthread_mutex_lock | | pthread_mutex_lock | | pthread_mutex_lock | | pthread_mutex_lock | |pthread_mutex_lock|

CUDA AP ((cudaMemcpyAsync | cudaMemepyAsync_ | cudaMemepyAsync |[cudaMemepyAsync || cudaMemcpyAsync | cudaMemcpyAsync][cudaMemcpyAsync | " cudaMemcpyAsync_| (" cudaMemepyAsync_| _cudaMemcpyAsync |
il

~ v [159841] overlap ~

OS runtime libraries \;[| pthread_mutex_lock | |pthread_mutex_lock | |pthread_mutex lock| | pthread_mutex_lock | | pthread_mutex_lock | | pthread_mutex_lock | | pthread_mutex_lock | |pthread_mutex_lock | |pthread_mutex_lock

CUDAAP! 17 A 5 . 5775 552 7 11 7, e G . i o e -
i AL L n | B | [] [n [| [}

-l -

~ v [159842] overlap ~

1 1

0S runtime libraries |pthread...| | pthread_mutex_lock | |pthread_mutex_lock| |pthread_mutex lock| | pthread_mutex_lock | | pthread_mutex_lock | | pthread_mutex_ lock | |pthread_mutex_lock | |pthread_mutex_lock | |pthread_mutex_lock|

CUDAAP! e e () e B e o R) o e) e) o e ey e e)

~ Vv [159844] overlap ~

Ain
L.
AN E—
=
N
im

0S runtime libraries | pthread_mutex_lock | | pthread_mutex_lock | |pthread_mutex_lock| [pthread_mutex_lock| |pthread_mutex_lock| |pthread_mutex_lock| |pthread_mutex_lock| |pthread_mutex_lock | |pthread_mutex lock |

-
o

<A NVIDIA.

MULTITHREADING + CUDA STREAMS

> Runtimes

> Single Thread + Default Stream = 0.01879s

> Single Thread + 8 CUDA Streams =

> 8 OpenMP Threads + 8 CUDA Streams (without profiling) =

> 8 OpenMP Threads + 8 CUDA Streams (with profiling) = 0.01798s
> Issue with serialization when using the profiler

> We’re working on that

MULTI-PROCESS SERVICE (MPS) OVERVIEW

Better solution in terms of performance —
l:Gru:|
Designed to concurrently map multiple s

MPI ranks onto a single GPU

\
/

Rank Rank Rank Rank Rank Rank Rank

Used when each rank is too small to fill
the GPU on its own

Nl -
N -
N -
N -
N -
N -
NN -
Nz 7

On Summit, use -alloc_flags=gpumps
when submitting a job with bsub

/
\

Innnnl
CPU

FUTURE SESSIONS

> MPI/MPS
> CUDA Debugging

HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

» Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

» https://github.com/olcf/cuda-training-series/blob/master/exercises/hw10/readme.md

Prerequisites: basic linux skills, e.g. s, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming

20 <A NVIDIA.

mailto:username@home.ccs.ornl.gov
mailto:git@github.com:olcf/cuda-training-series.git
https://github.com/olcf/cuda-training-series/blob/master/exercises/hw10/readme.md

NVIDIA.

