
HIP Training Workshop – Day 3
ROCgdb & HIP math libraries

Justin Chang

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved1

Part 1: Intro to ROCgdb

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved2

[AMD Public Use]

Getting started

What is ROCgdb, from the tin:

The ROCm Debugger (ROCgdb) is the ROCm source-level debugger for Linux, based on the GNU Debugger (GDB). It
enables heterogenous debugging on the ROCm platform of an x86-based host architecture along with AMD GPU
architectures supported by the AMD Debugger API Library (ROCdbgapi). The AMD Debugger API Library (ROCdbgapi)
is included with the ROCm release.

The current ROCm Debugger (ROCgdb) is an initial prototype that focuses on source line debugging and does not
provide symbolic variable debugging capabilities. The user guide presents features and commands that may be
implemented in future versions.

So... cuda-gdb? Yes, and mostly no -- rocgdb is (or will be) gdb, that is it tracks upstream GDB master.

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved3

[AMD Public Use]

What can it do?

In addition to your usual host-debugging capabilities, a very brief overview of rocgdb's current functionality:
• Switching between and seeing info about wavefronts
• Read/write to hardware registers, global memory, and LDS/scratch
• Breakpoints
• Watchpoints
• ISA-level debugging, mapping of ISA to source lines

Before we can take a test drive, let's talk about the code we're going to use it on.

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved4

[AMD Public Use]

Jacobi Example

Our example code:

▪ Solves a Laplacian problem

▪ 5-point finite difference stencil

▪ May be distributed over multiple MPI ranks

▪ Performs several iteration of a Jacobi method

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved5

[AMD Public Use]

Laplacian equation

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced
Micro Devices Inc., All Rights Reserved

Δ𝑦

Δ𝑥

Laplace equation:

−∇2𝑞 = 𝑓

In two dimensions, with a 5-point finite difference stencil we discretize as:

−𝑞𝑖−1,𝑗 + 2𝑞𝑖,𝑗 − 𝑞𝑖+1,𝑗

Δ𝑥2
+
−𝑞𝑖,𝑗−1 + 2𝑞𝑖,𝑗 − 𝑞𝑖,𝑗+1

Δ𝑦2
= 𝑓𝑖,𝑗

On a rectangular lattice one point in the x–y plane:

6

[AMD Public Use]

Jacobi Example

▪ The finite difference Laplacian operator is a sparse
matrix operator on a vector of unknowns:

𝐴𝒒 = 𝒇

▪ When the whole domain is distributed with MPI,
each process will need to receive halo data to
evaluate 𝐴𝒒

▪ Can compute Laplacian at interior stencil points
while the halo data is being exchanged

▪ Jacobi Iterative method is the iteration:

𝒒𝑘+1 = 𝒒𝑘 + 𝐷−1 𝒇 − 𝐴𝒒𝑘

where 𝐷 is the diagonal of 𝐴.

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced
Micro Devices Inc., All Rights Reserved

7

[AMD Public Use]

▪ Initialize MPI

▪ Setup Jacobi object

⁃ ApplyTopology()

⁃ CreateMesh()

⁃ InitializeData()

▪ Execute Jacobi run method

Jacobi Structure

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved8

[AMD Public Use]

▪ Initialize MPI

▪ Setup Jacobi object

⁃ ApplyTopology()

⁃ Establish MPI neighbors

⁃ Set GPU devices

⁃ CreateMesh()

⁃ InitializeData()

▪ Execute Jacobi run method

Jacobi Structure

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved9

[AMD Public Use]

▪ Initialize MPI

▪ Setup Jacobi object

⁃ ApplyTopology()

⁃ Establish MPI neighbors

⁃ Set GPU devices

⁃ CreateMesh()

⁃ Set local domain

⁃ Create halo exchange buffers

⁃ Create streams

⁃ InitializeData()

▪ Execute Jacobi run method

Jacobi Structure

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved10

[AMD Public Use]

▪ Initialize MPI

▪ Setup Jacobi object

⁃ ApplyTopology()

⁃ Establish MPI neighbors

⁃ Set GPU devices

⁃ CreateMesh()

⁃ Set local domain

⁃ Create halo exchange buffers

⁃ Create streams

⁃ InitializeData()

⁃ Generate initial data

⁃ Copy data to device

▪ Execute Jacobi run method

Jacobi Structure

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved

// Setup boundary contributions
…

…

11

[AMD Public Use]

while(){

LocalLaplacian()

HaloExchange()

HaloLaplacian()

JacobiIteration()

Norm()

}

▪ Note:

