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EXECUTION SCHEDULING & MANAGEMENT

Pre-emptive scheduling Concurrent scheduling
Processes share GPU through time-slicing Processes run on GPU simultaneously
Scheduling managed by system User creates & manages scheduling streams
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CUDA STREAMS




STREAM SEMANTICS

Two operations issued into the same stream will execute in issue-
order. Operation B issued after Operation A will not begin to
execute until Operation A has completed.

Two operations issued into separate streams have no ordering
prescribed by CUDA. Operation A issued into stream 1 may execute
before, during, or after Operation B issued into stream 2.

> Operation: Usually, cudaMemcpyAsync or a kernel call. More
generally, most CUDA API calls that take a stream parameter, as well
as stream callbacks.



STREAM CREATION AND COPY/COMPUTE
OVERLAP

> Requirements:
> D2H or H2D memcopy from pinned memory

> Kernel and memcopy in different, non-0 streams

Code: cudaStream t , Streaml;
cudaStreamcCreate (& );

cudastreamCreate(&stream2);

cudaMemcpvAsvnc( dst, src, size, dir, );
kernel<<<grid, block, 0, streamZ>>>(.);

cudaStreamquery( b1 // test if stream is idle
cudaStreamsynchronize(stream2); // force CPU thread to wait
cudastreamDestroy(stream?);




EXAMPLE STREAM BEHAVIOR FOR VECTOR MATH

(assumes algorithm decomposability)

non-streamed
cudaMemcpyHostToDevice) ;
Kernel<<<b, t>>>(d_x, d_y, N);

cudamvemcpy(Ch_y, d_y, size_y,
cudaMemcpyDeviceToHost) ;

streamed
Stream ID: 01 01 010 for (int i =0, i<c; i++){

size_t offx = (size_x/c)*1i;

size_t offy = (size_y/c)*i;

cudamMemcpyAsync (d_x+offx, h_x+offx,
size_x/c, cudaMemcpyHostToDevice,
stream[i%ns]);

Kernel<<<b/c, t, O,
stream[i%ns]>>>(d_x+offx, d_y+offy,

N/C);
cudamemcpyAsync Ch_y+offy, d_y+offy,
Similar: video processing pipeline 51268/ Cuca QICDYDEVICEICHOSES

stream[i%ns]);}
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DEFAULT STREAM

> Kernels or cudaMemcpy... that do not specify stream (or use 0 for stream) are using the default stream

> Legacy default stream behavior: syncI:hronizingl(on the device):

Stream 1 il
Stream 2 I
Default stream
> All device activity issued prior to the item in the default stream must complete before default stream item
begins

» All device activity issued after the item in the default stream will wait for the default stream item to finish
> All host threads share the same default stream for legacy behavior

» Consider avoiding use of default stream during complex concurrency scenarios
> Behavior can be modified to convert it to an “ordinary” stream

> nvcc --default-stream per-thread ...

> Each host thread will get its own “ordinary” default stream
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OTHER CONCURRENCY SCENARIOS

> Host/Device execution concurrency:

Kernel<<<b, t>>>(.); // this kernel execution can overlap with
cpuFunction(..); // this host code

> Concurrent kernels:

Kernel<<<b, t, 0, streamA>>>(..); // these kernels have the possibility
Kernel<<<b, t, 0, streamB>>>(..); // to execute concurrently

v

In practice, concurrent kernel execution on the same device is hard to witness

v

Requires kernels with relatively low resource utilization and relatively long execution time

v

There are hardware limits to the number of concurrent kernels per device

v

Less efficient than saturating the device with a single kernel
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MPI DECOMPOSITION

Very common in HPC

Many legacy codes use MPI + OpenMP

MPI handles inter-node communcation

OpenMP provides better shared memory
multithreading within each node

How can we add GPUs into the mix?
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MULTITHREADING + CUDA STREAMS

Easier than rewriting entire legacy code

Individual OpenMP threads may still have
a significant amount of work

Streams allow multiple threads to submit
kernels for concurrent execution on a
single GPU

Not possible pre-R465

Supported starting with CUDA 11.4/R470
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SINGLE GPU EXAMPLE

> Multithreading + Concurrent kernels:
cudaStream_t streams[num_streams];

for (int j=0; j<num_streams; Jj++)
cudaStreamCreate(&streams[j]);

#pragma omp parallel for

for (int i=0; i<N; i++) // execute concurrently across
Kernel<<<b/N, t, 0, streams[i % num_streams]>>>(..); // threads + streams

» Worth it if each thread has enough work to offset kernel launch overhead

> Requires less programmer overhead than rewriting entire codebase to submit single, large
kernels to each GPU (remove OpenMP and replace with CUDA)

> Less efficient than saturating the device with streams from a single thread

> Less efficient than saturating the device with a single kernel
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MULTI-GPU - STREAMS

Streams (and cudakvent) have implicit/automatic device association
Each device also has its own unique default stream
Kernel launches will fail if issued into a stream not associated with current device

cudaStreamWaitEvent() can synchronize streams belonging to separate devices, cudaEventQuery() can
test if an event is “complete”

Simple device concurrency:
cudaSetbDevice(0);

cudaStreamCreate(&stream0) ; //associated with device 0O
cudaSetbDevice(l);

cudaStreamCreate(&streaml) ; //associated with device 1
Kernel<<<b, t, 0, streaml>>>(..); // these kernels have the possibility
cudasSetbDevice(0);

Kernel<<<b, t, 0, streamO0>>>(..); // to execute concurrently
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MULTI-GPU EXAMPLE

> Multithreading + Concurrent kernels:

cudaStream_t streams[num_streams];
#pragma omp parallel for
for (int i=0; i<N; i++){

int jJ = 1 % num_streams; // Stream number
(3 % num_gpus); // Round-robin across on-node GPUS
(&streams[3j]); // Associated with device j % num_gpus

Kernel<<<b/N, t, 0, streams[j]>>>(..);} // execute across threads/streams/GPUs

> Multiple threads submitting kernels across a number of streams distributed across available GPUs
> Example: 16 threads, 64 streams, 8 GPUs and N=1024

~ 8 streams per GPU, 16 kernels per stream
> Should have at least 1 stream per GPU

> More will be optimal; Need as many streams on a GPU as it takes concurrent kernels to saturate that GPU
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SINGLE THREAD + CUDA STREAMS
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MULTITHREADING + CUDA STREAMS

> Runtimes

> Single Thread + Default Stream = 0.01879s

> Single Thread + 8 CUDA Streams =

> 8 OpenMP Threads + 8 CUDA Streams (without profiling) =

> 8 OpenMP Threads + 8 CUDA Streams (with profiling) = 0.01798s
> Issue with serialization when using the profiler

> We’re working on that



MULTI-PROCESS SERVICE (MPS) OVERVIEW

Better solution in terms of performance —
l:Gru:|
Designed to concurrently map multiple s

MPI ranks onto a single GPU
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Used when each rank is too small to fill
the GPU on its own
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On Summit, use -alloc_flags=gpumps
when submitting a job with bsub
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FUTURE SESSIONS

> MPI/MPS
> CUDA Debugging



HOMEWORK

Log into Summit (ssh username@home.ccs.ornl.gov -> ssh summit)

Clone GitHub repository:

» Git clone git@github.com:olcf/cuda-training-series.git

Follow the instructions in the readme.md file:

» https://github.com/olcf/cuda-training-series/blob/master/exercises/hw10/readme.md

Prerequisites: basic linux skills, e.g. s, cd, etc., knowledge of a text editor like vi/emacs, and some
knowledge of C/C++ programming
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