⁃ Two streams: computeStream and
dataStream

⁃ hipEventRecord timings on each
respective stream (omitted for clarity)

Iterative Loop

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved12

[AMD Public Use]

Preparing the code for the debugger

Preparing your HIP code for debugging:
• Use any optimization level you like, we'll use -O3
• Have ROCm load code objects at initialization:

• export HIP_ENABLE_DEFERRED_LOADING=0

• Add –ggdb to your flags:
• Optionally print even more useful information on API calls

• export AMD_LOG_LEVEL=3

Example of what the compile options may look like…

mpic++ -I/usr/lib/x86_64-linux-gnu/openmpi/include/openmpi \

–L/usr/lib/x86_64-linux-gnu/openmpi/include -pthread –O3 –g –ggdb –fPIC \

–std=c++11 \ –march=native –Wall –I/opt/rocm/roctracer/include \

–I"/opt/rocm-4.2.0/hip/include" -I"/opt/rocm/llvm/bin/../lib/clang/12.0.0" \

–I/opt/rocm/hsa/include –I/opt/rocm/roctracer/include \

–c JacobiSetup.cpp -o JacobiSetup.o

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved13

[AMD Public Use]

Diving in

Launching the debugger, is the same as gdb:

rocgdb --args ./Jacobi_hip -g 1 1

For this demo, I will be using a program called cgdb alongside
rocgdb, this gives a nice curses-based interface, but is by no
means required. In this case:

cgdb -d rocgdb --args ./Jacobi_hip -g 1 1

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved14

https://cgdb.github.io/

[AMD Public Use]

Setting a breakpoint

Let's step into one of our kernels,
LocalLaplacianKernel computes the finite
difference for one of our MPI domains.

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved15

[AMD Public Use]

Setting a breakpoint in host code

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved16

Here we setup a breakpoint in the host code. We can inspect the device pointer and its values:

[AMD Public Use]

Setting a breakpoint in host code

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved17

Typing ‘step’ enables one to iterate through the stack trace:

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved18

Invoke ‘b’ or ‘break’ to the device kernel of interest:

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved19

What happens when you type ‘step’? Another thread hit the same breakpoint! GDB will switch context to the new
thread:
:

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved20

AMDGPU Thread agent-id:queue-id:dispatch-num:wave-id (work-group-z,work-group-y,work-group-x)/

work-group-thread-index

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved21

AMDGPU Thread agent-id:queue-id:dispatch-num:wave-id (work-group-z,work-group-y,work-group-x)/

work-group-thread-index

• agent-id = Agent Target ID

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved22

AMDGPU Thread agent-id:queue-id:dispatch-num:wave-id (work-group-z,work-group-y,work-group-x)/

work-group-thread-index

• agent-id = Agent Target ID
• queue-id = Queue Target ID

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved23

AMDGPU Thread agent-id:queue-id:dispatch-num:wave-id (work-group-z,work-group-y,work-group-x)/

work-group-thread-index

• agent-id = Agent Target ID
• queue-id = Queue Target ID
• dispatch-num = Dispatch Target ID – how many kernels have been launched

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved24

AMDGPU Thread agent-id:queue-id:dispatch-num:wave-id (work-group-z,work-group-y,work-group-x)/

work-group-thread-index

• agent-id = Agent Target ID
• queue-id = Queue Target ID
• dispatch-num = Dispatch Target ID – how many kernels have been launched
• wave-id = Wavefront ID – index of wavefront of kernel

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved25

AMDGPU Thread agent-id:queue-id:dispatch-num:wave-id (work-group-z,work-group-y,work-group-x)/

work-group-thread-index

• agent-id = Agent Target ID
• queue-id = Queue Target ID
• dispatch-num = Dispatch Target ID – how many kernels have been launched
• wave-id = Wavefront ID – index of wavefront of kernel
• (z, y, x) work-group/block index

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved26

To look at the progress of a single wavefront, disable the breakpoint by typing ‘disable <num>’, and then ‘step’

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved27

Use ‘stepi’ which enables the user to dive deeper into the HIP API

[AMD Public Use]

Setting a breakpoint in device kernel

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved28

Type ‘step’ again and you can now freely step through the device kernel

[AMD Public Use]

Examining the ISA

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved29

Several ways one can view the ISA. Using cgdb, type
ESC -> :set dis -> ENTER

[AMD Public Use]

Examining the ISA

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved30

Let's say I want to see what the value of "i" is for my wavefront:

[AMD Public Use]

Examining the ISA

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved31

This also works for scalar registers, for instance here we can check the conditional:
(i < localNx) && (j < localNy)

which is stored in s[0:1], one bit corresponding to each thread in the wavefront:

[AMD Public Use]

Switching wavefronts

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved32

Now that I've been stepping only my wavefront, are the others still at the beginning of the kernel? Use info threads.
This enables us t o see the location of both host threads and GPU wavefronts …

[AMD Public Use]

Switching wavefronts

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved33

.. but where did all the other threads go? Step allows other wavefronts to advance, hence the rest of the waves in
our kernel have already completed!:

[AMD Public Use]

Rerunning rocgdb with scheduler-locking

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved34

Use ‘set scheduler-locking on’ will not continue the other waves.

[AMD Public Use]

Rerunning rocgdb with scheduler-locking

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved35

Now we see the rest of the GPU threads.
Can also type “thread <tid>” to examine one particular thread

[AMD Public Use]

Other tricks: export AMD_LOG_LEVEL=3

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved36

By setting the above environment variable, we can get a print of all API calls and more happening:

[AMD Public Use]

Other tricks: export AMD_LOG_LEVEL=3

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved37

By setting the above environment variable, we can get a print of all API calls and more happening:

[AMD Public Use]

Other tricks: export AMD_LOG_LEVEL=3

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved38

By setting the above environment variable, we can get a print of all API calls and more happening:

[AMD Public Use]

Other tricks: switching between host threads

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved39

Type 'i th' to see a list of all active host threads. Currently viewing thread 1 (default).

[AMD Public Use]

Other tricks: switching between host threads

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved40

Switching between the threads gives different stack traces

[AMD Public Use]

Other tricks: switching between host threads

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved41

Switching between the threads gives different stack traces

[AMD Public Use]

Other tricks: switching between host threads

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved42

Switching between the threads gives different stack traces

[AMD Public Use]

What to do if your program returns an error?

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved43

In a perfect world, all code should run successfully like this …

[AMD Public Use]

What to do if your program returns an error?

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved44

… but every so often we come across GPU errors like this

[AMD Public Use]

What to do if your program returns an error?

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved45

Launch rocgdb and invoke the options shown in the picture:

[AMD Public Use]

What to do if your program returns an error?

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved46

We now see the offending line which invokes the error. Uncommenting out lines 20 and 31 will fix this
particular issue.

[AMD Public Use]

And more…

ROCgdb has several other features and capabilities not covered in this presentation. See the following for much more:

▪ https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_Debugger_User_Guide_v4.2.pdf

▪ /opt/rocm-4.2.0/share/doc/rocgdb/rocannotate.pdf

▪ /opt/rocm-4.2.0/share/doc/rocgdb/rocgdb.pdf

▪ /opt/rocm-4.2.0/share/doc/rocgdb/rocrefcard.pdf

▪ /opt/rocm-4.2.0/share/doc/rocgdb/rocstabs.pdf

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved47

https://github.com/RadeonOpenCompute/ROCm/blob/master/ROCm_Debugger_User_Guide_v4.2.pdf

Part 2: Math Libraries

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved48

[AMD Public Use]

Decoder ring: Math library equivalents

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved49

Basic Linear Algebra
Subroutines

CUBLAS ROCBLAS

Fast Fourier TransformsCUFFT ROCFFT

Deep Learning LibraryTHRUST ROCTHRUST

Optimized Parallel PrimitivesCUB ROCPRIM

C++ Template Library for
Linear Algebra

EIGEN EIGEN

MORE INFO AT: GITHUB.COM/ROCM-DEVELOPER-TOOLS/HIP → HIP_PORTING_GUIDE.MD

[AMD Public Use]

AMD GPU Math Libraries
▪ A note on naming conventions:

⁃ roc* -> AMGCN library usually written in HIP

⁃ cu* -> NVIDIA PTX libraries

⁃ hip* -> usually interface layer on top of roc*/cu* backends

▪ hip* libraries:

⁃ Can be compiled by hipcc and can generate a call for the device you have:

⁃ hipcc->clang->AMD GCN ISA

⁃ hipcc->nvcc (inlined)->NVPTX

⁃ Just a thin wrapper that marshals calls off to a “backend” library:

⁃ corresponding roc* library backend containing optimized GCN

⁃ corresponding cu* library backend containing NVPTX for NVIDIA devices

⁃ E.g., hipBLAS is a marshalling library:

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved50

hipBLAS

rocBLAS cuBLAS

[AMD Public Use]

AMD GPU Libraries: BLAS
▪ rocBLAS – `sudo apt install rocblas`

⁃ Source code: https://github.com/ROCmSoftwarePlatform/rocBLAS

⁃ Documentation: https://rocblas.readthedocs.io/en/latest/

⁃ Basic linear algebra functionality

⁃ axpy, gemv, trsm, etc

⁃ Use hipBLAS if you need portability between AMD and NVIDIA devices

▪ hipBLAS - `sudo apt install hipblas`

⁃ Documentation: https://github.com/ROCmSoftwarePlatform/hipBLAS/wiki/Exported-functions

⁃ Use this if you need portability between AMD and NVIDIA

⁃ It is just a thin wrapper:

⁃ It can dispatch calls to rocBLAS for AMD devices

⁃ It can dispatch calls to cuBLAS for NVIDIA devices

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved51

hipBLAS

rocBLAS cuBLAS

https://github.com/ROCmSoftwarePlatform/rocBLAS
https://rocblas.readthedocs.io/en/latest/
https://github.com/ROCmSoftwarePlatform/hipBLAS/wiki/Exported-functions

[AMD Public Use]

AMD GPU Libraries: rocBLAS example

▪ rocBLAS

⁃ Documentation:
https://rocblas.readthedocs.io/e
n/latest/

⁃ Level 1, 2, and 3 functionality

⁃ axpy, gemv, trsm, etc

⁃ Note: rocBLAS syntax matches
BLAS closer than hipBLAS or
cuBLAS

⁃ Use hipBLAS only if you need
portability between AMD and
NVIDIA devices

⁃ Link with: -lrocblas

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved52

#include <rocblas.h>

int main(int argc, char ** argv) {
rocblas_int N = 500000;

// Allocate device memory
double * dx, * dy;
hipMalloc(&dx, sizeof(double) * N);
hipMalloc(&dy, sizeof(double) * N);

// Allocate host memory (and fill up the arrays) here
std::vector<double> hx(N), hy(N);

// Copy host arrays to device
hipMemcpy(dx, hx.data(), sizeof(double) * N, hipMemcpyHostToDevice);
hipMemcpy(dy, hy.data(), sizeof(double) * N, hipMemcpyHostToDevice);

const double alpha = 1.0;
rocblas_handle handle;
rocblas_create_handle(&handle);
rocblas_status status;
status = rocblas_daxpy(handle, N, &alpha, dx, 1, dy, 1);
rocblas_destroy_handle(handle);

// Copy result back to host
hipMemcpy(hy.data(), dy, sizeof(double) * N, hipMemcpyDeviceToHost);
hipFree(dx);
hipFree(dy);
return 0;

}

https://rocblas.readthedocs.io/en/latest/

[AMD Public Use]

AMD GPU Libraries: FFT
▪ rocFFT – `sudo apt install rocfft`

⁃ Source code: https://github.com/ROCmSoftwarePlatform/rocFFT

⁃ Documentation: https://rocfft.readthedocs.io/en/latest/

⁃ Implementation of Discrete Fourier Transforms (DFT), leveraging mathematical symmetries to reduce
algorithmic complexity from O(N2) to O(N log N)

⁃ Use hipFFT (`sudo apt install hipfft`) if you need portability between AMD and NVIDIA devices

▪ Basic steps in rocFFT:

1. Initialize the library by calling rocfft_setup()

2. Create a plan for the FFT needed

3. Optionally allocate a work buffer

4. Execute the plan

5. Free the work buffer if needed

6. Destroy the plan

7. Terminate the library by calling rocfft_cleanup()

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved53

hipFFT

rocFFT cuFFT

https://github.com/ROCmSoftwarePlatform/rocFFT
https://rocfft.readthedocs.io/en/latest/

[AMD Public Use]

AMD GPU Libraries: rocFFT example

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved54

// Check if the plan requires a work buffer
size_t work_buf_size = 0;
rocfft_plan_get_work_buffer_size(plan, &work_buf_size);
void* work_buf = nullptr;
rocfft_execution_info info = nullptr;
if(work_buf_size) {
rocfft_execution_info_create(&info);
hipMalloc(&work_buf, work_buf_size);
rocfft_execution_info_set_work_buffer(info, work_buf, work_buf_size);

}

// Execute plan
rocfft_execute(plan, (void**) &x, nullptr, info);
hipDeviceSynchronize();

// Clean up work buffer
if(work_buf_size) {
hipFree(work_buf);
rocfft_execution_info_destroy(info);

}

// Destroy plan
rocfft_plan_destroy(plan);

// Copy result back to host
std::vector<float2> y(N);
hipMemcpy(y.data(), x, Nbytes, hipMemcpyDeviceToHost);

// Free device buffer
hipFree(x);
rocfft_cleanup();
return 0;

}

#include <iostream>
#include <vector>
#include "hip/hip_runtime_api.h"
#include "hip/hip_vector_types.h"
#include "rocfft.h"

int main()
{
rocfft_setup();

// Create HIP device buffer
size_t N = 16;
size_t Nbytes = N * sizeof(float2);
float2 *x;
hipMalloc(&x, Nbytes);

// Initialize data
std::vector<float2> cx(N);
for (size_t i = 0; i < N; i++) {
cx[i].x = 1; cx[i].y = -1;

}

// Copy data to device
hipMemcpy(x, cx.data(), Nbytes, hipMemcpyHostToDevice);

// Create rocFFT plan
rocfft_plan plan = nullptr;
size_t length = N;
rocfft_plan_create(&plan, rocfft_placement_inplace,

rocfft_transform_type_complex_forward, rocfft_precision_single,
1, &length, 1, nullptr);

[AMD Public Use]

Some Links to Key Libraries

▪ BLAS

⁃ rocBLAS (https://github.com/ROCmSoftwarePlatform/rocBLAS)

⁃ hipBLAS (https://github.com/ROCmSoftwarePlatform/hipBLAS)

▪ FFTs

⁃ rocFFT (https://github.com/ROCmSoftwarePlatform/rocFFT)

▪ Random number generation

⁃ rocRAND (https://github.com/ROCmSoftwarePlatform/rocRAND)

⁃ hipRAND (https://github.com/ROCmSoftwarePlatform/hipRAND)

▪ Sparse linear algebra

⁃ rocSPARSE (https://github.com/ROCmSoftwarePlatform/rocSPARSE)

⁃ hipSPARSE (https://github.com/ROCmSoftwarePlatform/hipSPARSE)

▪ Iterative solvers

⁃ rocALUTION (https://github.com/ROCmSoftwarePlatform/rocALUTION)

▪ Parallel primitives

⁃ rocPRIM (https://github.com/ROCmSoftwarePlatform/rocPRIM)

⁃ hipCUB (https://github.com/ROCmSoftwarePlatform/hipCUB)

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved55

https://github.com/ROCmSoftwarePlatform/rocBLAS
https://github.com/ROCmSoftwarePlatform/hipBLAS
https://github.com/ROCmSoftwarePlatform/rocFFT
https://github.com/ROCmSoftwarePlatform/rocRAND
https://github.com/ROCmSoftwarePlatform/hipRAND
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/rocALUTION
https://github.com/ROCmSoftwarePlatform/rocPRIM
https://github.com/ROCmSoftwarePlatform/hipCUB

[AMD Public Use]

More links to key libraries

Machine Learning libraries and Frameworks

⁃ Tensorflow: https://github.com/ROCmSoftwarePlatform/tensorflow-upstream

⁃ Pytorch: https://github.com/ROCmSoftwarePlatform/pytorch

⁃ MIOpen (similar to cuDNN): https://github.com/ROCmSoftwarePlatform/MIOpen

⁃ Tensile: https://github.com/ROCmSoftwarePlatform/Tensile

⁃ RCCL (ROCm analogue of NCCL): https://github.com/ROCmSoftwarePlatform/rccl

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved56

https://github.com/ROCmSoftwarePlatform/tensorflow-upstream
https://github.com/ROCmSoftwarePlatform/pytorch
https://github.com/ROCmSoftwarePlatform/MIOpen
https://github.com/ROCmSoftwarePlatform/Tensile
https://github.com/ROCmSoftwarePlatform/rccl

[AMD Public Use]

DISCLAIMER

The information presented in this document is for informational purposes only and may contain technical
inaccuracies, omissions, and typographical errors. The information contained herein is subject to change and may
be rendered inaccurate for many reasons, including but not limited to product and roadmap changes, component
and motherboard version changes, new model and/or product releases, product differences between differing
manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. Any computer system has risks of
security vulnerabilities that cannot be completely prevented or mitigated. AMD assumes no obligation to update
or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to
make changes from time to time to the content hereof without obligation of AMD to notify any person of such
revisions or changes.

THIS INFORMATION IS PROVIDED ‘AS IS.” AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY INACCURACIES, ERRORS, OR OMISSIONS
THAT MAY APPEAR IN THIS INFORMATION. AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF NON-
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL AMD BE
LIABLE TO ANY PERSON FOR ANY RELIANCE, DIRECT, INDIRECT, SPECIAL, OR OTHER CONSEQUENTIAL DAMAGES
ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

| ROCgdb and HIP Math Libraries | ORNL Hackathon, May 24 – 26, 2021 | © Advanced Micro Devices Inc., All Rights Reserved57

